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Abstract 

Image intensity variations can result from several different object 

surface effects, including shading from 3-dimensional relief of the 
object, or paint on the surface itself. An essential problem in vision , 
which people solve naturally, is to attribute the proper physical 

cause, e.g. surface relief or paint, to an observed image. We ad
dressed this problem with an approach combining psychophysical 
and Bayesian computational methods. 

We assessed human performance on a set of test images, and found 

that people made fairly consistent judgements of surface properties. 
Our computational model assigned simple prior probabilities to 

different relief or paint explanations for an image, and solved for 

the most probable interpretation in a Bayesian framework. The 
ratings of the test images by our algorithm compared surprisingly 
well with the mean ratings of our subjects. 

1 Introduction 

When people study a picture, they can judge whether it depicts a shaded, 3-
dimensional surface, or simply a flat surface with markings or paint on it. The 

two images shown in Figure 1 illustrate this distinction [1]. To many observers 

Figure 1a appears to be a raised plateau lit from the left. Figure 1b is simply a 
re-arrangement of the local features of la, yet it does not give an impression of 
shape or depth. There is no simple correct answer for this problem; either of these 

images could be explained as marks on paper, or as illuminated shapes. Neverthe
less people tend to make particular judgements of shape or reflectance. We seek an 

algorithm to arrive at those same judgements. 

There are many reasons to study this problem. Disentangling shape and reflectance 
is a prototypical underdetermined vision problem, which biological vision systems 

routinely solve. Insights into this problem may apply to other vision problems 
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as well. A machine that could interpret images as people do would have many 
applications , such as the interactive editing and manipulation of images. Finally, 

there is a large body of computer vision work on "shape from shading"-inferring 

the 3-dimensional shape of a shaded object [4]. Virtually every algorithm assumes 

that all image intensity changes are caused by shading; these algorithms fail for any 

image with reflectance changes. To bring this body of work into practical use , we 
need to be able to disambiguate shading from reflectance changes. 

There has been very little work on this problem. Sinha and Adelson [9] examined 
a world of painted polyhedra, and used consistancy constraints to identify regions 

of shape and reflectance changes. Their consistancy constraints involved specific 

assumptions which need not always hold and may be better described in a prob

abilistic framework . In addition , we seek a solution for more general, greyscale 
lmages. 

Our approach combines psychophysics and computational modeling. First we will 

review the physics of image formation and describe the under-constrained surface 
perception problem. We then describe an experiment to measure the interpretations 
of surface shading and reflectance among different individuals. We will see that the 

judgements are fairly consistent across individuals and can be averaged to define 
"ground truth" for a set of test images. Our approach to modeling the human 

judgements is Bayesian . We begin by formulating prior probabilities for shapes and 

reflectance images , in the spirit of recent work on the statistical modeling of images 

[5 , 8, 11]. Using these priors, the algorithm then determines whether an image is 

more likely to have been generated by a 3D shape or as a pattern of reflectance. 

We compare our algorithm's performance to that of the human subjects . 

(a) (b) 

(c ) (d) 

Figure 1: Images (a) and (b), designed by Adelson [1] , are nearly the same 

everywhere, yet give different percepts of shading and reflectance . (a) looks like 
a plateau, lit from the left ; (b) looks like marks on paper. Illustrating the under

constrained nature of perception , both images can be explained either by reflectance 
changes on paper (they are), or, under appropriate lighting conditions, by the 

shapes (c) and (d) , respectively (vertical scale exaggerated). 
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2 Physics of Imaging 

One simple model for the generation of an image from a three dimensional shape is 
the Lambertian model: 

I(x, y) = R(x, y) (i. n(x, y)) , (1) 

where I (x, y) is an image indexed by pixel location , n( x, y) is the surface normal at 

every point on the surface conveniently indexed by the pixel to which that surface 

patch projects, i is a unit vector that points in the direction of the light source, 

and R( x, y) is the reflectance at every point on the surface 1 . A patch of surface 

is brighter if the light shines onto it directly and darker if the light shines on it 

obliquely. A patch can also be dark simply because it is painted with a darker 

pigment. The shape of the object is probably more easily described as a depth map 
z(x, y) from which n(x, y) is computed. 

The classical "shape from shading" task attempts to compute z from I given knowl

edge of i and assuming R is everywhere constant. Notice that the problem is "ill

posed"; while I( x, y) does constrain n( x, y) it is not sufficient to uniquely determine 
the surface normal at each pixel. Some assumption about global properties of z is 

necessary to condition the problem. If R is allowed to vary, the problem becomes 

even more under-constrained. For example, R = I and n( x, y) = j is a valid solution 
for every image. This is the "all reflectance" hypothesis, where the inferred surface 

is flat and· all of the image variation is due to reflectance. Interestingly there is also 

an "all shape" solution for every image where R =. 1 and I(x, y) = i· n(x, y) (see 

Figure 1 for examples of such shapes). 

Since the relationship between z and I is non-linear, "shape from shading" cannot 
be solved directly and requires a time consuming search procedure. For our com

putational experiments we seek a rendering model for shapes which simplifies the 
mathematics, yet maintains the essential ambiguities of the problem. We use the ap

proximations of linear shading [6]. This involves two sets of approximations. First, 

that the rendered image I (x, y) is some function, G ( g; , g; ), only of the surface 

slope at any point: 

(2) 

The second approximation is that the rendering function G itself is a linear function 

of the surface slopes, 

oz oz oz oz 
G( ox' Oy) ~ kl + k2 ox + k3 oy . (3) 

Under linear shading, finding a shape which explains a given image is a trivial 

integration along the direction of the assumed light source. Despite this simplicity, 

images rendered under linear shading appear fairly realistically shaded [6]. 

3 Psychophysics 

We used a survey to assess subjects' image judgements. We made a set of 60 test 

images, using Canvas and Photoshop programs to generate and manipulate the 
images. Our goal was to create a set of images with varying degrees of shadedness. 

We sought to assess to what extent each subject saw each image as created by 

1 Note: we assume orthographic projection, a distant light source, and no shadowing. 
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shading changes or reflectance changes. Each of our 18 naive observers was given a 

4 page survey showing the images in a different random order . 

To explain the problem of image interpretation quickly to naive subjects , we used 
a concrete story (Adelson's Theater Set Shop analogy [2] is a related didactic ex

ample). The survey instructions were as follows : 

Pretend that each of the following pictures is a photograph of work 

made by either a painter or a sculptor. 

The painter could use paint , markers, air brushes, computer, etc. , 

to make any kind of mark on a fiat canvas. The paint had no 

3-dimensionality; everything was perfectly fiat. 

The sculptor could make 3-dimensional obJects, but could make no 

markings on them . She could mold, sculpt, and scrape her sculp

tures, but could not draw or paint. All the objects were made out 

of a uniform plaster material and were made visible by lighting and 

shading effects. 

The subjects used a 5-point rating scale to indicate whether each image was made 

by the painter (P) or sculptor (S): S, S? , ?, P?, P. 

3.1 Survey Results 

We examined a non-parametric comparison of the image ratings, the rank order 
correlation (the linear correlation of image rankings in order of shapeness by each 
observer) [7]. Over all possible pairings of subjects, the rank order correlations 
ranged from 0.3 to 0.9, averaging 0.65. All of these correlations were statistically 

significant , most at the 0.0001 level. We concluded that for our set of test images , 

people do give a very similar set of interpretations of shading and reflectance. 

We assigned a numerical value to each of the 5 survey responses (S=2; S?=l; ?=O; 

P?=-l; P=-2) and found the average numerical "shadedness" score for each image. 

Figure 2 shows a histogram of the survey responses for each image, ordered in 
decreasing order of shadedness. The two images of Figure 1 had average scores of 1.7 
and -1.6 , respectively, confirming the impressions of shading and reflectance . There 
was good consensus for the rankings of the most paint-like and most sculpture
like images; the middle images showed a higher score variance. The rankings by 
each individual showed a strong correlation with the rankings by the average of the 
remaining subjects, ranging from 0.6 to 0.9 . Figure 4 shows the histogram of those 
correlations. The ordering of the images by the average of the subjects ' responses 

provides a "ground truth" with which to compare the rankings of our algorithm. 

Figure 3, left , shows a randomly chosen subset of the sorted images , in decreasing 
order of assessed sculptureness . 

4 Algorithm 

We will assume that people are choosing the most probable interpretation of the 
observed image. We will adopt a Bayesian approach and calculate the most probable 

interpretation for each image under a particular set of prior probabilities for images 
and shapes. To parallel the choices we gave our subjects , we will choose between 

interpretations that account for the image entirely by shape changes, or entirely 

by reflectance changes. Thus, our images are either a rendered shape, multiplied 

by a uniform reflectance image , or a flat shape, multiplied by some non-uniform 
reflectance image. 
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Figure 2: Histogram of survey responses. Intensity shows the number of responses 

of each score (vertical scale) for each image (horizontal, sorted in increasing order 

of shape ness ). 
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To find the most probable interpretation, given an image, we need to assign prior 
probabilities to shape and reflectance configurations. There has been recent inter
est in characterizing the probabilities of images by the expected distributions of 
subband coefficient values [5, 8, 11]. The statistical distribution of bandpass linear 
filter outputs, for natural images, is highly kurtotic; the output is usually small , 
but in rare cases it takes on very large values. This non-gaussian behavior is not a 

property of the filter operation, because filtered "random" images appear gaussian. 
Rather it is a property of the structure of natural images. An exponential distri
bution, P(c) ex: e- 1cl , where c is the filter coefficient value, is a reasonable model. 
These priors have been used in texture synthesis, noise removal, and receptive field 
modeling. Here, we apply them to the task of scene interpretation. 

We explored using a very simple image prior: 

P(I) ex: exp (- L oI(x,y)2 + OI(x , y)2) 

ox oy 
(4) 

r,y 

Here we treat the image derivative as an image subband corresponding to a very 
simple filter. We applied this image prior to both reflectance images, I(x , y), as 

well as range images , z(x, y). 

For any given picture, we seek to decide whether a shape or a reflectance explanation 
is more probable. The proper Bayesian approach would be to integrate the prior 
probabilities of all shapes which could explain the image in order to arrive at the 

total probability of a shape explanation. (The reflectance explanation, R is unique ; 
the image itself). We employed a computationally simpler procedure, a very rough 

approximation to the proper calculation: we evaluated the prior probability, P(S) 

of the single, most probable shape explanation, S, for the image. Using the ratio 
test of a binary hypothesis, we formed a shapeness index, J, by the ratio of the 

probabilities for the shape and reflectance explanations, J = ~i!~. The index J 

was used to rank the test images by shapeness. 

We need to find the most probable shape explanation. The overall log likelihood of 
a shape, z, given an image is, using the linear shading approximations of Eq. (3): 

log P(z, kl' k2, k31I) log P(Ilz, kl' k2, k3) + log P(z) + c 

Lx,y(I - kl + k2* + k3~~)2 + Lx,y J g~2 + g;2 + c, 

(5) 
where c is a normalization constant. We use a multi-scale gradient descent algorithm 

that simultaneously determines the optimal shape and illumination parameters for 
an image (similar to that used by [10]). The optimization procedure has three 

stages starting with a quarter resolution version of I, and moving to the half and 
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Figure 3: 28 of the 60 test images, arranged in decreasing order of subjects' 

shapeness ratings. Left: Subjects' rankings. Right: Algorithm 's rankings . 

then full resolution. The solution found at the low resolution is interpolated up to 
the next level and is used as a starting point for the next step in the optimization. 

In our experiments images are 128x128 pixels. The optimization procedure takes 
4000 descent steps at each resolution level. 

5 Results 

Surprisingly, the simple prior probability of Eq. (4) accounts for much of the ratings 
of shading or paint by our human subjects. Figure 3 compares the rankings (shown 
in raster scan order) of a subset of the test images for our algorithm and the average 
of our subjects. The overall agreement is good. Figure 4 compares two measures: (1) 
the correlations (dark bars) of the subjects' individual ratings to the mean subject 
rating with (2) the correlation of our algorithm's ratings to the mean subject rating. 

SUbjects show correlations between 0.6 and 0.9; our Bayesian algorithm showed a 

correlation of 0.64. Treating the mean subjects' ratings as the right answer, our 
algorithm did worse than most subjects but not as badly as some subjects. 

Figure 1 illustrates how our algorithm chooses an interpretation for an image. If a 

simple shape explains an image, such as the shape explanation (c) for image (a), 
the shape gradient penalties will be small, assigning a high prior probability to that 

shape. If a complicated shape (d) is required to explain a simple image (b), the 
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low prior probability of the shape and the high prior probability of the reflectance 
image will favor a "paint" explanation. 

We noted that many of the shapes inferred from paint-like images showed long 
ridges coincidently aligned with the assumed light direction. The assumption of 

generic light direction can be applied in a Bayesian framework [3] to penalize such 
coincidental alignments. We speculate that such a term would further penalize 
those unlikely shape interpretations and may improve algorithm performance. 

Rank order corralaUon with mean Imago rating 

0.2 

Figure 4: Correlation of individual subjects' image ratings compared with the 

mean rating (bars) compared with correlation of algorithm's rating with the mean 

rating (dashed line). 
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