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Abstract 

We present a variational Bayesian method for model selection over 
families of kernels classifiers like Support Vector machines or Gaus
sian processes. The algorithm needs no user interaction and is able 
to adapt a large number of kernel parameters to given data without 
having to sacrifice training cases for validation. This opens the pos
sibility to use sophisticated families of kernels in situations where 
the small "standard kernel" classes are clearly inappropriate. We 
relate the method to other work done on Gaussian processes and 
clarify the relation between Support Vector machines and certain 
Gaussian process models. 

1 Introduction 

Bayesian techniques have been widely and successfully used in the neural networks 
and statistics community and are appealing because of their conceptual simplicity, 
generality and consistency with which they solve learning problems. In this paper 
we present a new method for applying the Bayesian methodology to Support Vector 
machines. We will briefly review Gaussian Process and Support Vector classification 
in this section and clarify their relationship by pointing out the common roots. 
Although we focus on classification here, it is straightforward to apply the methods 
to regression problems as well. In section 2 we introduce our algorithm and show 
relations to existing methods. Finally, we present experimental results in section 3 
and close with a discussion in section 4. 

Let X be a measure space (e.g. X = ~d) and D = (X,t) = {(Xl,tt), ... , 
(Xn,tn)), Xi E X, ti E {-l,+l} a noisy LLd. sample from a latent function 
y : X -+ lR, where P(tly) denotes the noise distribution. Given further points X. we 
wish to predict t. so as to minimize the error probability P(tlx., D), or (more diffi
cult) to estimate this probability. Generative Bayesian methods attack this problem 
by placing a stochastic process prior P(y(·)) over the space of latent functions and 
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then compute posterior and predictive distributions P(yID), P(y.lx., D) as 

P(yID) = P(Dly)P(y) 
P(D) , 

P(y.ID,x.) = f P(y.ly)P(yID) dy 

(1) 

where y = (y(Xi»i, y. = y(x.), the likelihood P(Dly) = TIi P(tiIYi) and P(D) is 
a normalization constant. P(tlx., D) can then be obtained by averaging P(tly.) 
over P(y.lx., D). Gaussian process (GP) or spline smoothing models use a Gaus
sian process prior on y(.) which can be seen as function of X into a set of random 
variables such that for each finite XI C X the corresponding variables are jointly 
Gaussian (see [15] for an introduction). A GP is determined by a mean function 1 

x 1-4 E[y(x)] and a positive definite covariance kernel K(x,x). Gaussian process 
classification (GPC) amounts to specifying available prior knowledge by choosing 
a class of kernels K(x, xIO), 0 E e, where 0 is a vector of hyperparameters, and a 
hyperprior P(O). Usually, these choices are guided by simple attributes of y(.) such 
as smoothness, trends, differentiability, but more general approaches to kernel de
sign have also been considered [5]. For 2-class classification the most common noise 
distribution is the binomial one where P(tly) = (j(ty), (j(u) = (1 + exp( _U»-1 the 
logistic function, and y is the logit 10g(P( +llx)/ P( -llx» of the target distribution. 
For this noise model the integral in (1) is not analytically tractable, but a range 
of approximative techniques based on Laplace approximations [16], Markov chain 
Monte Carlo [7], variational methods [2] or mean field algorithms [8] are known. 

We follow [16]. The Laplace approach to GPC is to approximate the posterior 
P(yID,O) by the Gaussian distribution N(y, 1i-1) where y = argmaxP(yID, 0) 
is the posterior mode and 1i = \7~\7y(-logP(YID,O», evaluated at y. Then it 

is easy to show that the predictive distribution is Gaussian with mean k(x.),K-l y 
and variance k. - k(x.)'K-1k(x.) where K is the covariance matrix (K(Xi,Xj»ij, 
k(·) = (K(Xi, '»i, k. = K(x., x.) and the prime denotes transposition. The final 
discriminant is therefore a linear combination of the K (Xi, .). 

The discriminative approach to the prediction problem is to choose a loss function 
get, y), being an approximation to the misclassification loss2 I{tY:5o} and then to 

search for a discriminant y(.) which minimizes E [get, y(x.»] for the points x. of 
interest (see [14]). Support Vector classification (SVC) uses the c-insensitive loss 
(SVC loss) get, y) = [1 - ty]+, [u]+ = uI{u~o} which is an upper bound on the 

misclassification loss, and a reproducing kernel Hilbert space (RKHS) with kernel 
K(x,xIO) as hypothesis space for y(.). Indeed, Support Vector models and the 
Laplace method for Gaussian processes are special cases of spline smoothing models 
in RKHS where the aim is to minimize the functional 

n 

~9(ti'Yi) + AllyOIl~ (2) 
i=l 

where II . 11K denotes the norm of the RKHS. It can be shown that the minimizer of 
(2) can be written as k(·), K-1y where y maximizes 

n 

- ~9(ti'Yi) - Ay'K-ly. (3) 
i=l 

All these facts can be found in [13]. Now (3) is, up to terms not depending on y, 
the log posterior in the above GP framework if we choose g(t,y) = -logP(tly) and 

lW.l.O.g. we only consider GPs with mean function 0 in what follows. 

2 I A denotes the indicator function of the set A c lR.. 
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absorb A into O. For the SVC loss, (3) can be transformed into a dual problem via 
y = Ka, where a is a vector of dual variables, which can be efficiently solved using 
quadratic programming techniques. [12] is an excellent reference. 

Note that the SVC loss cannot be written as the negative log of a noise distribution, 
so we cannot reduce SVC to a special case of a Gaussian process classification 
model. Although a generative model for SVC is given in [11], it is easier and less 
problematic to regard SVC as efficient approximation to a proper Gaussian process 
model. Various such models have been proposed (see [8],[4]). In this work, we 
simply normalize the SVC loss pointwise, i.e. use a Gaussian process model with 
the normalized BVe loss g(t, y) = [1 - ty]+ + log Z(y), Z(y) = exp( -[1 - y]+) + 
exp( -[1 + y]+). Note that g(t, y) is a close approximation of the (unnormalized) 
SVC loss. The reader might miss the SVM bias parameter which we dropped here 
for clarity, but it is straightforward to apply this semiparametric extension to GP 
models to03 . 

2 A variational method for kernel classification 

The real Bayesian way to deal with the hyperparameters 0 is to average 
P(y.lx., D, 0) over the posterior P( OlD) in order to obtain the predictive dis
tribution P(y.lx., D). This can be approximated by Markov chain Monte Carlo 

methods [7], [16] or simply by P(y.lx.,D,9), 9 = argmaxP(OID). The latter 
approach, called maximum a-posteriori (MAP), can be justified in the limit of large 
n and often works well in practice. The basic challenge of MAP is to calculate the 
evidence 

P(DI9) = ! P(D,yI9)dy = ! exp (- t.9(ti,Yi») N(yIO,K(9))dy. (4) 

Our plan is to attack (4) by a variational approach. Let P be a density from a 
model class r chosen to approximate the posterior P(yID, 0). Then: 

-logP(DIO) = -JP(Y)lOg (P(D'YIO)~(Y)) dy 
P(y ID, O)P(y) 

- ! - (P(y)) = F(P, 0) - P(y) log P(y ID, 0) dy 

(5) 

where we call F(P, 0) = Ep[-log P(D, yIO)] +Ep[logP(y)] the variational free en
ergy. The second term in (5) is the well-known Kullback-Leibler divergence between 

P and the posterior which is nonnegative and equals zero iff P(y) = P(yID,O) 

almost everywhere with respect to the distribution P. Thus, F is an upper bound 

on - log P (D I 0), and changing (P, 0) to decrease F enlarges the evidence or de
creases the divergence between the posterior and its approximation, both being 
favourable. This idea has been introduced in [3] as ensemble learning4 and has 
been successfully applied to MLPs [1]. The latter work also introduced the model 
class r we use here, namely the class of Gaussians with mean IL and factor-analyzed 

covariance ~ = V + L,~1 Cjcj, V diagonal with positive elements5 . Hinton and 

3This is the "random effects model with improper prior" of [13], p.19, and works by 
placing a flat improper prior on the bias parameter. 

4We average different discriminants (given by y) over the ensemble P. 
5 Although there is no danger of overfitting, the use of full covariances would render the 

optimization more difficult, time and memory consuming. 
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van Camp [3] used diagonal covariances which would be M = 0 in our setting. By 
choosing a small M, we are able to track the most important correlations between 

the components in the posterior using O( M n) parameters to represent P. 

Having agreed on r, the criterion F and its gradients with respect to (J and the 

parameters of P can easily and efficiently be computed except for the generic term 

(6) 

a sum of one-dimensional Gaussian expectations which are, depending on the ac
tual g, either analytically tractable or can be approximated using a quadrature 
algorithm. For example, the expectation for the normalized SVC loss can be de
composed into expectations over the (unnormalized) SVC loss and over log Z(y) (see 
end of section 1). While the former can be computed analytically, the latter expec
tation can be handled by replacing log Z (y) by a piecewise defined tight bound such 
that the integral can be solved analytically. For the GPC loss (6) cannot be solved 
analytically and was in our experiments approximated by Gaussian quadrature. 

We can optimize F using a nested loop algorithm as follows. In the inner loop we 

run an optimizer to minimize F w.r.t. P for fixed (J. We used a conjugate gradients 

optimizer since the number of parameters of P is rather large. The outer loop is 
an optimizer minimizing F w.r.t. (J, and we chose a Quasi-Newton method here 
since the dimension of e is usually rather small and gradients w.r.t. (J are costly 
to evaluate. 

We can use the resulting minimizer (P,O) of F in two different ways. The most 

natural is to discard P, plug 0 into the original architecture and predict using the 

mode of P(y ID, 0) as an approximation to the true posterior mode, benefitting from 
a kernel now adapted to the given data. This is particularly interesting for Support 
Vector machines due to the sparseness of the final kernel expansion (typically only 
a small fraction of the components in the weight vector K-1iJ is non-zero, the 
corresponding datapoints are termed Support Vectors) which allows very efficient 

predictions for a large number of test points. However, we can also retain P and use 

it as a Gaussian approximation of the posterior P(yID, 0). Doing so, we can use 
the variance of the approximative predictive distribution P(y.lx., D) to derive error 

bars for our predictions, although the interpretation of these figures is somewhat 
complicated in the case of kernel discriminants like SVM whose loss function does 
not correspond to a noise distribution. 

2.1 Relations to other methods 

Let us have a look at alternative ways to maximize (4). If the loss get, y) is twice 
differentiable everywhere, progress can be made by replacing g by its second order 
Taylor expansion around the mode of the integrand. This is known as Laplace 

approximation and is used in [16] to maximize (4) approximately. However, this 
technique cannot be used for nondifferentiable losses of the c-insensitive type6 • 

Nevertheless, for the SVC loss the evidence (4) can be approximated in a Laplace
like fashion [11], and it will be interesting to compare the results of this work with 
ours. This approximation can be evaluated very efficiently, but is not continuous 7 

6The nondifferentiabilities cannot be ignored since with probability one a nonzero num
ber of the ih sit exactly at these margin locations. 

7 Although continuity can be accomplished by a further modification, see [11]. 
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w.r .t. (J and difficult to optimize if the dimension of e is not small. Opper and 
Winther [8] use mean field ideas to derive an approximate leave-one-out test error 
estimator which can be quickly evaluated, but suffers from the typical noisiness 
of cross-validation scores. Kwok [6] applies the evidence framework to Support 
Vector machines, but the technique seems to be restricted to kernels with a finite 

eigenfunction expansion (see [13] for details) . 

It is interesting to compare our variational method to the Laplace method of [16] 
and the variational technique of [2]. Let g(t, y) be differentiable and suppose that 
for given (J we restrict ourselves to approximate (6) by replacing g(ti' Yi) by the 
expansion 

8g ( ( ) 182g ( A)( )2 g(ti' JLi) + By ti, JLi) Yi - JLi + 2. 8y2 ti, Yi Yi - JLi , (7) 

where fj is the posterior mean. This will change the criterion F to Fapproz, say. Then 
it is easy to show that the Gaussian approximation to the posterior employed by 
the Laplace method, namely N(fj, (K-1 + W)-l), W = diag(u(Yi)(1-u(Yi») , min

imizes Fapproz w.r.t. P if full covariances ~ are used, and plugging this minimizer 
into Fapproz we end up with the evidence approximation which is maximized by the 
Laplace method. The latter is not a variational technique since the approximation 
(7) to the loss function is not an upper bound, and works only for differentiable 
loss functions . If we upper bound the loss function g(t,y) by a quadratic polyno

mial and add the variational parameters of this bound to the parameters of P, our 
method becomes broadly similar to the lower bound algorithm of [2]. Indeed, since 
for fixed variational parameters of the polynomials we can easily solve for the mean 

and covariance of P, the former parameters are the only essential ones. However, 
the quadratic upper bound is poor for functions like the SVC loss , and in these 
cases our bound is expected to be tighter. 

3 Experiments 

We tested our variational algorithm on a number of datasets from the UCI ma

chine learning repository and the DELVE archive of the University of Toront08 : 

Leptograpsus crabs, Pima Indian diabetes, Wisconsin Breast Cancer, Ringnorm, 

Twonorm and Waveform (class 1 against 2). Descriptions may be found on the 
web. In each case we normalized the whole set to zero mean, unit variance in all 
input columns, picked a training set at random and used the rest for testing. We 
chose (for X = JRd) the well-known squared-exponential kernel (see [15]): 

K(x,xI9) = C (exp ( - 2~ t Wi (Xi - Xi)') + v), 9 = «Wi):'C,V)' . (8) 

All parameters are constrained to be positive, so we chose the representation ()i = v'f. 
We did not use a prior on (J (see comment at end of this section). For comparison 
we trained a Gaussian Process classifier with the Laplace method (also without 

hyperprior) and a Support Vector machine using lO-fold cross-validation to select 
the free parameters. In the latter case we constrained the scale parameters Wi to 

be equal (it is infeasible to adapt d + 2 hyperparameters to the data using cross
validation) and dropped the v parameter while allowing for a bias parameter. As 
mentioned above, within the variational method we can use the posterior mode fj 

8See http://vvv . cs. utoronto. cal ...... del ve and 
http://vvv.ics.uci.edu/ ...... mlearn/MLRepository.html . 
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Name 
train test Var.GP GP Var. SVM SVM Lin. 
size size I y IL Lapl. y IL 10-CV discr. 

crabs 80 120 3 4 4 4 4 4 3 
pima 200 332 66 66 68 64 66 67 67 
wdbc 300 269 11 11 8 10 10 9 19 
twonorm 300 7100 233 224 297 260 223 163 207 
ringnorm 400 7000 119 124 184 129 126 160 1763 
waveform 800 2504 206 204 221 211 206 197 220 

Table 1: Number of test errors for various methods. 

as well as the mean IL of P for prediction, and we tested both methods. Error 
bars were not computed. The baseline method was a linear discriminant trained 
to minimize the squared error. Table 1 shows the test errors the different methods 
attained. 

These results show that the new algorithm performs equally well as the other meth
ods we considered. They have of course to be regarded in combination with how 
much effort was necessary to produce them. It took us almost a whole day and a lot 
of user interactions to do the cross-validation model selection. The rule-of-thumb 
that a lot of Support Vectors at the upper bound indicate too large a parameter C 
in (8) failed for at least two of these sets, so we had to start with very coarse grids 
and sweep through several stages of refinement. 

An effect known as automatic relevance determination (ARD) (see [7]) can be nicely 
observed on some of the datasets, by monitoring the length scale parameters Wi in 
(8). Indeed, our variational SVC algorithm almost completely ignored (by driving 
their length scales to very small values) 3 of the 5 dimensions in "crabs", 2 of 
7 in "pima" and 3 of 21 in "waveform". On "wdbc", it detected dimension 24 
as particularly important with regard to separation, all this in harmony with the 
GP Laplace method. Thus, a sensible parameterized kernel family together with 
a method of the Bayesian kind allows us to gain additional important information 
from a dataset which might be used to improve the experimental design. 

Results of experiments with the methods tested above and hyperpriors as well as a 
more detailed analysis of the experiments can be found in [9]. 

4 Discussion 

We have shown how to perform model selection for Support Vector machines using 
approximative Bayesian variational techniques. Our method is applicable to a wide 
range of loss functions and is able to adapt a large number of hyperparameters to 
given data. This allows for the use of sophisticated kernels and Bayesian techniques 
like automatic relevance determination (see [7]) which is not possible using other 
common model selection criteria like cross-validation. Since our method is fully 
automatic, it is easy for non-experts to use9 , and as the evidence is computed on 
the training set, no training data has to be sacrificed for validation. We refer to [9] 
where the topics of this paper are investigated in much greater detail. 

A pressing issue is the unfortunate scaling of the method with the training set 

9 As an aside, this opens the possibility of comparing SVMs against other fully
automatic methods within the DELVE project (see section 3) . 
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size n which is currently O(n3)1O. We are currently explori~g the applicability of 
the powerful approximations of [10] which might bring us very much closer to the 
desired O(n2) scaling (see also [2]). Another interesting issue would be to connect 
our method with the work of [5] who use generative models to derive kernels in 
situations where the "standard kernels" are not applicable or not reasonable. 
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