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Abstract 

Share equations for the translog and almost ideal demand systems are estimated using 

Markov Chain Monte Carlo. A common prior on the elasticities and budget shares 

evaluated at average prices and income is used for both models. It includes equality 

restrictions (homogeneity, adding up and symmetry) and inequality restrictions 

(monotonicity and concavity).  Posterior densities on the elasticities and shares are 

obtained; the problem of choosing between the results from the two alternative 

functional forms is resolved by using Bayesian model averaging.  The application is 

to USDA data for beef, pork and poultry.  Estimation of elasticities and shares, 

evaluated at mean prices and expenditure, is insensitive to model choice.  At points 

away from the means the estimates are sensitive, and model averaging has an impact. 

 
JEL classifications: C11, C32, E21. 
 
 
Keywords: conditional prior, Marginal likelihood, Metropolis-Hastings algorithm.  
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Introduction 

 The estimation of demand systems in the form of share equations derived from 

flexible indirect cost or utility functions is common place.  Popular examples are the 

the almost ideal demand system (Deaton and Muellbauer), and the translog demand 

system (Jorgenson, Lau and Stoker). A comprehensive review of these and other 

systems appears in Pollak and Wales. The main attractiveness of a flexible functional 

form is that the demand model has enough free parameters to provide a second order 

approximation to an arbitrary twice differentiable function at a particular set of prices. 

However, this flexibility comes at a cost. Inequality constraints on the parameters 

implied by theory, namely, monotonicity and concavity, are not automatically 

satisfied. Consequently, methods for imposing these constraints have been 

investigated. Examples within a sampling theory framework are Ryan and Wales, and 

Moschini, and, within a Bayesian framework, Chalfant, Gray and White, and Gordon. 

Using a Bayesian framework to investigate this question further is one of the main 

objectives of this paper. In addition, we address the question of Bayesian model 

averaging of alternative functional forms. Traditionally, choice of functional form has 

been based on goodness-of-fit criteria or on a series of nested or nonnested hypothesis 

tests designed to discriminate between alternative models. One problem with this 

practice is that, once a particular model has been chosen, the fact that a number of 

other models have been discarded is usually ignored. No allowance is made for the 

possibility of sample statistics yielding an incorrect choice. Assessment of the 

precision of estimation via standard errors makes no provision for the preliminary-test 

implications for inference. The preliminary-test problem has received considerable 

attention in the sampling-theory literature (see, for example, Judge and Bock, and 
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Danilov and Magnus), but most of the solutions are for particular special cases and do 

not carry over to model selection problems like the one considered here. 

Bayesian model averaging along the lines described by Geweke provides an 

alternative that does yield results and measures of precision that reflect model 

uncertainty. In this approach the results from each model are combined, as a weighted 

average, with the weight attached to each model being the posterior probability that 

that model is “correct”. If one model is vastly superior to the others, then its posterior 

probability will be close to one, and the averaged results will not be distinguishable 

from those of the best-fitting superior model. On the other hand, if the choice between 

models is a less definite one, then each of the models will contribute information to 

the averaged-results, and measures of precision, such as posterior standard deviations, 

will reflect the model uncertainty. 

To illustrate the Bayesian modeling averaging procedure in the context of 

demand systems with inequality constraints, we estimate two nonnested systems, an 

almost ideal demand system (AIDS) and a log-translog system (LTL). Both are 

applied to quarterly data on U.S. beef, pork and poultry consumption for the period 

1979(1) to 1995(2). These data were kindly provided by Nick Piggott who used them 

within another context (Piggott; Alston, Chalfant and Piggott). The procedure we 

follow is depicted in Figure 1.  We begin by choosing some economic quantities of 

interest (EQI) denoted by the vector θ ; a prior probability density function (pdf), 

( )p θ , is then assigned to these EQI. Since the parameter vectors for the two models 

(denoted by 
1Mγ  and 

2Mγ ) have different meanings, we need some kind of device for 

ensuring that their prior pdf’s, 
1

( )Mp γ  and 
2

( )Mp γ , convey similar prior information. 

Beginning with a common prior on θ  and transforming it to 
1

( )Mp γ  and 
2

( )Mp γ  is 
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one way of achieving this objective. The EQI we chose are the expenditure shares for 

each of the meat categories, and all direct and cross price elasticities, and expenditure 

elasticities, evaluated at mean prices and mean total expenditure. The imposition of 

Slutsky symmetry conditions, homogeneity and adding up means that some of the 

EQI (and some of the model parameters) will be redundant. Modification of the prior 

( )p θ  is required to accommodate this redundancy. 

After specifying the prior ( )p θ  and transforming it to the priors 
1

( )Mp γ  and 

2
( )Mp γ , Bayes’ theorem is used to combine these priors with likelihood functions 

( | , ), 1,2
iM ip y M iγ = , to obtain the posterior pdf’s ( | , )

iM ip y Mγ , for the parameters 

of models 1M  and 2M . In these expressions we use the symbol y generically, to 

denote the sample data. Also, in practice, the complete prior and posterior pdf’s will 

involve the unknown error covariance matrix; we have abstracted from this fact in 

Figure 1. Because the models 1M  and 2M  are both systems of nonlinear seemingly 

unrelated regressions, with inequality constraints (for concavity and monotonicity) on 

the parameters, the joint posterior pdf’s are not analytically tractable; expressions for 

marginal posterior pdf’s for single parameters, and their moments, cannot be obtained.  

A Metropolis – Hastings algorithm is used to draw observations from the joint 

posterior pdf’s for each of the model’s parameters. These observations are used to 

estimate marginal posterior pdf’s and their moments for single elements in the vectors 

1Mγ  and 
2Mγ .  Perhaps more importantly, for each of the posterior draws of 

1Mγ  and 

2Mγ , we can compute values of the EQI. These values represent draws from the 

posterior pdf’s for the EQI, conditional on each of the models, ( | , ), 1, 2ip y M iθ = .  

Posterior pdf’s, means and standard deviations for each of the shares and elasticities, 

conditional on each of the models, are obtained from these draws. 
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To obtain unconditional posterior quantities, we proceed with model 

averaging. The first step in this direction is to obtain the marginal likelihoods 

( | ), 1,2ip y M i = . A complication that arises in the estimation of the marginal 

likelihoods is the need to compute estimates of the normalizing constants for the 

priors for each of the models. Imposition of inequality constraints at each data point in 

the sample truncates the prior for each model in a way that is dependent on the model 

parameters. Thus, the normalizing constants will not be the same for each model and 

need to be estimated. We pursue this problem with a Metropolis – Hastings algorithm 

applied to each of the prior pdf’s. Finally, combining the marginal likelihood values 

with prior model probabilities yields posterior model probabilities that are used to 

average the conditional posterior pdf’s ( | , ), 1, 2ip y M iθ = , yielding the 

unconditional posterior pdf for the EQI, ( | )p yθ . In practice, we use functions of the 

draws of θ  from the conditional posterior pdf’s and average those to estimate 

corresponding unconditional posterior pdf’s of those functions. 

For the data set that we employ, we find that posterior information about the 

shares and elasticities, evaluated at mean prices and expenditures, is insensitive to 

choice between the AIDS and LTL models. Consequently, the Bayesian model-

averaged results at these points are not distinguishable from those conditional on 

either of the two models. However, for some points evaluated away from the means, 

the two models lead to different posterior information, and the averaging process has 

an impact on our inferences. 

The framework of the paper is as follows. In the next section we describe the 

AIDS and LTL models, giving expressions for the EQI, and details of the equality and 

inequality constraints. The likelihood function is specified. The prior specification and 
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modification of it to accommodate the equality restrictions are the subject of the third 

section. The next section contains the posterior pdf’s and results for the model 

parameters. Model averaging is described in the fifth section. Posterior results for the 

EQI, including those from model averaging, are discussed in section six. Some 

concluding remarks are made in the final section. 

Models 

 In this section we describe the two models (AIDS and LTL) that are averaged 

in the paper, the equality and inequality constraints on their parameters, and the 

likelihood functions. 

Almost Ideal Demand System 

 The budget shares equations for the AIDS model take the form 

(1)  ( )
3

1

log log log ( ) 1, 2,3i Ai Aij j Ai
j

s p x g p i
=

= α + γ + β − =∑  

where 1 2 3( , , )s s s  are the expenditure shares for beef, pork and poultry, relative to total 

expenditure on these three commodities. Their corresponding prices are 1 2 3( , , )p p p , 

3 3 3

0
1 1 1

1
log ( ) log log log

2
A Ak k Akj k j

k k j

g p p p p
= = =

= α + α + γ∑ ∑∑ , and x is total expenditure. 

The unknown parameters are ( )0( , , , ), , 1, 2,3A Ai Ai Aij i jα α β γ = , with the subscript A 

being used to denote the AIDS model. Estimation of the parameter 0Aα  is often 

problematic, yielding flat regions in the likelihood surface; we set 0 0Aα = , implying a 

zero minimum outlay on each commodity. To ensure the theoretical properties of 

adding up, homogeneity and symmetry are satisfied, the following equality constraints 

are imposed on the parameters: 
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(2)  
3

1

1Ai
i=

α =∑ , 
3

1

0Ai
i=

β =∑ , 
3

1

0Aij
j=

γ =∑ , AjkAkj γ=γ  

The price elasticity of demand for commodity i with respect to price j is 

(3)  
3

1

log
Aij Ai

ij ij Aj Ajk k
ki i

p
s s =

γ β  η = − δ − α + γ 
 

∑  

where 1ijδ =  for i j= , and 0 otherwise. The expenditure elasticity for commodity i is  

(4)  1Ai
ix

is

βη = +  

For monotonicity to hold we require 0 1, 1,2,3is i< < = . For concavity to hold the so-

called Slutsky matrix must be negative semidefinite. Given monoticity holds, this 

matrix will be negative semidefinite if and only if the (3 3)×  matrix with ( , )thi j  

element i ij i j ixs s sη + η  is negative semidefinite. Clearly, the shares and elasticities 

depend on the prices, total expenditure and the parameter values. In our empirical 

work the shares were evaluated as predictions from equation (1), and monotonicity 

and concavity were imposed locally at every data point in the sample. Negative 

semidefiniteness of the Slutsky matrix was ensured by constraining the largest 

eigenvalue to be nonpositive. 

Log Translog Demand System  

The expenditure share equations for the LTL system are given by 

(5)  

3 3

1 1

3 3

1 1

log log

1 log

Bi Bij j Bij
j j

i

Bkj j
k j

p x

s

p

= =

= =

α + γ − γ
=

+ γ

∑ ∑

∑∑
  1,2,3i =  
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The variable definitions carry over from the AIDS model. The parameters have been 

subscripted with B to denote the LTL model. Homogeneity is always satisfied. To 

ensure adding up and symmetry we impose the equality constraints 

(6)  
3

1

1Bi
i=

α =∑   
3 3

1 1

0Bij
i j= =

γ =∑∑   BjkBkj γ=γ  

Let 
3 3

1 1

1 logBkj j
k j

D p
= =

= + γ∑∑ . The price elasticity of demand for commodity i with 

respect to price j is 

(7)  

3

1
Bkj

Bij k
ij ij

is D D

=
γγ

η = − δ −
∑

 

The expenditure elasticity for commodity i is  

(8)  

3

1
1

Bij
j

ix

is D

=
γ

η = − +
∑

 

The inequality constraints implied by monotonicity and concavity are the same as 

those for the AIDS model except that the shares and elasticities are computed using 

equations (5), (7) and (8). 

The Likelihood Specification  

In both models the equality restrictions on the parameters imply that the 

parameters of one equation can always be deduced from those of the other two. 

Consequently, we can focus on estimation of two equations from the three-equation 

system; we chose those for beef and pork ( 1,2)i = . Also, after using the restrictions in 

(2) and (6) to substitute out the remaining redundant parameters, there are 7 

parameters remaining in each system. We denote the vectors of these remaining 
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parameters by Aγ  and Bγ . In line with the substitutions that we chose, they are given 

by 

(9)  1 2 11 12 22 1 2( ) 'A A A A A A A Aγ = α α γ γ γ β β   

1 2 11 12 13 22 23( ) 'B B B B B B B Bγ = α α γ γ γ γ γ   

Working towards a description of the likelihood functions, we modify the first two 

equations in (1) to include all T observations and stochastic error terms so that they 

can be written as  

(10)  1 1 1

2 2 2

( , , )
( , , )

( , , )

A A

A A

A A

s f p x
s f p x

s f p x

γ ε     
= = + = γ + ε     γ ε     

 

where , (.) and , ( 1, 2),i Ai is f iε =  are T–dimensional vectors and , (.) andAs f ε  are 

2T–dimensional vectors. We assume that the bivariate observations 1 2( , ) 't tε ε , 

1,2,...,t T= , are independent normally distributed random vectors with mean vector 

zero and covariance matrix AΣ . Then, the likelihood function can be written as 

(11)

( ) ( )( )

( )

2

2

1

1

1
( | , , ) exp ( , , ) ' ( , , )

2

1
exp tr

2

T

T

A A A A A A A A A

A A A

p s M s f p x I s f p x

W

−

−

−

−

 γ Σ ∝ Σ − − γ Σ ⊗ − γ 
 

 = Σ − Σ 
 

 

where the elements of AW  are given by ( ) ( )( , , ) ' ( , , )Aij i Ai A j Aj Aw s f p x s f p x= − γ − γ , 

1,2i = .  The equations and likelihood are in the form of a set of nonlinear seemingly 

unrelated regression equations.  See, for example, Judge et al (p.551). 

 Using analogous definitions, assumptions and notation, the likelihood function 

for the LTL system can be written as  
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(12)  

( ) ( )( )

( )

2

2

1

1

1
( | , , ) exp ( , , ) ' ( , , )

2

1
exp tr

2

T

T

B B B B B B B B B

B B B

p s M s f p x I s f p x

W

−

−

−

−

 γ Σ ∝ Σ − − γ Σ ⊗ − γ 
 

 = Σ − Σ 
 

 

Prior Specification 

 Before Bayes’ theorem can be applied to the likelihood functions in (11) and 

(12), we need to specify prior pdf’s ( , )A Ap γ Σ  and ( , )B Bp γ Σ . Rather than do so 

directly, we begin by specifying priors on the EQI (elasticities and shares), evaluated 

at mean prices and expenditure, so that similar prior information is conveyed for each 

of the models. Ignoring for the moment equality restrictions that the elasticities and 

shares must satisfy, we take their priors as independent and uniform, and distributed 

on the following intervals: 

(a) 1 2 3, , ~ (0.05, 0.95)s s s U  

(b) 11 22 33, , ~ ( 3,0)Uη η η −  

(c) )3,3(~,,,,, 323123211312 −ηηηηηη U  

(d) )3,3(~,, 321 −ηηη Uxxx  

The over-bar indicates quantities evaluated at mean prices and expenditure. The 

shares are assumed to be no less than 0.05 and no greater than 0.95. Direct price 

elasticities are assumed to be negative and no greater than 3 in absolute value. Cross-

price and expenditure elasticities are allowed to take either sign and are also restricted 

to be less than 3 in absolute value.  These priors were motivated by a desire to have 

simple, proper, and relatively noninformative priors that would be dominated by the 

sample information. There is nothing magical about the choice of upper and lower 
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bounds; they were chosen as maximum or minimum possible values that we thought 

few researchers would object to. 

 The next step is to modify the above prior pdf to accommodate equality 

restrictions among the EQI. In an attempt to give a symmetric treatment to all 

quantities, we began with a 15-dimensional pdf. However, adding up, homogeneity 

and symmetry restrictions imply that 8 of the EQI are redundant. The number of 

nonredundant EQI is 7, the same as the dimension of Aγ  and Bγ . To reduce the 

dimension of the EQI prior from 15 to 7, in a manner consistent with the equality 

constraints from theory, we begin by partitioning the EQI as 1 2( , )θ = θ θ , where 

(13)  1 11 12 13 1 2 21 32( ) 's sθ = η η η η η  

is a vector of nonredundant EQI, and the remaining EQI 

(14)  2 1 2 3 31 3 23 33 22( ) 'x x xsθ = η η η η η η η  

can be derived from the elements in 1θ . The next step is to transform the prior on 

1 2( , )θ θ  to one on ( , )ξ λ  where 1ξ = θ  and 

(15)   

1 11 12 13 1

2 1 12 1 2 1 2 21 1 2 2

3 1 2 3

4 1 1 11 2 21 3 31

5 1 1 2 2 3 3

6 2 23 2 3 2 3 32 2 3 3

7 3 1 13 2 23 3 33

8 21 22 23

1

1

x

x x

x x x

x x

s s s s s s

s s s

s s s s

s s s

s s s s s s

s s s s

λ η + η + η + η 
 
λ η + η − η − η 
 λ − − − 
 λ + η + η + η
 λ = =
 λ − η − η − η
 
λ η + η − η − η 
 λ + η + η + η 
 λ η + η + η + η   2x

 
 
 
 
 
 
 
 
 
 
 
 
   

 

This transformation is chosen such that adding up, homogeneity and symmetry hold 

when 0λ = . The partitioning of θ  and consequent definition of λ  are not unique. 

Other alternatives could have been chosen. 
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 The prior on ( , )ξ λ  is obtained via the transformation 

(16)  

1 1

1 2

2 2

' '
( , ) ( , )

' '

p p

∂θ ∂θ
∂ξ ∂λ

ξ λ = θ θ
∂θ ∂θ
∂ξ ∂λ

 

For evaluating the Jacobian in (16), we need the inverse of the transformation defined 

by 1ξ = θ  and equation (15). The necessary expressions are given in the appendix. 

Now, a prior on the nonredundant EQI, consistent with the equality restrictions, can 

be defined as 

(17)  0
1 0 0

0

( , )
( ) ( | ) ( , )

( )

p
p p p

p

λ=
λ= λ=

λ=

ξ λ
θ = ξ λ = ∝ ξ λ

λ
 

Applying this procedure to the 15-dimensional uniform prior ( )p θ  specified earlier, 

we obtain 

(18)  1 2 3
1 2 1 2

1
( ) ( )

(1 )
Rp I

s s s s
θ ∝ θ

− −
 

where ( )RI θ  is an indicator function which takes the value 1 when the shares and 

elasticities fall within the bounds defined by the uniform priors, and 0 otherwise. 

Inclusion of the inequality constraints from monotonicity and concavity is deferred 

until after transformation to Aγ  and Bγ ; imposing these constraints at each data point 

means they are model dependent. 

 Conditioning on 0λ =  as a device for setting up a prior to accommodate 

equality restrictions on the parameters is along the lines of work by Kleibergen. 

However, in our specification, ξ  and λ  do not exhibit the orthogonality necessary to 

achieve invariance with respect to the conditioning vector. This fact is likely to be the 
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reason that 1 2,s s  and 3s  do not appear symmetrically in 1( )p θ . Nevertheless, for 

model averaging purposes, both models are treated the same and have relatively 

noninformative priors. 

 To derive the prior pdf’s for the model parameters from those for the EQI, we 

write, for the AIDS model, 

(19)  
1 *

1 * 3 3 4
1 2 1 2

( )
( ) ( ) ( )

' (1 )
A R A

A R A

A A A A A

k I
p p I

∂θ γγ = θ γ =
∂γ α α − α − α  

where *( )R AI γ  is an indicator function that is equal to zero if the elasticities and 

shares at mean prices and expenditure fall outside the regions defined by the uniform 

priors, or if the elasticities and shares violate monotonicity or concavity at one or 

more of the sample observations. The unknown normalizing constant Ak  contains 

components from the uniform priors, the conditioning in (17), and the truncation from 

imposing monotonicity and concavity. Following a similar procedure for the LTL 

model, we obtain 

(20)  
1 *

1 * 3 3 4
1 2 1 2

( )
( ) ( ) ( )

' (1 )
B R B

B R B

B B B B B

k I
p p I

∂θ γγ = θ γ =
∂γ α α − α − α  

The expressions necessary for evaluating the Jacobians in (19) and (20) are given in 

the appendix. The data were scaled so that mean prices and expenditure were equal to 

unity, making these expressions, and others involving shares and elasticities evaluated 

at the means, relatively simple. 

 The final step for specification of prior pdf’s for the parameters is the setting 

of priors for AΣ  and BΣ . These matrices are both covariance matrices for the shares 
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1 2( , )s s , and so it is reasonable to assign them the same prior. We chose the inverted 

Wishart pdf  

(21)  ( )( 3) / 2 11
( ) ( ) exp tr ,

2

v

B Ap p h C A B
− + − Σ = Σ = Σ − Σ = 

 
! !

!  

with 2v =  and diagonal(0.00016,0.00016)C = . This prior is a proper, but relatively 

noninformative one. The value 2v =  is the smallest value of v for which ( )p Σ
!

 is 

proper. Setting 0.00016iic =  implies a prior probability of 0.05 that the standard 

deviation of a share exceeds 0.2. Making C diagonal implies the shares are a priori 

independent. Such independence is unlikely, but it does let the data be the main 

determinant of the posterior correlation. The normalizing constant is a known value. 

See, for example, Zellner (p.395). 

 Taking and , ( , )A Bγ Σ =
! !

! , as a priori independent yields, for the joint prior 

pdf for the parameters of each model 

(22) 
( )( 3) / 2 1*

3 3 4
1 2 1 2

( , ) ( ) ( )

( ) 1
exp tr ,

(1 ) 2

vR

p p p

h k I
C A B

− + −

γ Σ = γ Σ

γ  = Σ − Σ = α α − α − α  

! ! ! !

! !

! !

! ! ! !

!

 

Posterior Results for Model Parameters 

 Using Bayes’ theorem to combine the prior pdf’s in (22) with the likelihood 

functions in (11) and (12), and integrating out AΣ  (or BΣ ) yields 
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(23) ( )( 3) / 2 1*
3 3 4
1 2 1 2

( ) / 2*
3 3 4
1 2 1 2

( | , ) ( , | , )

( , ) ( | , , )

( ) 1
exp tr ( )

(1 ) 2

( )
,

(1 )

T vR

v TR

p s M p s M d

p p s M d

I
W C d

I
W C A B

− + + −

− +

γ = γ Σ Σ

∝ γ Σ γ Σ Σ

γ  ∝ Σ − + Σ Σ α α − α − α  

γ∝ + =
α α − α − α

∫

∫

∫

! ! ! ! ! !

! ! ! ! ! !

!

! ! ! !

! ! ! !

!

!

! ! ! !

!

 

These posterior pdf’s are intractable ones; Markov chain Monte Carlo techniques are 

needed to estimate their moments and marginal posterior pdf’s.  To draw observations 

from (23), we used a random-walk Metropolis Hastings algorithm, with a multivariate 

normal transition density, with covariance matrix equal to a scalar multiplied by the 

maximum likelihood parameter covariance matrix.  The scalar was chosen to give an 

acceptance rate of 40%-50% and a series that appeared stationary. A total of 50,000 

observations were generated with the first 10,000 being discarded as a burn-in. Details 

of this algorithm, used in a different application, can be found in Griffiths and 

Chotikapanich. 

 Posterior means and standard deviations estimated from these draws are 

presented in Table 1, along with the corresponding unrestricted maximum likelihood 

estimates, and their standard errors. The close similarity between the two sets of 

estimates is perhaps surprising given the extensive inequality constraints imposed 

during Bayesian estimation. With the exception of the parameters ,iα
!

 ( ,A B=! ; 

1, 2)i = , that are estimated with a great deal of precision, the posterior standard 

deviations are large relative to the corresponding posterior means; estimation of the 

parameters has been relatively imprecise.  Of more interest are estimates of the shares 

and elasticities. The draws of Aγ  and Bγ  from (23) were used to compute 

corresponding draws of the EQI, that can then be used to estimate the posterior 
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means, standard deviations and marginal posterior pdf’s of these EQI. Since we are 

also interested in the results from model averaging the EQI, we defer discussion of 

these estimates until after we have discussed the model averaging process. 

Model Averaging 

 Having obtained the posterior pdf’s for the models’ parameters, the next step 

towards model averaging is to estimate the marginal likelihood functions that are 

given by 

(24)  
( | ) ( | , , ) ( ) ( )

*( | , ) ( ) ,

p s M p s M p p d d

p s M p d A B

= γ Σ γ Σ Σ γ

= γ γ γ =

∫∫

∫

! ! ! ! ! ! ! !

! ! ! !
!

 

where, from (23), 

(25)  
( ) / 2

*( | , ) *
v T

p s M k C W
− +γ = +

! ! !
 

and 

(26)  

( ) / 2

*

3 3 4
1 2 1 2

* ( )
*( | , ) ( )

(1 )

v T

Rk C W k I
p s M p

− ++ γ
γ γ =

α α − α − α
! ! !

! ! !

! ! ! !

 

In these expressions, *( | , )p s Mγ
! !

 can be regarded as the data density or likelihood 

with the covariance matrix integrated out. The constant *k  is the same for both 

models. Because it cancels out when computing posterior model probabilities, it can 

be ignored when estimating the marginal likelihoods.  

The constants k
!
 are more of a problem, however.  We estimated these 

quantities by applying a Metropolis-Hastings algorithm to each of the priors. To see 

how, let ( ) ( )p k gγ = γ
! ! !

. Also, let the transition density for *γ
!
 given ( )mγ

!
, in a 
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Metropolis-Hastings algorithm, be given by ( ) *( , )mq γ γ
! !

, and let the candidate draw at 

the thm − iteration be denoted by ( )* mγ
!

. Then, we can write 

(27)  
*

( ) * *
( ) *

( )
( ) ( ) ( , ) 1

( , )
m

m

k g
p d k g d q d

q

γγ γ = γ γ = γ γ γ =
γ γ∫ ∫ ∫ ! !

! ! ! ! ! ! ! !

! !

 

Following a suggestion by Geweke (p.44), ( ) *( , )mq γ γ
! !

 can be used as an importance 

sampling density, implying we can estimate k
!
 as  

(28)  

1
( )*

( ) ( )*
1

1 ( )ˆ
( , )

mM

m m
m

g
k

M q

−

=

 γ=  γ γ 
∑ !

!

! !

 

where M is the number of post burn-in draws from the Metropolis-Hastings chain. A 

multivariate normal transition density, with considerable experimentation to find a 

suitable covariance matrix, was used with a random-walk Metropolis-Hastings chain. 

The estimates obtained, with numerical standard errors in parentheses, were 

ˆlog 15.3576Ak =  (0.1428) and ˆlog 14.4883Bk =  (0.3079). 

 It is now possible to proceed with estimation of the marginal likelihoods given 

in equation (24). The harmonic-mean method, suggested by Gelfand and Dey (1994), 

and described further by Geweke (1999, p.46) was used for this purpose. The estimate 

is computed from 

(29)  

1
( )

( ) ( )
1

1 ( )
ˆ ( | )

*( | , ) ( )

mM

m m
m

f
p s M

M p s M p

−

=

 γ=  γ γ 
∑ !

!

! ! !

 

where the ( )mγ
!

 are the post burn-in draws from the posterior Metropolis-Hastings 

chain, and ( )f γ
!

 is the truncated normal distribution 

(30)  
1

2
21 11ˆ ˆˆ ˆ( ) (2 ) exp ( ) ' ( ) ( )

2

K

f p I
−−− −

γ γ
 γ = π Σ − γ − γ Σ γ − γ Γ 
 ! !

! ! ! ! ! !
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with ( )

1

1
ˆ

M
m

mM =
γ = γ∑! !

 and ( ) ( )

1

1ˆ ˆ ˆ( )( ) '
M

m m

mM
γ

=
Σ = γ − γ γ − γ∑

!
! ! ! !

 estimated from the 

posterior observations. The indicator function ( )I Γ
!

 equals 1 for γ
!
 satisfying 

1ˆˆ ˆ( ) ' ( ) q
−
γγ − γ Σ γ − γ ≤
!! ! ! !

, where q  is such that 2
( )( )KP q pχ ≤ = , and 7K =  is the 

dimension of γ
!
.  The marginal likelihoods were estimated for alternative values of p 

with only minor differences for different p’s.  The estimates obtained for 0.9p =  and 

their numerical standard errors are ˆlog ( | )Ap s M =  334.3373 (0.1431) and 

ˆlog ( | )Bp s M = 333.4562 (0.3079) .  Given equal prior probabilities are assigned to 

each of the models, [ ( ) ( ) 0.5]A BP M P M= = , estimates of the posterior model 

probabilities are 

(31)  
ˆ ( | ) ( )ˆ( | ) 0.7071

ˆ ˆ( | ) ( ) ( | ) ( )
A A

A

A A B B

p s M P M
P M s

p s M P M p s M P M
= =

+
 

(32)  
ˆ ( | ) ( )ˆ( | ) 0.2929

ˆ ˆ( | ) ( ) ( | ) ( )
B B

B

A A B B

p s M P M
P M s

p s M P M p s M P M
= =

+
 

Thus, the posterior odds in favor of the AIDS model relative to the LTL function are 

approximately 2.4 to 1. 

 Given we have observations on the shares and elasticties θ , drawn from the 

posterior pdf’s conditional on each of the models, ( )| , , ,p s M A Bθ =
!
! , results 

averaged over the two models can be obtained from 

(33)  ( ) ( )
,

( ) | ( ) | , ( | )
A B

E g s E g s M P M s
=

θ = θ∑ ! !

!

 

By choosing ( )g θ = θ we can compute unconditional posterior means, 2( )g θ = θ  

allows us to compute unconditional posterior standard deviations, and letting ( )g θ  be 
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a series of indicator functions, equal to unity within a class and zero outside, permits 

construction of histograms from which unconditional posterior pdf’s can be estimated. 

Posterior Results for Economic Quantities of Interest 

 Posterior means and standard deviations for the shares and elasticities, at mean 

prices and expenditure, for each of the models, and from model averaging, are 

presented in Table 2. This table also contains the unconstrained maximum likelihood 

estimates from each model.  We can observe the following: 

1. There is little difference between the Bayesian and maximum likelihood 

estimates, with the exception of the price and income elasticites for poultry.  

Imposition of the inequality constraints has changed the price elasticity of 

poultry from a small insignificant positive value to a negative value, and this 

change appears to have impacted on other poultry estimates, such as the income 

elasticity, that suggests poultry is an inferior good. Apart from poultry, the 

posterior pdf’s appear to have been dominated by the sample data, as was our 

original intention. 

2. Despite relatively imprecise estimates of the original model parameters, many 

of the elastcities are estimated with reasonable precision.  Poultry is again the 

exception in this regard. 

3. The posterior means and standard deviations from the two models are virtually 

identical.  The complete posterior pdf’s, graphed in Figure 2, are also identical. 

At first glance this result appears to be a disappointing one for Bayesian model 

averaging (although reassuring for demand analysts).  The average is not 

distinguishable from the results of either model. However, the data were scaled 

so that mean prices and expenditure are equal to unity; at this point the 
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logarithms of prices and expenditure are zero, and both models are identical. 

The expressions for the elasticities involve different parameters, but they have 

nevertheless led to the same results. 

 More interesting is an examination of the results at points away from the 

means.  For this purpose, we chose a point with relatively low prices for beef and 

pork, a relatively high price for poultry, and relatively low expenditure. Specifically, 

1 0.8p = , 2 0.7p = , 3 1.2p =  and 0.8x = .  Posterior means and standard deviations 

for the EQI at this point are given in Table 3, for each of the models, and the averaged 

results; the complete posterior pdf’s appear in Figure 3.  Given the higher posterior 

probability for the AIDS model the average posterior pdf’s tend to mimic those for the 

AIDS model.  However, a nonzero probability for the LTL model has a noticeable 

impact, particularly in the case of 1 3 13 22, , ,s s η η  and 33η . In the case of 33η , averaging 

has led to a bimodal distribution.  Allowing for model uncertainty clearly has an 

impact on our inferences. 

Concluding Remarks 

 When a particular demand system is chosen to make inferences about 

quantities such as shares and elasticities at different data points, the inferences drawn 

are conditional on the model that is selected. Different models can lead to quite 

different conclusions. Choosing the best-fitting model from a number of alternative 

models helps reduce the chance of making mistaken inferences, but, because this 

strategy typically ignores discarded models, it overstates the precision with which 

economic quantities of interest are estimated. In this paper we have described and 

illustrated a Bayesian model averaging procedure that solves these problems. 
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 There are a number of issues that require further research.  Assigning a prior 

to economic quantities of interest, and accommodating equality restrictions with a 

conditional posterior pdf, raises questions about invariance with respect to the 

conditioning vector. Possible refinement of this procedure needs to be investigated. 

The imposition of inequality restrictions introduces an unknown normalizing constant 

into the prior.  Our strategy of using draws from the prior to estimate it is relatively 

inefficient.  More efficient alternatives could be investigated.  Finally, we only 

estimated two models.  There are many others that one could include in a model 

averaging framework. 

Appendix 

 To derive the Jacobian term in equation (16), we need to express the 

components of 2θ  as functions of the components of ξ  and λ .  The required 

expressions are: 

  1 1 11 12 13xη = λ − η − η − η       

  1 12 1 2 1 1 21 2
2

1 2

x
x

s s s s

s s

η + η − η − λη =     

  3 1 2 31s s s= − − − λ    

 4 1 1 11 2 21
31

3

s s s

s

λ − − η − ηη =     

  1 1 2 2 5
3

3

1 x x
x

s s

s

− η − η − λη =    

 6 2 3 2 3 32 2 3 3
23

2

x xs s s s s

s

λ − η + η + ηη =    
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 7 3 1 13 2 23
33

3

s s s

s

λ − − η − ηη =     

  22 8 21 23 2xη = λ − η − η − η     

 The Jacobians in equations (19) and (20) require expressions for selected 

shares and elasticities in terms of the model parameters.  These expressions are: 

For Model A:  

  1

1

11
11 1 A

A

A β−
α
γ+−=η     

  
1

21

1

12
12

A

AA

A

A

α
αβ−

α
γ=η      

  
1

211

1

1211
13

)1(

A

AAA

A

AA

α
α−α−β−

α
γ−γ−=η    

  11 As α=        

  22 As α=        

  
2

12

2

12
21

A

AA

A

A

α
αβ−

α
γ=η       

  
21

221

21

2212
32

1

)(

1 AA

AAA

AA

AA

α−α−
αβ+β+

α−α−
γ−γ−=η     

For model B: 

  )(1 131211

1

11
11 BBB

B

B γ+γ+γ−
α
γ+−=η    

  )( 232212

1

12
12 BBB

B

B γ+γ+γ−
α
γ=η    
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  )2( 2322131211

1

13
13 BBBBB

B

B γ+γ+γ+γ+γ+
α
γ=η    

  11 Bs α=      

  22 Bs α=      

  )( 131211

2

12
21 BBB

B

B γ+γ+γ−
α
γ=η     

  )(
1

232212

21

23
32 BBB

BB

B γ+γ+γ−
α−α−

γ=η   
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Figure 1. Flowchart Describing Model Averaging of Two Models. 
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Table 1. Parameter Estimates 

 

AIDS LTL Model 
Parameters 

MLE Bayesian MLE Bayesian 

     

1α
!  0.5469 

(0.0043) 
0.5472 

(0.0042) 
0.5467 

(0.0042) 
0.5467 

(0.0042) 

2α
!

 0.2741 
(0.0013) 

0.2741 
(0.0013) 

0.2741 
(0.0013) 

0.2741 
(0.0013) 

1Aβ  0.4001 
(0.1559) 

0.3253 
(0.1422) 

  

2Aβ  -0.0392 
(0.0502) 

-0.0343 
(0.0529) 

  

11γ
!

 0.0958 
(0.0640) 

0.0526 
(0.0504) 

-0.3448 
(0.1733) 

-0.3213 
(0.1659) 

12γ
!

 -0.0221 
(0.0202) 

-0.0203 
(0.0203) 

-0.1134 
(0.0394) 

-0.0926 
(0.0348) 

13Bγ    0.0522 
(0.0630) 

0.0779 
(0.0590) 

22γ
!

 0.0667 
(0.0161) 

0.0657 
(0.0168) 

0.0869 
(0.0276) 

0.0823 
(0.0278) 

23Bγ    0.0636 
(0.0465) 

0.0421 
(0.0405) 

     

1=beef; 2=pork; 3=poultry. 
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Table 2. Estimates of Economic Quantities of Interest Evaluated at Means 

  

MLE Bayesian BMA 
EQI 

AIDS Log TL AIDS Log TL  

      

1s  0.5469 
(0.0043) 

0.5467 
(0.0042) 

0.5472 
(0.0042) 

0.5467 
(0.0042) 

  0.5471 
 (0.0042) 

2s  0.2741 
(0.0013) 

0.2741 
(0.0013) 

0.2741 
(0.0013) 

0.2741 
(0.0013) 

0.2741 
(0.0013) 

3s  0.1789 
(0.0036) 

0.1792 
(0.0035) 

0.1787 
(0.0035) 

0.1793 
(0.0035) 

0.1789 
(0.0035) 

11η  -1.2250 
(0.1745) 

-1.2248 
(0.1786) 

-1.2291 
(0.1729) 

-1.2519 
(0.1738) 

-1.2358 
(0.1735) 

22η  -0.7177 
(0.0668) 

-0.7202 
(0.0641) 

-0.7260 
(0.0660) 

-0.7317 
(0.0653) 

-0.7277 
(0.0659) 

33η  0.0212 
(0.3203) 

0.0434 
(0.3297) 

-0.2744 
(0.1993) 

-0.2771 
(0.1900) 

-0.2752 
(0.1966) 

12η  -0.2410 
(0.0884) 

-0.2444 
(0.0903) 

-0.2001 
(0.0787) 

-0.2012 
(0.0783) 

-0.2004 
(0.0786) 

13η  -0.2655 
(0.1068) 

-0.2733 
(0.1226) 

-0.1654 
(0.0821) 

-0.1617 
(0.0788) 

-0.1643 
(0.0812) 

21η  -0.0026 
(0.1172) 

-0.0076 
(0.1183) 

-0.0058 
(0.1258) 

-0.0019 
(0.1237) 

-0.0046 
(0.1252) 

23η  -0.1368 
(0.0847) 

-0.1370 
(0.0863) 

-0.1432 
(0.0886) 

-0.1506 
(0.0853) 

-0.1454 
(0.0877) 

31η  0.6917 
(0.4365) 

0.6974 
(0.4473) 

0.7097 
(0.4265) 

0.7707 
(0.4321) 

0.7275 
(0.4291) 

32η  0.3041 
(0.2232) 

0.3176 
(0.2303) 

0.1919 
(0.2024) 

0.2029 
(0.1980) 

  0.1951 
(0.2012) 

x1η  1.7315 
(0.2854) 

1.7426 
(0.2939) 

1.5946 
(0.2603) 

1.6148 
(0.2593) 

  1.6005 
(0.2602) 

x2η  0.8570 
(0.1830) 

0.8648 
(0.1438) 

0.8750 
(0.1929) 

0.8841 
(0.1869) 

0.8777 
(0.1912) 

x3η  -1.0169 
(0.7292) 

-1.0584 
(0.7488) 

-0.6271 
(0.6456) 

-0.6965 
(0.6504) 

-0.6475 
(0.6478) 

      

1=beef; 2=pork; 3=poultry. 
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Table 3. Estimates of Economic Quantities of 

Interest Evaluated away from the Means.  

Bayesian BMA 
EQI 

AIDS Log TL  

    

1s  0.5221 
(0.0168)  

0.5278  
(0.0139) 

0.5238 
(0.0162) 

2s  0.2484 
(0.0101) 

0.2504 
(0.0085) 

0.2490 
(0.0097) 

3s  0.2295 
(0.0146) 

0.2218 
(0.0117) 

0.2272 
(0.0142) 

11η  -1.2332 
(0.1821) 

-1.2390 
(0.1549) 

-1.2349 
(0.1746) 

22η  -0.6999 
(0.0724) 

-0.7353 
(0.0664) 

-0.7103 
(0.0725) 

33η  -0.3959 
(0.1507) 

-0.5364 
(0.0970) 

-0.4371 
(0.1513) 

12η  -0.1944 
(0.0806) 

-0.1837 
(0.0678) 

 -0.1912 
(0.0772) 

13η  -0.1993 
(0.0998) 

-0.1403 
(0.0668) 

-0.1820 
   (0.0952) 

21η  -0.0094 
(0.1375) 

-0.0308 
(0.1178) 

-0.1567 
(0.1324) 

23η  -0.1576 
(0.1094) 

-0.1250 
(0.0815) 

-0.1480 
(0.1031) 

31η  0.5443 
(0.3494) 

0.6079 
(0.3175) 

0.5630 
(0.3416) 

32η  0.1135 
(0.1540) 

0.1366 
(0.1379) 

0.1202 
(0.1499) 

1xη  1.6269 
(0.2790) 

1.5630 
(0.2249) 

1.6082 
(0.2659) 

2xη  0.8669 
(0.2099) 

0.8910 
(0.1805) 

0.8740 
(0.2020) 

3xη  -0.2619 
(0.4928) 

-0.2081 
(0.4262) 

-0.2461 
(0.4749) 

    

1=beef; 2=pork; 3=poultry. 
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Figure 2. Posterior Pdf’s for Economic Quantities of Interest Evaluated at the Means 
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Figure 3. Posterior Pdf’s for Economic Quantities of Interest Evaluated away from the Means 
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