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ABSTRACT 
Efficient high-dimensional performance modeling of today’s 
complex analog and mixed-signal (AMS) circuits with large-scale 
process variations is an important yet challenging task. In this 
paper, we propose a novel performance modeling algorithm that is 
referred to as Bayesian Model Fusion (BMF). Our key idea is to 
borrow the simulation data generated from an early stage (e.g., 
schematic level) to facilitate efficient high-dimensional 
performance modeling at a late stage (e.g., post layout) with low 
computational cost. Such a goal is achieved by statistically 
modeling the performance correlation between early and late 
stages through Bayesian inference. Several circuit examples 
designed in a commercial 32nm CMOS process demonstrate that 
BMF achieves up to 9× runtime speedup over the traditional 
modeling technique without surrendering any accuracy. 
 
1. INTRODUCTION 

The aggressive scaling of integrated circuits (ICs) leads to 
large-scale process variations that cannot be easily reduced by 
foundries. Process variations manifest themselves as the 
uncertainties associated with the geometrical and electrical 
parameters of semiconductor devices. These device-level 
variations significantly impact the parametric yield of analog and 
mixed-signal (AMS) circuits and, hence, must be appropriately 
modeled, analyzed and optimized at all levels of design hierarchy 
[1]-[2]. 

To address this variability issue, various techniques for 
performance modeling have been developed during the past two 
decades [3]-[8]. The objective is to approximate the circuit-level 
performance (e.g., gain of an analog amplifier) as an analytical 
(e.g., linear, quadratic, etc) function of device-level variations 
(e.g., ΔVTH, ΔTOX, etc). Once such a performance model is 
available, it can be applied to a number of important applications 
such as estimating parametric yield [9], extracting worst-case 
corner [10], optimizing circuit design [11]-[15], etc. 

While performance modeling was extensively studied in the 
past, the evolution of today’s AMS circuits has posed a number of 
new challenges in this area. In particular, the recent adoption of 
several emerging design methodologies (e.g., reconfigurable 
analog design, adaptive post-silicon tuning, etc) leads to highly 
complex AMS systems that integrate numerous nanoscale devices. 
The remarkable increase of AMS circuit size results in a two-fold 
consequence. 

• High-dimensional variation space: A large number of device-
level random variables must be used to model the process 
variations associated with a large-scale AMS system. For 
example, about 40 independent random variables are required 
to model the device mismatches of a single transistor for a 
commercial 32nm CMOS process. If an AMS system contains 
104 transistors, there are about 4×105 random variables in total 
to capture the corresponding device-level variations, resulting 
in a high-dimensional variation space. In addition, it is 
extremely difficult, if not impossible, to pre-select a subset of 
these random variables for variation analysis, since the impact 
of device mismatches is circuit- and performance-dependent. 

• Expensive circuit simulation: The computational cost of 
circuit simulation substantially increases, as the AMS circuit 
size becomes increasingly large. For instance, it may take a 
few days or even a few weeks to run the transistor-level 
simulation of a large AMS circuit such as phase-locked loop 
or high-speed link. 
These recent trends of today’s AMS circuits make 

performance modeling extremely difficult. On one hand, a large 
number of simulation samples must be generated in order to fit a 
high-dimensional model. On the other hand, creating a single 
sampling point by transistor-level simulation can take a large 
amount of computational time. The challenging issue here is how 
to make performance modeling computationally affordable for 
today’s large-scale AMS circuits. This fundamental issue has not 
been appropriately addressed by the traditional performance 
modeling techniques, e.g., the recent sparse regression algorithm 
based on Orthogonal Matching Pursuit (OMP) [8]. 

In this paper, we propose a new Bayesian Model Fusion 
(BMF) technique to facilitate large-scale performance modeling 
of AMS circuits. The proposed BMF method is motivated by the 
fact that today’s AMS circuits are often designed via a multi-stage 
flow. Namely, an AMS design often spans three core stages: (i) 
schematic design, (ii) layout design, and (iii) chip manufacturing 
and testing. At each stage, simulation or measurement data are 
collected to validate the circuit design, before moving to the next 
stage. The traditional performance modeling techniques rely on 
the data at a single stage only and they completely ignore the data 
that are generated at other stages. The key idea of BMF, however, 
is to reuse the early-stage data when fitting a late-stage 
performance model. As such, the performance modeling cost can 
be substantially reduced. 

Mathematically, the proposed BMF method is derived from 
the theory of Bayesian inference. Starting from a set of early-stage 
(e.g., schematic-level) sampling points, BMF first approximates 
an early-stage performance model based on these samples. The 
early-stage model is used as a template to define our prior 
knowledge for late-stage (e.g., post-layout) performance 
modeling. Specifically, a prior distribution is statistically defined 
for the late-stage model coefficients. The prior knowledge is then 
combined with very few late-stage sampling points to solve the 
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late-stage model coefficients via Bayesian inference. From this 
point of view, by fusing the early-stage and late-stage 
performance models through Bayesian inference, we only need a 
small number of late-stage sampling points to fit a high-
dimensional late-stage model, thereby significantly reducing the 
computational cost for performance modeling. As will be 
demonstrated by our numerical examples in Section 5, BMF 
achieves up to 9× runtime speedup over the traditional modeling 
technique without surrendering any accuracy. 

BMF was previously proposed for parametric yield estimation 
of AMS circuits in [16] where Bayesian inference was used to 
estimate the probability distribution of AMS performance metrics. 
In this paper, we further extend the idea of BMF to performance 
modeling. It is important to emphasize that the formulation of our 
prior knowledge for performance modeling is completely different 
from that shown in [16], as will be discussed in Section 3. 

The remainder of this paper is organized as follows. In 
Section 2, we review the important background on performance 
modeling, and then derive our proposed BMF method in Section 
3. Several implementation issues are discussed in Section 4. The 
efficacy of BMF is demonstrated by several circuit examples in 
Section 5. Finally, we conclude in Section 6. 
 
2. BACKGROUND 

Given an AMS circuit (e.g., an analog amplifier), its 
performance (e.g., gain) may vary due to device-level variations 
(e.g., ΔVTH, ΔTOX, etc). The objective of performance modeling is 
to approximate the circuit performance as an analytical function 
of the device-level variations: 
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where f represents the performance of interest, x is a vector 
containing the random variables to model device-level variations, 
{αm; m = 1, 2, ..., M} denote the model coefficients, {gm(x); m = 1, 
2, ..., M} are the basis functions (e.g., linear or quadratic 
polynomials), and M is the total number of basis functions. 

In order to determine the performance model in (1), we need 
to find the model coefficients {αm; m = 1, 2, ..., M}. Towards this 
goal, the traditional least-squares fitting method first generates a 
set of sampling points and then solves the model coefficients from 
the following linear equation [18]: 
2 fαG =⋅  (2) 
where 
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4 [ ]TMααα 21=α  (4) 

5 ( ) ( ) ( )[ ]TKfff 21=f . (5) 
In (3)-(5), x(k) and f(k) are the values of x and f(x) at the kth 
sampling point respectively, and K represents the total number of 
sampling points. The number of sampling points (i.e., K) should 
be greater than the number of unknown coefficients (i.e., M). As 
such, the linear equation in (2) is overdetermined and the 
unknown model coefficients {αm; m = 1, 2, ..., M} are found by 
solving its least-squares solution. 

When the aforementioned least-squares fitting method is 
applied to fit a high-dimensional performance model with many 

unknown model coefficients, it requires a large number of 
sampling points to form the overdetermined linear equation in (2). 
Note that each sampling point is generated by running an 
expensive transistor-level simulation. It, in turn, implies that the 
least-squares fitting approach can be extremely expensive for 
high-dimensional performance modeling. 

Recently, sparse regression has been developed to address this 
complexity issue [8]. The key idea is not to solve an 
overdetermined linear equation. Instead, the unknown model 
coefficients are uniquely determined by solving an 
underdetermined linear equation. This goal is achieved by 
exploiting the fact that most model coefficients of a high-
dimensional performance model are close to zero. In other words, 
the unknown model coefficients carry a unique sparse pattern. 
The sparse regression algorithms were particularly developed to 
solve these sparse coefficients from a small number of sampling 
points. As such, the simulation cost of generating the required 
sampling points is greatly reduced. 

While sparse regression has been successfully applied to 
many practical applications, it still requires a large number of 
(e.g., 103) sampling points to fit a high-dimensional performance 
model [8]. Therefore, it remains ill-equipped for modeling large-
scale AMS circuits where running a single transistor-level 
simulation to generate one sampling point may take a few days or 
even a few weeks. Motivated by this observation, we will propose 
a new BMF technique in this paper to further reduce the number 
of required simulation samples and, hence, the computational cost 
for large-scale performance modeling. 
 
3. BAYESIAN MODEL FUSION 

Similar to sparse regression, the proposed BMF method relies 
on the assumption that most model coefficients of a high-
dimensional performance model are close to zero. However, 
unlike the traditional sparse regression approach that fits the 
sparse performance model based on the simulation data at a single 
stage only (e.g., post-layout simulation data), BMF attempts to 
identify the underlying sparse pattern by re-using the early-stage 
data (e.g., schematic-level simulation data) in order to efficiently 
fit a late-stage (e.g., post-layout) performance model. In 
particular, BMF consists of the following two major steps: (i) 
statistically defining the prior knowledge of the sparse pattern 
based on the early-stage simulation data, and (ii) optimally 
determining the late-stage performance model by combining the 
prior knowledge and very few late-stage simulation samples. In 
this section, we will discuss the mathematical formulation of these 
two steps and highlight the novelty. 
 
3.1 Prior Knowledge Definition 

We consider two different performance models: the early-
stage model fE(x) and the late-stage model fL(x): 
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where {αE,m; m = 1, 2, ..., M} and {αL,m; m = 1, 2, ..., M} represent 
the early-stage and late-stage model coefficients, respectively. In 
(6)-(7), we assume that the early-stage model fE(x) and the late-
stage model fL(x) share the same basis functions. More 
complicated cases where fE(x) and fL(x) are approximated by 
different basis functions will be further discussed in Section 4.1. 
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The early-stage model fE(x) is fitted from the early-stage 
simulation data. In practice, the early-stage simulation data are 
collected to validate the early-stage design, before we move to the 
next stage. For this reason, we should already know the early-
stage model fE(x) before fitting the late-stage model fL(x). 
Namely, we assume that the early-stage model coefficients {αE,m; 
m = 1, 2, ..., M} are provided as the input to our proposed BMF 
method for late-stage performance modeling. 

Given the early-stage model fE(x), we first extract the prior 
knowledge that can be used to facilitate efficient late-stage 
modeling. To this end, we propose to learn the underlying sparse 
pattern for the late-stage model fL(x) based on the early-stage 
model coefficients {αE,m; m = 1, 2, ..., M}. Remember that both 
the early-stage and late-stage models are fitted for the same 
performance metric of the same circuit. Their model coefficients 
should be similar. Namely, if the early-stage model coefficient 
αE,m has a large (or small) magnitude, it is likely that the late-stage 
model coefficient αL,m also has a large (or small) magnitude. Such 
prior knowledge should be mathematically encoded into our 
proposed performance modeling flow. 

In this paper, we statistically represent the prior knowledge as 
a probability density function (PDF) that is referred to as the prior 
distribution [19]. In particular, we model each late-stage model 
coefficient as a zero-mean Gaussian distribution: 
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where the standard deviation σm is a parameter that encodes the 
magnitude information of the model coefficient αL,m. If the 
standard deviation σm is small, the prior distribution pdf(αL,m) is 
narrowly peaked around zero, implying that the coefficient αL,m is 
possibly close to zero. Otherwise, if the standard deviation σm is 
large, the prior distribution pdf(αL,m) widely spreads over a large 
range and the coefficient αL,m can possibly take a value that is far 
away from zero. Figure 1 shows a simple example of our 
proposed prior distribution for two model coefficients αL,1 and 
αL,2 where σ1 is small and σ2 is large. 

 
Figure 1.  A simple example of our proposed prior distribution is 
shown for two model coefficients αL,1 and αL,2. The coefficient 
αL,1 is possibly close to zero, since its prior distribution is 
narrowly peaked around zero. The coefficient αL,2 can possibly be 
far away from zero, since its prior distribution widely spreads 
over a large range. 

Given (8), we need to appropriately determine the standard 
deviation σm to fully specify the prior distribution pdf(αL,m). The 
value of σm should be optimized so that the probability 
distribution pdf(αL,m) correctly represents our prior knowledge. In 
other words, by appropriately choosing the value of σm, the prior 
distribution pdf(αL,m) should take a large value (i.e., a high 
probability) at the location where the actual late-stage model 
coefficient αL,m occurs. However, we only know the early-stage 
model coefficient αE,m, instead of the late-stage model coefficient 

αL,m, at this moment. Remember that αE,m and αL,m are expected to 
be similar. Hence, the prior distribution pdf(αL,m) should also take 
a large value at αL,m = αE,m. Based on this criterion, the optimal 
prior distribution pdf(αL,m) can be found by maximizing the 
probability for αE,m to occur: 
9 ( ) ( )Mmpdf mEmL

m
,,2,1max ,, == αα

σ
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Namely, given the early-stage model coefficient αE,m, the optimal 
standard deviation σm is determined by the maximum likelihood 
estimation (MLE) in (9). 

To solve σm from (9), we consider the following first-order 
optimality condition: 
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Substituting (8) into (10) yields: 
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The optimal value of σm is equal to: 
12 ( )MmmEm ,,2,1, == ασ . (12) 

Eq. (12) reveals an important fact that the optimal standard 
deviation σm is simply equal to the absolute value of the early-
stage model coefficient |αE,m|. This observation is consistent with 
our intuition. Namely, if the early-stage model coefficient αE,m has 
a large (or small) magnitude, the late-stage model coefficient αL,m 
should also have a large (or small) magnitude and, hence, the 
standard deviation σm should be large (or small). 

To complete the definition of the prior distribution for all late-
stage model coefficients {αL,m; m = 1, 2, ..., M}, we further 
assume that these coefficients are statistically independent and 
their joint distribution is represented as: 
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where 
14 [ ]TMLLLL ,2,1, ααα=α  (14) 
contains all late-stage model coefficients. The independence 
assumption in (13) simply implies that we do not know the 
correlation information among these coefficients as our prior 
knowledge. The correlation information will be learned from the 
late-stage simulation data, when the posterior distribution is 
calculated by the Bayesian inference in Section 3.2. 

Finally, it is important to mention that the prior knowledge 
can be possibly defined as a distribution that is different from (8). 
For example, the prior distribution is specified as a Gaussian 
distribution with non-zero mean in [16]. It, however, does not 
encode the sparse pattern of model coefficients, as is the case of 
this paper. The efficacy of different prior definitions is case-
dependent. It remains an open question how to determine the 
optimal prior distribution for a specific performance modeling 
problem where the circuit and performance of interest are given. 
This problem will be further studied in our future research. 
 
3.2 Maximum-A-Posteriori Estimation 

Once the prior distribution pdf(αL) is derived in (13), we will 
combine pdf(αL) with K late-stage simulation samples {(x(k), fL

(k)); 
k = 1, 2, …, K}, where x(k) and fL(k) are the values of x and fL(x) at 

PDF
pdf(αL,1) ~ N(0, σ1

2)

pdf(αL,2) ~ N(0, σ2
2)

αL,1 or αL,20
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the kth sampling point respectively, to solve the late-stage model 
coefficient αL by maximum-a-posteriori (MAP) estimation. The 
key idea of MAP is to find the posterior distribution [19], i.e., the 
conditional PDF pdf(αL | fL) where 
15 ( ) ( ) ( )[ ]TK

LLLL fff 21=f  (15) 
contains all late-stage simulation samples that are collected. 
Intuitively, the posterior distribution pdf(αL | fL) indicates the 
remaining uncertainty of αL, after we observe K late-stage 
simulation samples. Here, since αL is a random variable, it is 
described by a probability distribution, instead of a deterministic 
value. MAP attempts to find the optimal value of αL to maximize 
the posterior distribution pdf(αL | fL). Namely, it aims to find the 
solution αL that is most likely to occur according to the posterior 
distribution. 

Based on Bayes’ theorem, the posterior distribution 
pdf(αL | fL) is proportional to the prior distribution pdf(αL) 
multiplied by the likelihood function pdf(fL | αL) [19]: 
16 ( ) ( ) ( )LLLLL pdfpdfpdf αfαfα ⋅∝ . (16) 
The prior distribution pdf(αL) is already defined in (13). To derive 
the likelihood function pdf(fL | αL), we further assume that the 
error for the late-stage performance model fL(x) follows a zero-
mean Gaussian distribution and, hence, the approximate equality 
in (7) can be re-written as: 
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where εL denotes the modeling error with the distribution: 

18 ( ) ( )2
02

0

2

0

,0~
2

exp
2

1 σ
σ

ε
σπ

ε Npdf L
L ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
−⋅

⋅
= . (18) 

In (18), the standard deviation σ0 controls the magnitude of the 
modeling error. Its value can be optimally determined by using 
the cross-validation technique that will be discussed in Section 
4.2. 

Given (17)-(18), since the modeling error at the kth simulation 
sample (x(k), fL(k)) is simply one sampling point of the random 
variable εL, it follows the Gaussian distribution: 
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Therefore, the probability of observing the kth sampling point is: 
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Assume that all sampling points are independently generated, we 
can write the likelihood function pdf(fL | αL) as: 
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Combining (13), (16) and (20)-(21), it is straightforward to 
prove that the posterior distribution pdf(αL | fL) is Gaussian and its 
covariance matrix ΣL and mean vector μL are [17], [19]: 
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where G and fL are defined by (3) and (15) respectively, and 
diag(•) represents an operator to construct a diagonal matrix. 
Since the Gaussian PDF pdf(αL | fL) reaches its maximum at the 
mean value, the MAP solution αL is equal to the mean vector μL: 

24 L
T

LL fGΣα ⋅⋅⋅= −2
0σ . (24) 

In other words, Eq. (24) shows the optimal coefficients solved by 
our proposed BMF method for the late-stage performance model 
fL(x). 

While the basic idea of prior knowledge definition and 
maximum-a-posteriori estimation is illustrated in this section, 
several implementation issues must be carefully considered in 
order to make BMF of practical utility. These implementation 
details will be further discussed in the next section. 
 
4. IMPLEMENTATION ISSUES 

To make the proposed BMF method of practical utility, two 
implementation issues, (i) missing prior knowledge and (ii) cross-
validation, must be carefully considered. In this section, we will 
discuss these implementation issues in detail. 
 
4.1 Missing Prior Knowledge 

The BMF method derived in Section 3 assumes that the early-
stage model fE(x) and the late-stage model fL(x) share the same 
basis functions. In practice, this assumption may not always hold, 
because the early-stage model does not necessarily capture all the 
detailed behaviors of a circuit. For instance, it is well-known that 
layout parasitics will be added to the post-layout netlist (late 
stage) during layout extraction. The variations of these parasitics 
must be modeled by a number of new random variables that are 
completely ignored at the schematic level (early stage). The late-
stage post-layout model fL(x) should contain additional basis 
functions corresponding to the new random variables that are not 
found from the early-stage schematic model fE(x). In this case, the 
early-stage model fE(x) does not carry any prior knowledge about 
the late-stage model coefficients associated with these additional 
basis functions. In other words, the prior knowledge for these late-
stage model coefficients is missing. 

To appropriately handle the cases with missing prior 
knowledge, we re-visit the prior distribution pdf(αL,m) defined in 
(8). As mentioned in Section 3.1, the standard deviation σm of the 
Gaussian distribution pdf(αL,m) encodes the magnitude 
information of the late-stage model coefficient αL,m. If there is no 
prior knowledge available for αL,m, it implies that the late-stage 
model coefficient αL,m can possibly take any value with equal 
probability. Hence, the standard deviation σm should be set to +∞: 
25 +∞=mσ  (25) 
so that the prior distribution is nearly constant over a wide range. 
Note that when calculating the posterior distribution in (22)-(23), 
only the value of σm

−1 is needed. Hence, the infinite standard 
deviation in (25) would not cause any numerical problem for 
solving the late-stage model coefficients. 
 
4.2 Cross-Validation 

As mentioned in Section 3.2, the standard deviation σ0 of the 
modeling error in (18) must be determined. Otherwise, without 
knowing σ0, the late-stage model coefficients αL cannot be 
determined by the MAP solution in (24). The objective here is to 
find the optimal value of σ0 so that the modeling error is 
minimized. Towards this goal, we must accurately estimate the 
modeling error for different σ0 values and then select the optimal 
σ0 with minimal error. 

To quantitatively estimate the modeling error for a given σ0 
value, we adopt the idea of N-fold cross validation from the 
statistics community [19]. Namely, we partition the entire data set 
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into N groups. Modeling error is estimated from N independent 
runs. In each run, one of the N groups is used to estimate the 
modeling error and all other groups are used to calculate the 
model coefficients. Note that the training data for coefficient 
estimation and the testing data for error estimation are not 
overlapped. Hence, over-fitting can be easily detected. In addition, 
different groups should be selected for error estimation in 
different runs. As such, each run results in an error value en (n = 1, 
2, ..., N) that is measured from a unique group of data points. The 
final modeling error is computed as the average of {en; n = 1, 2, ..., 
N}, i.e., e = (e1 + e2 + ... + eN)/N. More details on cross-validation 
can be found in [19]. 
 
4.3 Summary 

Algorithm 1 summarizes the major steps of our proposed 
BMF method. It consists of two core components: (i) prior 
distribution definition, and (ii) MAP estimation. The efficacy of 
BMF will be further demonstrated by our numerical examples in 
the next section. 

Algorithm 1: Bayesian Model Fusion (BMF) 
1. Start from the early-stage performance model fE(x) in (6). 
2. Define the prior distribution for the late-stage model 

coefficients {αL,m; m = 1, 2, ..., M} by (12)-(13) and (25). 
3. Collect K late-stage simulation samples {(x(k), fL

(k)); k = 1, 2, 
…, K}. 

4. Solve the late-stage model coefficients {αL,m; m = 1, 2, ..., M} 
based on (24) where σ0 is determined by cross-validation. 

 
5. NUMERICAL EXAMPLES 

In this section, several circuit examples designed in a 
commercial 32nm CMOS process are used to demonstrate the 
efficacy of the proposed BMF method. Our objective is to build 
post-layout performance models for these circuits. For testing and 
comparison purposes, two different performance modeling 
techniques are implemented: (i) the traditional sparse regression 
method based on OMP [8], and (ii) the proposed BMF method. 
Here, the OMP algorithm is chosen for comparison, since it is one 
of the state-of-the-art techniques in the literature. When 
implementing BMF, we use the schematic-level simulation data to 
define our prior knowledge for post-layout performance modeling. 

In each example, two different data sets, referred to as the 
training set and the testing set respectively, are generated by 
random sampling based on post-layout transistor-level simulation. 
The training set is used for coefficient fitting, including cross-
validation. The testing set contains 300 independent random 
samples that are used for model validation. All numerical 
experiments are run on a 2.9GHz Linux server with 4GB memory. 
 
5.1 Ring Oscillator 

Shown in Figure 2(a) is the simplified circuit schematic of a 
ring oscillator designed in a commercial 32nm CMOS process. In 
this example, there are 7177 independent random variables in total 
to model device-level process variations, including both inter-die 
variations and random mismatches. Our objective is to 
approximate three post-layout performance metrics, power, 
frequency and phase noise, as linear functions of these 7177 
random variables. 

Figure 2(b)-(d) show how the performance modeling error 
varies with the number of post-layout training samples. Note that 
for both OMP and BMF, the modeling error decays as the number 
of samples increases. However, given the same number of post-

layout training samples, BMF is able to achieve substantially 
higher accuracy than OMP, especially if only few samples are 
available. 

Table 1 further compares the modeling error and cost for 
OMP and BMF. The total cost for performance modeling consists 
of two major portions: (i) simulation cost (i.e., the cost of running 
a transistor-level simulator to generate all post-layout samples in 
the training set), and (ii) fitting cost (i.e., the cost of solving all 
unknown model coefficients). As shown in Table 1, the total 
modeling cost is dominated by transistor-level simulation in this 
example. BMF achieves 9× runtime speed-up over OMP without 
surrendering any accuracy. 

 
                         (a)                                                  (b) 

 
                         (c)                                                  (d) 
Figure 2.  A ring oscillator designed in a commercial 32nm 
CMOS process is used as an example for performance modeling 
where BMF requires significantly less post-layout samples than 
OMP to achieve the same accuracy: (a) simplified circuit 
schematic of the ring oscillator, (b) modeling error for power, (c) 
modeling error for frequency, and (d) modeling error for phase 
noise. 

Table 1.  Performance modeling error and cost for ring oscillator 

 OMP 
(Traditional) 

BMF 
(Proposed) 

# of post-layout training samples 900 100 
Modeling error for power 0.77% 0.72% 
Modeling error for frequency 0.65% 0.54% 
Modeling error for phase noise 0.12% 0.12% 
Simulation cost (Hour) 12.58 1.40 
Fitting cost (Second) 5.75 1.69 
Total modeling cost (Hour) 12.58 1.40 
 
5.2 SRAM Read Path 

Figure 3(a) shows the simplified circuit schematic of an 
SRAM read path designed in a commercial 32nm CMOS process. 
In this example, there are 66117 independent random variables to 
model device-level process variations. Read delay is our circuit 
performance of interest, and it is approximated as a linear function 
of all device-level random variables. 

Figure 3(b) and Table 2 compare the modeling error and cost 
for OMP and BMF. Similar to the ring oscillator example, two 
important observations can be made here. First, BMF requires 
substantially less post-layout training samples than OMP, in order 
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to achieve the same modeling accuracy. In this example, BMF 
reduces the number of required samples from 400 to 100 without 
surrendering any accuracy. Figure 4 further plots the histograms 
of modeling error for both OMP and BMF with 400 and 100 post-
layout training samples, respectively. Second, but more 
importantly, since the total modeling cost is dominated by 
transistor-level simulation, BMF successfully reduces the total 
modeling cost by reducing the number of required post-layout 
training samples. Compared to OMP, BMF achieves 4× runtime 
speed-up, as shown in Table 2. 

 
                         (a)                                                  (b) 
Figure 3.  A simplified SRAM read path designed in a commercial 
32nm CMOS process is used as an example for performance 
modeling where BMF requires significantly less post-layout 
samples than OMP to achieve the same accuracy: (a) simplified 
circuit schematic of the SRAM read path, and (b) modeling error 
for read delay. 

Table 2.  Performance modeling error and cost for SRAM 

 OMP 
(Traditional) 

BMF 
(Proposed) 

# of post-layout training samples 400 100 
Modeling error for read delay 1.02% 0.99% 
Simulation cost (Hour) 38.77 9.69 
Fitting cost (Second) 3.56 2.11 
Total modeling cost (Hour) 38.77 9.69 

 
                            (a)                                                (b) 
Figure 4.  Histograms of modeling error are estimated from the 
testing set for read delay: (a) modeling error of OMP with 400 
post-layout training samples, and (b) modeling error of BMF with 
100 post-layout training samples. 
 
6. CONCLUSIONS 

In this paper, a novel BMF algorithm is proposed for efficient 
high-dimensional performance modeling of complex AMS 
circuits with consideration of large-scale process variations. BMF 
borrows the early-stage (e.g., schematic-level) simulation data to 
learn a model template that is statistically represented as a prior 
distribution. Next, the model template encoding our prior 
knowledge is further calibrated by very few late-stage (e.g., post-
layout) simulation samples to accurately create a late-stage 
performance model. As such, the computational cost of high-
dimensional performance modeling can be substantially reduced, 
since only few transistor-level simulations are required at the late 

stage. As is demonstrated by our circuit examples designed in a 
commercial 32nm CMOS process, the proposed BMF method 
achieves up to 9× runtime speedup compared to the traditional 
modeling technique. In our future work, we will further apply 
BMF to several practical applications such as statistical analysis 
of large-scale AMS systems. 
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