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Summary
Existing Bayesian model selection procedures require the specification of prior distributions on the
parameters appearing in every model in the selection set. In practice, this requirement limits the
application of Bayesian model selection methodology. To overcome this limitation, we propose a
new approach towards Bayesian model selection that uses classical test statistics to compute Bayes
factors between possible models. In several test cases, our approach produces results that are similar
to previously proposed Bayesian model selection and model averaging techniques in which prior
distributions were carefully chosen. In addition to eliminating the requirement to specify complicated
prior distributions, this method offers important computational and algorithmic advantages over
existing simulation-based methods. Because it is easy to evaluate the operating characteristics of this
procedure for a given sample size and specified number of covariates, our method facilitates the
selection of hyperparameter values through prior-predictive simulation.
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1. Introduction
In many applied settings, constructing a regression model for a response variable requires the
selection of explanatory variables to include in the regression function. In linear regression,
this problem can be posed algebraically as the selection of a model of the form

(1)

where Xi1, …, Xiq denotes a subset of p covariate vectors X1, …, Xp to maximize a given
criterion.

When p is small or moderate in size, it is usually possible to compare all 2p models and to
select the model that optimizes the chosen criterion. Model selection criteria that are frequently
used include R2, the Akaike information criterion AIC, Cp and the Bayes information criterion
BIC. Unfortunately, for large p it is usually not feasible to compute the criterion function for
all possible models.

When p is large, a common approach for overcoming computational problems that are
associated with selecting from among a large number of potential models is to reduce adaptively
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the number of models considered. This is essentially the idea behind stepwise procedures like
forward selection and backward elimination (see, for example, Miller (1990)).

Bayesian methods have recently played a prominent role in the development of model selection
criteria and are based on comparisons of the marginal probabilities assigned to the data by each
potential model. In the ‘small p’ setting, research in this direction includes Lempers (1971),
Atkinson (1978), Pericchi (1984), Smith and Spiegelhalter (1980), Spiegelhalter and Smith
(1982), Zellner (1984), Stewart (1987) and Mitchell and Beauchamp (1988).

The advent of Gibbs sampling and other Markov chain Monte Carlo (MCMC) techniques have
made it possible to extend Bayesian model selection procedures to the ‘large p’ setting. An
early contribution to this development was made by George and McCulloch (1993, 1997), who
proposed a ‘stochastic search variable selection’ (SSVS) procedure to determine promising
subsets of predictor variables. Their idea was to use indicator variables to identify subset
choices according to posterior probabilities defined within the context of a hierarchical
Bayesian mixture model.

A somewhat different approach was proposed by Madigan and Raftery (1994). Their method
focused on Bayesian model averaging for prediction. In making predictions for future
observations, Bayesian model averaging accounts for model uncertainty, which often
represents a major component of prediction uncertainty (e.g. Leamer (1978), Hodges (1987),
Raftery (1996) and Draper (1995)). To apply Bayesian model averaging in high dimensional
settings, Raftery et al. (1997) extended this algorithm in two ways. First, they averaged over
a reduced set of models (i.e. Occam’s window). Second, they used an MCMC simulation
approach (called MC3) to sample from the space of possible models.

The Bayesian approach to model selection has also been extended to generalized linear models
—specifically probit regression models (Lee et al., 2003). Using latent variable methodology,
the method of Lee et al. (2003) casts variable selection for probit regression models into a
framework which is similar to that previously developed for linear models.

The basic strategy of these MCMC algorithms is to traverse the space of possible models
according to posterior model probabilities. In SSVS-type approaches, paths through the model
space are selected by updating binary variables that indicate whether or not explanatory
variables are included in a particular model. The values of these indicator variables are
determined probabilistically according to prior distributions and the values of fully parametric
Bayes factors between the models that they represent. Our innovation is to base these transitions
on approximations of Bayes factors based on test statistics (e.g. Johnson (2005, 2008)). For
brevity, we shall refer to these approximations as test-based Bayes factors (TBFs) for the
remainder of this paper.

TBFs have the potential for greatly simplifying the process of Bayesian model selection,
particularly in linear and generalized linear models. Through their use, the specification of
prior distributions on nuisance parameters can often be avoided. Because this approach is based
on the values of test statistics (which can generally be obtained through maximization
procedures), it is computationally faster than model selection procedures that rely on numerical
integration to obtain marginal densities of data.

Our approach also facilitates the specification of prior hyperparameters through the
implementation of prior-predictive simulation studies. Such studies allow us to specify
hyperparameters that are based on either the sampling properties of the induced model selection
algorithm or the evaluation of decision theoretic criteria.
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Finally, we note that Schwarz’s BIC (Schwarz, 1978) has close connections to the TBF based
on the likelihood ratio statistic (LRS). As a result, several theoretical properties of BIC also
extend to our method (e.g. Nishii (1984)).

2. Model selection based on test statistics
The Bayes factor between two models represents the ratio of the marginal densities of the data
obtained under each model and, together with prior model probabilities, determines the
posterior odds. The basic idea behind our model selection procedure is to approximate the
Bayes factor between two nested models by using the TBF that is obtained by modelling the
distribution of a test statistic defined from the original data. TBFs based on the LRs (LRTBFs)
have particularly favourable properties, which we illustrate below as the basic motivation
behind our procedure.

Suppose that y1, …, yn represent n independent and identically distributed (IID) realizations
of a q-dimensional random vector having density function f(y|θ) defined with respect to a σ-
finite measure μ, and that {yi} assume values in a sample space S that does not depend on the
p-dimensional parameter θ ∈ Θ. Consider the test of the null model

(2)

where  is specified and θ2 = (θd+1, …, θp) is unconstrained, against the sequence
of alternative models

(3)

where

(4)

Let λn denote the ratio of the likelihood function evaluated at the constrained maximum
likelihood estimate (obtained by fixing ) to the likelihood function evaluated at the
unconstrained maximum likelihood estimate. Under regularity conditions that are specified in
Appendix A, the distribution of the LRS, say zn ≡ −2 log(λn), converges to a χ2-distribution on
d degrees of freedom when the null model is true. Under the same regularity assumptions,
Davidson and Lever (1970) showed that the distribution of the LRS under the sequence of
alternative models specified above converges to a non-central χ2-distribution with non-
centrality parameter

(5)

and d degrees of freedom. In equation (5), C ̄1,1 denotes the upper d × d submatrix of the inverse
of the matrix Σ, where Σ−1 is the information matrix and δ= {δi}.
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Assuming that δ has a multivariate normal distribution with mean 0 and covariance matrix
cnΣ1,1 (Σ1,1 is the upper d × d submatrix of Σ), Johnson (2008) showed that the marginal
distribution of zn under the sequence of alternative models specified in expression (3)–(4) is
approximated by a gamma distribution with shape parameter d/2 and scale parameter 1/2(cn
+ 1) (denoted below by g{·|d/2, 1/2(cn + 1)}).

For this sequence of alternative models, the TBF in favour of the alternative model for a fixed
value of n can be obtained by marginalizing over the non-centrality parameter, resulting in

(6)

The factor cn appearing in the covariance matrix of the non-centrality parameter implies that
the difference between values of θ that are drawn under the full and reduced models is Op(1),
which ensures that the LRTBF is consistent (Johnson, 2008).

Similar results have been obtained in non-IID settings. For example, Taniguchi (1991)
demonstrated that the LRS has the distribution of a non-central χ2-distribution against local
alternatives for general classes of stochastic processes and applied these results to multivariate
analyses, time series analyses and non-linear regression problems. Of particular interest here
are the results of Cordeiro et al. (1994), who showed that the asymptotic distribution of the
LRS under local alternative models in generalized linear models is also a non-central χ2-
distribution, and that the relationship between the associated non-centrality parameter and
information matrix is similar to the relationship that was cited above for the IID case. More
recently, Banerjee (2005) showed that the LRS has a non-central χ2-distribution in certain
classes of regular semiparametric models. In general, if the distribution of the LRS under the
null hypothesis is approximately χ2, and if its distribution under the alternative hypothesis can
be approximated by a non-central χ2-distribution, then a TBF of the form (6) can be obtained
by assuming that the non-centrality parameter under the alternative model has a rescaled χ2-
distribution. Marginalizing over the distribution of the non-centrality parameter then leads to
equation (6) (Johnson, 2008).

For non-local alternatives, the LRS grows exponentially fast with increasing sample size when
the alternative hypothesis is true (Bahadur, 1965), which means that the LRTBF is also
consistent in this setting.

2.1. A Markov chain Monte Carlo model selection algorithm
Returning to the problem of model selection, we now illustrate how TBFs can be used to select
between models that are indexed by the p-dimensional parameter θ.

To fix the notation, assume that a component of θ, say θh, can be excluded from a model if its
value is 0, and denote a model by j = {j1, …, jk} (1 ≤ j1 < … < jk ≤ p) if and only if θj1 ≠ 0, …,
θjk ≠ 0 and all other elements of θ are 0. Let  denote the set of 2p possible models that can be
defined from the p components of θ. In the context of linear models (1), model j corresponds
to the regression model that includes all covariates Xi for which i ∈ j. We denote the null model
by ∅ and write k ⊆ j to indicate that model j contains all components of θ that are present in
model k.

If Π(j|π) denotes the prior probability that is assigned to model j for a given value of a
hyperparameter π, standard results from Bayesian theory imply that the posterior probability
of model j can be expressed as
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(7)

Here, BF(i|∅) denotes the Bayes factors between model i and the null model, which is
calculated from the complete data Y = {yh}. Approximating BF(i|∅) by TBF(i|∅) for all i ∈

 leads to an approximation of the posterior probability of model j given by

(8)

where z(Y) denotes the vector of test statistics computed from Y that are used to compute the
TBFs. The vector z(Y) can be based on any test statistic, provided that the distributions of the
resulting statistics are approximately known under each model j ∈ . For example, the form
of the LRTBF that is provided in equation (6) is for the case in which model j corresponds to
hypothesis H2n and model ∅ corresponds to H1. If 0 ≤ TBF(i|∅) < ∞ for all models i ∈ , this
approximation defines a probability distribution on the model space. The validity of such
approximations for choosing between two nested models was explored by Johnson (2005,
2008) and is explored in model selection settings in the examples that follow.

Although in general the choice of Π is arbitrary, in this paper we assume that the prior
probability that is assigned to model i can be expressed as

(9)

where |i| denotes the number of parameters that are included in model i and w is a constant of
proportionality. To reflect uncertainty in the unknown value of π, we assume that the prior for
π, say g(π), is a beta{δp, (1 − δ)p} distribution for some 0 < δ < 1. The precision parameter of
this prior density is chosen to be proportional to p so that the prior retains influence as p becomes
large; this influence is important for discouraging large models in high dimensional settings.
The selection of the hyperparameter δ is discussed below.

We now focus on the problem of estimating posterior model probabilities based on expressions
(8) and (9) when p is large. As in the case of fully parametric Bayes factors, it is necessary to
use a simulation procedure to obtain estimates of model probabilities in this setting.

To define such an algorithm, let γk, k = 1, …, p, denote binary variables that indicate whether
θk is included in a model (γk = 1) or not (γk = 0). Note that there is a one-to-one correspondence
between the vectors γ = {γk} and models j, i.e. γk = 1 if and only if k ∈ j.

On the basis of the correspondence between γ and the model space, a Gibbs sampling procedure
for obtaining an approximate posterior sample from the model space can be defined as follows.

• Step 1: choose an initial value for the vector γ satisfying Σγk < n and set the iteration
number i = 1. Set π0 = Σγk/n.

• Step 2: for k = 1, …, p, perform a Gibbs update of γk on the basis of approximation
(8) as follows. Let j0 denote the model corresponding to γk = 0 (i.e. {γ1, …, γk−1, 0,
γk+1, …, γp}), and let j1 denote the model corresponding to γk = 1 (i.e. {γ1, …, γk−1,
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1, γk+1, …, γp}). Then, from approximation (8), the conditional probability of model
j0, given γh, h ≠ k, and πi−1, is

(10)

Similarly, the conditional probability of model j1 is 1 − r. To update γk, set γk = 0 with
probability r; otherwise set γk = 1.

• Step 3: record model mi, the model corresponding to the current value of γ.

• Step 4: sample πi from its full conditional distribution, which is proportional to

a beta distribution with parameters (δp + υ, 2p − δp − υ), where υ = |mi| = Σh γh.

• Step 5: increment i and return to step 2.

After a burn-in period of I updates, the chain of models mI+1, mI+2, … represents an ergodic
Markov chain that can be used to perform approximate inference regarding the posterior
probability of various model configurations.

The ergodicity of the Markov chain mI+1, mI+2, … follows from the fact that it is possible to
step between any two models in this MCMC scheme in two iterations. Convergence properties
of this Gibbs sampler are investigated further in Section 5.

2.2. Properties of the likelihood ratio test-based Bayes factor for model selection
In principle, any test statistic can be used to define TBFs between nested models. Indeed, F-
statistics have essentially been used this way for linear models (Liang et al., 2005). We briefly
consider this possibility in the example of Section 3.1 but note that LRTBFs have several
favourable properties that are not shared by TBFs which are based on other test statistics.

The LRTBF has a coherency property which is not inherited by TBFs that are based on other
test statistics. Specifically, if three nested models satisfy k1 ⊆ k2 ⊆ k3, then the TBFs between
the models are coherent, i.e.

(11)

This coherency property of the LRTBF implies that equation (10) can be re-expressed as

(12)

We note that this coherency property does not hold for TBFs that are based on, for example,
the F -statistic (e.g. Liang et al. (2005)). This means that marginal posterior model probabilities
that are estimated by using other test statistics are not invariant to the choice of the baseline
model.
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Because the LRS can be computed in most regular parametric models, the LRTBF gains the
advantage of applicability to a broad class of model selection problems, with the only
requirement that the distribution of the LRS be approximately non-central χ2 when the larger
of two tested models is true.

Finally, a favourable asymptotic property of the model selection procedure that is based on the
LRTBF can be inferred from results that were elaborated by Nishii (1984). For linear models
of the form (1), suppose that the error terms εk are IID N(0, σ2) random variables, and let Xn
= {Xij}, j = 1, …, p, i = 1, …, n, denote the design matrix. Assume further that  is positive
definite for all n > n0, and that  exists and is positive definite. Let jt denote
the ‘true’ (i.e. data-generating) model. Define J1 = {j ∈ |jt ⊈ j} and J2 = {j ∈ |jt ⊆ j}. Then
the LRTBF between an arbitrary model j ∈  and ∅ satisfies

(13)

where d = |j| and zn is the LRS. Regarded as a model selection criterion, condition (13)
represents a special case of Nishii’s generalized information criterion. Letting ĵ denote the
model that is obtained by maximizing expression (13) over the set , Nishii obtained the
following result.

Theorem 1 (Nishii, 1984)—Assume that the conditions that were stated in the previous
paragraph obtain and define pn(j) = Pr(ĵ= j) for j ∈ . Then the following conditions describe
pn(j).

a. If j ∈ J1, then pn(j) = o(n−h) for any positive constant h.

b. If j ∈ J2 − {jt }, then pn(j) = o(1).

Thus, only the true model jt has a non-negligible probability of being the model that is selected
by condition (13) as n → ∞.

2.3. Simulation-based methods for specifying hyperparameters
In standard Bayesian model selection procedures, it is sometimes difficult to interpret the
meaning of model hyperparameters. For example, the marginal probability that a variable is
included in the regression function is often a complicated function of several hyperparameters.

An advantage of basing model selection procedures on TBFs is that it is simple to simulate the
operating characteristics of the selection procedure as the underlying model hyperparameters
are varied. For example, the LRTBF selection procedure depends on two hyperparameters: c
and δ. To evaluate the effects of (c, δ) on either the false discovery rate (FDR) or false positive
rate of the LRTBF model selection procedure, the MCMC algorithm that was defined in Section
2.1 can be run over a range of these hyperparameters, without using actual data, i.e., instead
of calculating test statistics from data, the values of the test statistics from either the null or
alternative models are simulated. A prior belief that a proportion ρ of regression parameters in
a model is non-zero means that  random variables are simulated when updating one of the
p(1 − ρ) variables assumed to have a regression coefficient equal to 0. When updating the
indicator variables corresponding to non-zero regression coefficients, independent g{1/2, 1/2
(cn + 1)} random variables are simulated instead. Using this procedure, the frequentist
operating characteristics of a model selection algorithm can be evaluated without having to
simulate data explicitly from the given experimental or observational design.
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3. Examples
3.1. Linear model variable selection

To explore the properties of our method for approximating posterior model probabilities, we
applied the algorithm from the previous section to a well-known data set that was initially
presented by Vandaele (1978) and to which Raftery et al. (1997) later applied Bayesian model
selection procedures. The data set contained information that had been collected from 47 states
on recorded crime rates from 1959 to 1960 in the USA. 15 demographic and socio-economic
variables, which are listed in Table 1, were considered potential predictors of the crime rate.

From these 15 candidate predictors, we have 215 = 32768 potential models. To facilitate
comparisons with other model selection procedures, we transformed the crime rates to the
logarithmic scale before our analysis.

For illustration, we assumed that the logarithm of the crime rate was related to some subset of
the explanatory variables according to model (1), for which we assumed the error terms εk to
be IID N(0, σ2) random variables. We applied our model selection algorithm by using TBFs
based on both the LRS and F-statistics. In the LRTBF model selection procedure, we used the
prior simulation procedure from Section 2.3, with observed values of n = 47 and p = 15 and
an assumed value of c = 2, to choose a hyperparameter value for the model inclusion probability
of δ.

We arbitrarily chose a value of c = 2, which made the prior variance of the regression parameter
twice that implied by the information matrix. In practice, we have found that values of c in the
range (2, 6) yield high posterior probability models that have both favourable predictive
properties in cross-validation experiments and favourable operating characteristics. Fig. 1
illustrates the results from this procedure as values of δ were varied between 0 and 0.5 and the
proportion of covariates that were assumed to have non-zero regression coefficients was varied
in ρ ∈{1/3, 7/15, 3/5}.

Points in the scatter plot represent the empirically observed FDR for each value of δ. From
Fig. 1, it follows that, if we were to assume a priori that fewer than a third of the covariates
were substantively related to the crime rate, then a choice of δ = 0.5 for c = 2 would result in
an average FDR of less than 22%. At the same parameter values, the probability of obtaining
four or fewer false positive results was similarly estimated to be less than 0.95. As these
operating characteristics seemed reasonable, we used those parameter values in the LRTBF
model selection algorithm that is described below.

Although a TBF that is based on the F -statistic does not have the favourable coherency property
of the LRTBF, for pairs of nested linear models there is a close connection between the TBF
that is based on the F -statistic and fully parametric Bayes factors (Johnson, 2008). For this
reason, we also examined the numerical properties of selection procedures that were based on
a TBF derived from the F -statistic.

To define a TBF that is based on the F -statistic between nested linear models, let Xc denote
the design matrix containing covariates in the larger of the two nested models, and assume that
the prior distribution on θ under the larger model is a normal distribution centred on a value
of θ for which the tested component of θ is 0 and the covariance matrix is . The
TBF between the full and reduced models can then be expressed as
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where r is the dimension of θ under the larger model and f is the observed value of the F -
statistic (Johnson, 2005).

To fix τ and δ, we performed another prior simulation experiment to study the variation of the
FDR and false positive rates with these hyperparameter values. Values of τ = 2 and δ = 0.5
produced FDRs and false positive rates that were similar to the results that were obtained from
the LRTBF when c = 2 and δ = 0.5, so we used those values to perform model selection with
the F -statistic TBF.

3.1.1. Numerical results—We compared outputs from our method with those from several
other Bayesian model selection procedures, including the Bayesian model averaging algorithm
implemented with Occam’s window and MC3 (Raftery et al., 1997) and SSVS (George and
McCulloch, 1993). We implemented competing models using the hyperparameter values that
were recommended in the original references, with one exception: for SVSS, we assumed that
R ∝ (X′X)−1, where X denotes the relevant model design matrix. Our choice for R was one
of two that were recommended by George and McCulloch (1993) (they used the other choice
in their examples). We used that value of R to make the prior assumptions of the four selection
methods more comparable. We also examined three common frequentist variable selection
criteria: Efroymson’s stepwise regression (e.g. Miller (1990)), Mallows’s Cp (Mallows,
1973) and the adjusted R2 (e.g. Weisberg (1985)).

A comparison of the four Bayesian model selection procedures appears in Table 2. The column
to the right indicates the proportion of times that a model configuration was sampled. For
convenience, the values of the model hyperparameters are displayed below each procedure.

The high probability models that were selected by using the four Bayesian procedures were
quite similar. Most models that were selected by our method appear among the top six models
that were chosen by Occam’s window and MC3, albeit in somewhat different order. For
example, the top model based on the LRTBF matches the top model chosen by Occam’s
window and MC3, and is also the model that was chosen by the classical stepwise procedure
(Table 3).

Table 2 also displays estimated median probability models (i.e. models containing covariates
with greater than 50% inclusion probabilities; see Barbieri and Berger (2004) for a theoretical
justification of such models). The LRTBF model selection procedure and SSVS produced
identical median probability models, whereas the median probability models that were selected
by Occam’s window and by procedures that were based on the F -statistic were slightly smaller.
Interestingly, MC3 selected variables 4 and 5 in the median probability model even though
these variables were highly correlated.

The four Bayesian model selection procedures exhibited similar posterior-predictive
properties. For instance, we performed a random 50% split of the observations into training
and test samples. Under each model selection procedure, the training sample was then used to
produce a 90% posterior-predictive coverage interval for each observation in the test sample.
The observed coverage rates of these intervals fell within 4% of each other for all four
procedures.
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Finally, we estimated the posterior probability that each predictor was in the model. Table 3
lists these marginal posterior probabilities for each of the Bayesian model selection techniques
that were described above.

Several trends are apparent from Table 3. First, there are several differences between the
marginal probabilities implied by the various selection criteria, with the greatest differences
occurring between Occam’s window and the remaining models. For instance, Occam’s window
yields marginal probabilities of 0 for several parameters that were assigned non-negligible
probability by the other selection criteria. Despite such differences, it is interesting to compare
the results by ranking each predictor’s marginal probability according to each of the models.
These ranks are provided in parentheses in Table 3 and show that ranks that are based on the
LRTBF were similar to all three fully parametric approaches, i.e. all the methods had relatively
high agreement over the variables that were assigned highest posterior probability. These
variables included income inequality (variable 13), mean years of schooling (variable 3),
probability of imprisonment (variable 14), police expenditure in 1960 (variable 4) and number
of non-whites per 1000 people (variable 9).

Computationally, our method is an order of magnitude faster than the existing Bayesian model
selection techniques. In a naive R implementation, our method was 10 times faster than
professionally written MC3 code and was over 20 times faster than SSVS. More generally,
computational savings can be expected over competing model selection algorithms whenever
these algorithms involve numerical simulation to compute what are essentially marginal
densities of data. The function maximization that is required to obtain the LRS will generally
be faster than the integration that is necessary to obtain the marginal densities of data.

3.2. Simulated data
To evaluate our model selection procedure further, we performed an experiment in which we
simulated n = 50 observations with p = 49 potential covariates. Each of the potential predictors
Xj, j = 1, …, 49, was simulated as an independent vector of N(0, 1) deviates, and the dependent
variable was generated according to

where X = {Xj}. Regression coefficients were assigned values (θ1, θ2, θ3, θ4, θ5, θ6) = (0.5, 1,
1.5, 2, 2.5, 3), and (θ7, …, θ49) = (0, …, 0). Observational errors were assumed to be generated
independently from an N(0, 1) distribution.

To fix hyperparameter values in the LRTBF procedure, we again performed prior model
simulations using a variety of choices for c, δ and ρ. We took c = 2, the same value as used for
the crime data, and chose δ = 0.001. For these values of (c, δ), the average FDR was 0.10, and
the number of false positive results was less than 1 with a probability of 0.98 for ρ = 6/49.

On the basis of 100000 updates of the Gibbs sampling algorithm that was described in Section
2.1 (after a burn-in period of 1000 updates), the estimates of the marginal posterior probabilities
that were obtained from the LRTBF algorithm for the inclusion of the first six covariates were
0.16, 1, 1, 1, 1 and 1. The median model included variables 2–6, which correctly identified
five non-zero coefficients and no false positive values. The default implementation of the SSVS
algorithm yielded estimates of 0.03, 0.006, 0.62, 0.45, 0.98 and 0.97 for the marginal posterior
probabilities of the first six covariates; the median probability model included variables 3, 5
and 6. The Bayesian model averaging package implementation (Raftery et al., 2006) of MC3

produced estimated marginal posterior inclusion probabilities of 0.33, 1, 1, 1, 1 and 1 for the
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first six covariates; the median probability model included variables 2–6 and 8. Thus, the
performance of MC3 was similar to that of the LRTBF algorithm, whereas SSVS performed
slightly worse. The poor performance of SSVS in this setting probably stemmed from its
dependence on a variance estimate from the saturated model, which had only 1 degree of
freedom.

To assess the sensitivity of the LRTBF method, we also ran the algorithm for δ = 0.01 and δ
= 0.1. For δ = 0.01, the median probability again contained only variables 2–6, whereas the
median probability model for δ = 0.1 contained variables 2–6 and 8. The posterior inclusion
probabilities for the latter case were 0.39, 1, 1, 1, 1 and 1, which agreed closely with the results
that were obtained by using MC3.

Neither Bayesian model averaging nor SSVS extended to the case of p > n. However, to test
our algorithm in this setting, we expanded the simulation to include an additional 251 spurious
covariates (i.e. p = 300) and used the same hyperparameter values as cited above. With these
additional covariates, the estimated marginal posterior probabilities for inclusion of the first
six covariates were 0.013, 0.996, 1, 1, 1 and 1, and the median probability model included
variables 2–6 and three other predictors.

4. Simulation examples with binary outcomes
We also considered model selection in binary regression models. Although our method extends
directly to generalized linear models with arbitrary link functions, we focused on probit
regression models to facilitate comparisons with existing, fully parametric Bayesian model
selection procedures as discussed in, for example, Lee et al. (2003).

The standard probit regression model may be written as

where

(14)

Here, Φ(·) denotes the standard normal distribution function and xi denotes a p × 1 vector of
covariates that are relevant for predicting πi. As before, we focused on selecting subsets of the
p covariates for use in the regression equation.

To assess the performance of our LRTBF model selection procedure and to compare its
performance with a fully parametric procedure that was described in Lee et al. (2003), we
simulated n = 30 observations and p = 15 predictors. All components of each predictor {xi}
were again generated from independent standard normal distributions. On the basis of these
covariates, success probabilities were determined according to equation (14), where the
regression coefficients were assigned values (θ1, θ2, θ3, θ4, θ5, θ6) = (0.5, 1, 1.5, 2, 2.5, 3) and
(θ7, …, θ15) = (0, …, 0). Outcome variables yi were generated from independent Bernoulli
distributions with probabilities πi.

The LRTBF model selection procedure was implemented by using the hyperparameter values
c = 2 and δ = 0.5. In prior simulations using the resulting selection algorithm, these parameter
settings controlled the FDR at 22% and limited the number of false positive results to fewer
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than or equal to 4 in 92% of the sampled models when ρ was equal to 0.4. We also implemented
the procedure of Lee et al. (2003) by assigning independent prior probabilities of 0.4 (the true
probability) to the inclusion indicators γi and setting κ = 60. The value of κ in that algorithm
plays a role similar to cn = 60 in our algorithm. We obtained 100000 MCMC updates of all
the regression parameters for each method. Results from this simulation are displayed in Table
4, which lists the estimated marginal posterior probabilities that variables 1–6 were included
in a model sampled, along with the corresponding ranks of their marginal inclusion
probabilities. In both approaches, variables 3–6 were among the top six highest posterior
probability models. Variable 2 was also among the top six variables by using the procedure of
Lee et al. (2003). Also displayed in Table 4 are the median probability models that were
obtained from both procedures. In this case, the LRTBF model selection procedure generated
a median probability model that contained fewer false positive results than the method of Lee
et al. (2003), which selected all the covariates. (We note that smaller median models can be
obtained with the method of Lee et al. (2003) by assigning a value that was less than 0.4 to the
prior probability that a variable appears in the model.) Under our model, the posterior
distribution of π had an estimated mean of 0.43, which was slightly larger than the true value
of 0.4.

We then repeated the experiment by using more covariates. Specifically, we increased the
number of covariates to p = 50. The values of the first six regression coefficients were left
unchanged, and the remaining coefficients were assigned values of 0. We used the same
hyperparameters in the LRTBF method that were used in the previous simulation study (when
p = 15); these values led to an FDR of 0.5 when ρ = 6/50 and led to fewer than nine false
positive results in 92% of the models sampled. We implemented the approach of Lee et al.
(2003) using the same parameter values as before, except that we set pi = 6=50 (the true value).
Table 4 shows that both procedures identified variables 2, 5 and 6 among the six highest
probability models, whereas the method of Lee et al. (2003) also included variable 1. The
median model that was obtained by using our method contained only variables 5 and 6. The
method of Lee et al. (2003) tended to assign a higher marginal posterior probability to all
models and resulted in a median probability model that contained variables 5, 6 and 24.

5. Convergence diagnostics
In this section, we examine the convergence rate of the Gibbs sampler that was defined in
Section 2.1. For brevity, we restrict attention to the sampler that was used to explore the space
of models applied to the crime data that were introduced in Section 3.1. The diagnostics that
were chosen for this application are based on the coupling methodology that was proposed by
Johnson (1996, 1998). The essential idea of this methodology is to examine the number of
updates that are required for multiple chains started at distinct values to merge. Although each
chain is updated according to the Gibbs sampler that was specified in Section 2.1, correlations
are introduced between the random deviates used in the updates across chains to encourage the
chains to merge quickly.

The conclusions based on these convergence diagnostics are as follows. If parameter values
were thinned so that only every 96th update in a chain was saved, then the total variation
distance between two thinned updates and a random sample of size 2 from the target distribution
was less than 0.0008. Similarly, the total variation distance between the distribution of updates
after 100 complete Gibbs updates and an exact draw from the posterior distribution was less
than 0.0002, i.e. burn-in almost certainly required fewer than 100 iterations. These results seem
to contradict common thought regarding the number of draws that are required to explore such
model spaces, which in this setting had a dimension of 215 = 32768. Published accounts of
MCMC-based model selection procedures appear to imply that several hundred thousand
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updates are required to overcome burn-in or to obtain independent draws from the posterior
distribution.

6. Conclusions
We have proposed a model selection procedure that can be applied to linear and generalized
linear models. The innovation of our method lies in its use of TBFs to select between nested
models. The resulting procedure substantially reduces the methodological burden that is
associated with the use of traditional Bayesian model selection methods by eliminating the
requirement to specify proper prior distributions on regression and variance parameters, which
offers substantial gains in computational efficiency. Our method also facilitates the selection
of unknown model hyperparameters through prior simulation of model operating
characteristics. In the future, we plan to apply this methodology to other generalized linear
models (e.g. ordinal, gamma and Poisson models), as well as to nominal regression models,
semiparametric linear models, generalized linear models and generalized additive models.
More generally, the methodology would seem to have application in settings involving nested
models for which the asymptotic distribution of the LRS can be defined under both the null
hypothesis and for a suitable class of alternative models.
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Appendix A: Regularity conditions
The following regularity assumptions are assumed in Davidson and Lever (1970), for almost
all x ∈ S and all θ ∈ Θ and r, s, t = 1, …, p.

a. ∂ ln(f)/∂θr, ∂2 ln(f)/∂θr∂θs and ∂3 ln(f)/∂θr ∂θs∂θt exist.

b. |∂ ln(f)/∂θr| < Fr (x) and |∂2 ln(f)/∂θr∂θs| < Frs(x) where Fr (x) and Frs(x) are integrable
over S.

c. The matrix C = {Crs(θ)} with elements

is positive definite with a finite determinant.
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d.

where there is an M > 0 such that Eθ[Hrst(x)] < M < ∞, and κ, L > 0 such that Eθ[|
Hrst(x)] − E[Hrst(x)]|1+κ] < L < ∞.

e.
There are ν, T > 0 such that, whenever , θ″, θ′ ∈
Θ,

f. There are η, K > 0 such that
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Fig. 1.
FDR versus δ:——, ρ = 1/3; - - - - -, ρ = 7/15; ·······, ρ = 3/5
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Table 1
Crime rate variables

Predictor Description of variable

1 Percentage of males 14–24 years

2 Indicator variable for southern state

3 Mean years of schooling

4 Police expenditure in 1960

5 Police expenditure in 1959

6 Labour force participation rate

7 Number of males per 1000 females

8 State population

9 Number of non-whites per 1000 people

10 Unemployment rate of urban males 14–24 years

11 Unemployment rate of urban males 35–39 years

12 Wealth

13 Income inequality

14 Probability of imprisonment

15 Average time served in state prisons
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Table 2
Highest posterior probability models for Bayesian model selection procedures

Method Model variables chosen Posterior probability (%)

Occam’s window 1 3 4 9 11 13 14 12.6

(OR = 20; maxCol = 30) 1 3 4 11 13 14 9.0

(OR.fix = 2; nbest = 150) 1 3 4 9 13 14 8.4

1 3 5 9 11 13 14 8.0

3 4 8 9 13 14 7.6

1 3 4 13 14 6.3

Median model 1 3 4 9 13 14

MC3 1 3 4 9 11 13 14 2.6

(ν = 2.58; λ = 0.28) 1 3 4 11 13 14 1.8

(φ = 2.85; a = 0.05) 1 3 4 9 13 14 1.7

1 3 4 5 9 13 14 1.6

1 3 4 9 11 13 14 15 1.6

1 3 4 9 13 14 15 1.6

Median model 1 3 4 5 9 13 14

LRTBF 1 3 4 9 11 13 14 3.1

(c = 2) 1 3 4 9 11 13 14 15 2.6

1 3 4 11 13 14 2.2

1 3 5 9 11 13 14 1.9

1 3 4 9 13 14 15 1.5

1 3 4 8 9 11 13 14 1.5

Median model 1 3 4 9 11 13 14

SSVS 1 3 4 9 13 14 2.0

(σθi/τi, ci) = (1, 8) 1 3 4 9 13 14 15 1.6

(ν = 0, λ = 1) 3 4 8 9 13 14 1.2

(pi = 0.5) 1 3 4 9 11 13 14 1.2

(R = (X′X)−1) 1 3 4 8 9 13 14 1.1

1 3 4 13 14 1.1

Median model 1 3 4 9 11 13 14

F-statistic TBF 1 3 4 11 13 14 2.3

(τ = 2) 1 3 4 9 11 13 14 1.9

1 3 4 11 13 1.8

1 3 4 13 14 1.7

1 3 4 13 1.7

1 3 5 11 13 14 1.6

Median model 1 3 4 13 14
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