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Abstract 

A Bayesian approach is proposed to quantitatively identify damages in beam-like structures 

using experimentally measured guided wave signals. The proposed methodology treats the 

damage location, length and depth as unknown parameters. Damage identification is achieved 

by solving an optimization problem, in which a hybrid particle swarm optimization (PSO) 

algorithm is applied to maximize the probability density function (PDF) of a damage scenario 

conditional on the measured guided wave signals. Signal envelopes extracted by the Hilbert 

transform are proposed to minimize the complexity of the optimization problem in order to 

enhance the robustness and computational efficiency of the damage identification. One of the 

advantages of the proposed methodology is that instead of only pinpointing the multivariate 

damage characteristics, the uncertainty associated with the damage identification results is 

also quantified. This outcome provides essential information for making decisions about the 

remedial work necessary to repair structural damage. The experimental data consists of 

guided wave signals measured at a single location of the beams. A number of experimental 

case studies considering damages of different scenarios are used to demonstrate the success 

of the proposed Bayesian approach in identifying the damages. The results show that the 

proposed approach is able to accurately identify damages, even when the extent of the 

damage is small. 
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Introduction 

Infrastructure plays an important role in our daily life. It enhances access to public services 

and both physical and service sector resources (e.g., bridges, buildings, aerospace, pipeline, 

wind energy generation as well as land and water transport infrastructure). The aging and 

deterioration of engineered infrastructure across the developed world have therefore become 

a universal challenge for governments and industries. Thus, monitoring structural integrity to 

enhance the sustainability and reliability of both new and old structures, and the reduction of 

their life cycle costs have become increasingly important. 

Accumulation of damage over the lifespan of a structure without adequate and timely 

inspection can lead to catastrophic failure. Various damage detection techniques have been 

developed over many years. These are typified by conventional ultrasonic, acoustic emission, 

eddy-current, vibration-based and guided wave techniques
1-7

. Vibration-based and guided 

wave techniques in particular have attracted much attention. Vibration-based techniques 

detect damages using the dynamic characteristics of structures have been extensively studied 

in the last two decades
8-12

 but detection of damage mainly depends on successfully 

recognising changes in the vibration characteristics of the structures being tested. Guided 

wave techniques, on the other hand, use mechanical stress waves propagated at ultrasonic 

frequencies along natural boundaries in the structural material to detect damage using a 

pulse-echo or pitch-catch configuration of transducers. The object being tested is therefore, in 

essence, a waveguide. Guided waves are regarded as sensitive and efficient at detecting both 

small and different types of damages in structures, and have been reported as capable of 

monitoring large areas of a structure due to their ability to propagate over long distances
13-18

.  

Recent years have shown growing interest in using vibro-acoustic modulation technique 

for damage detection. This technique employs the nonlinear interaction of high-frequency 

ultrasonic wave and low-frequency vibration excitation. Donskoy et al.
19

 proposed two 

approaches using the nonlinear effect of modulation of ultrasonic wave by forced harmonic 



 

 

vibration and impact excitation of natural modes of vibration of structure, respectively. They 

demonstrated that the resulting modulated signal contains new frequency components, which 

are can be used to detect the defect in the structures. Yoder and Adams
20

 proposed a swept 

probing signal to increase the applicability and robustness of the vibro-acoustic modulation 

technique in damage detection with experimental verification. Klepka et al.
21

 carried out an 

experimental investigation of the low-frequency vibration excitation on modulation intensity 

and associated nonlinear wave interaction mechanisms, which further enhanced the 

understanding of using the vibro-acoustic modulation technique in damage detection. 

Guided waves can propagate in different types of structures that are generally 

categorized into one- and two-dimensional waveguides. Examples of one-dimensional 

waveguides are beams and pipes. Some research has investigated the guided wave 

propagation and scattering phenomenon at defects in beams
22

 and pipes
23-25

, and 

demonstrated the guided waves are sensitive to the defects. Two-dimensional waveguides are 

represented by structural components such as plates and shells. Most research into the use of 

guided waves for locating and characterizing damage relates to two-dimensional waveguides. 

Relatively less work has focused on beams, especially for damage characterization, i.e. 

identifying damage location and severity. 

Beam-like structures, one of the most common types of structural components, 

particularly in civil and mechanical engineering, are essentially one-dimensional waveguides 

for guided wave testing. In the literature some research has investigated the use of guided 

waves for detecting and locating damages in this type of structures. These studies have 

especially focused on crack detection. Quek et al.
26

, for example, employed the impulse wave 

generated by impact excitation to locate cracks in aluminium beams. Experimentally 

measured wave signals were processed using the Hilbert-Huang transform to determine crack 

locations. Li et al.
27

 proposed a method of detecting damage based on a continuous wavelet 

transform of flexural wave signals. The results of their experiments showed that cracks can 



 

 

be located based on the arrival time of the reflected wave, but that the size of the crack can 

only be qualitatively estimated. Grabowska et al.
28

 employed the wavelet transform to 

decompose a guided wave for damage detection. The study demonstrated that the wavelet 

decomposed guided wave signal can be used to distinguish different kinds of damages. Sun et 

al.
29

 reported on research into the use of a guided wave to locate a crack in thick steel beams, 

which demonstrated the potential for judging crack size based on the time delay of the 

transmitted wave. Zhu et al.
30

 proposed a method of detecting the presence of cracks in 

trusses using guided waves. The results of their experiments indicated that the cracks can be 

detected using the extracted defect-sensitive features in the outlier analysis. The method was 

verified using a truss structure in experiments.  

Overall, current research indicates that the arrival time and amplitude of reflected waves 

can be used to locate cracks with roughly estimation of their sizes. When dealing with less 

egregious, more subtle damage, however, such approaches face many challenges. Laminar 

types of damages, such as corrosion thinning, for example, are difficult to characterize 

because the behaviour of the waves reflected from laminar damages is much more 

complicated than the behaviour of waves reflected from cracks. More than one reflected wave 

pulse can be observed from the laminar damage as wave reflections happen when incident 

pulses both enter and leave the laminar damage.  

While the majority of research development has focused on detecting the damage, 

limited research
31,32

 has confronted damage identification. Model-based approaches have, for 

example, been suggested to quantitatively identify damage. Krawczuk
33

 proposed an iterative 

search technique to identify cracks in beam-like structures using flexural waves. A genetic 

algorithm combined with a gradient method formed the search technique for damage 

identification. Numerical case studies were used to verify the proposed method and the 

results indicated that it performed better than methods based on changes in modal parameters. 

Ng et al.
34

 numerically investigated the sensitivity of longitudinal waves in terms of their 



 

 

ability to quantitatively identify damages of different sizes and with different measurement 

noise levels. An optimization approach was proposed to identify the damage in the study. Pau 

and Vestroni
35

 employed transient responses excited by an impulsive force to identify step 

damage in a one-dimensional waveguide. The damage was identified by comparing the 

analytical and experimental reflected and transmitted wave signals. On the whole, in the 

literature the majority of studies have focused more on damage detection than on 

identification. Although there have been limited developments for quantitative identification 

of damages using guided waves, limited work has experimental verifications to demonstrate 

the feasibility of practical applications. 

The current study presents a Bayesian statistical framework
36 

for experimental 

identification of the laminar damage in beam-like structures. The Bayesian statistical 

framework was originally developed for damage detection based on model updating approach 

with low frequency vibration data. This study extends the framework to quantitative damage 

identification by using guided wave signals as the measured data. Unlike most of the existing 

guided wave based damage detection methods, the proposed Bayesian approach identifies the 

damages by maximizing the probability density function (PDF) conditional on measured 

longitudinal guided wave signals.  

In the proposed approach, damage parameters of the numerical beam model are treated 

as unknowns and updated to identify the damage. In this study the numerical beam model is 

developed using a frequency domain spectral finite element method based on the 

Mindlin-Herrmann theory, which enhances the robustness and computational efficiency of 

the damage identification. The model updating is achieved by solving the optimization 

problem, in which the discrepancy of the measured and predicted guided wave signals is 

minimized by changing the damage parameters of the numerical beam model. 

Given the difference of the nature between the guided wave signals and the low 

frequency vibration data, improvements are proposed to overcome the challenges of 



 

 

extending the Bayesian statistical framework to practical damage identification using guided 

waves. The current study enhances the Bayesian statistical framework by using the signal 

envelopes as the data in the damage identification, which substantially reduces the 

complexity of the optimization problem. A hybrid particle swarm optimization (PSO) 

algorithm is adapted to further improve the robustness and efficiency of the damage 

identification process. These improve the applicability of the proposed Bayesian approach in 

practical situation. One of the important contributions of the paper is to provide an in-depth 

exploration of the Bayesian statistical framework in quantitative identification of damage 

using experimentally measured guided waves. Instead of pinpointing the damage location and 

extent as in most of the existing methods, the proposed Bayesian approach also quantifies the 

uncertainties associated with the damage identification results, which is particularly 

important for making decisions about necessary remedial work. The proposed Bayesian 

approach is experimentally verified using a guided wave signal measured at a single location 

in the beam-like structure. 

The remainder of this paper is organized as follows. The frequency spectral finite 

element method based on the Mindlin-Herrmann theory is presented first. The proposed 

damage identification method is then provided in section “Bayesian approach for damage 

characterization”, along with a description of a posterior PDF of uncertain damage 

parameters calculation. The signal envelope extraction using the Hilbert transform and the 

Hybrid PSO algorithm are then presented. A study of the measurement position effect on 

guided wave signals is presented in section “Measurement position effect on guided wave 

signals”. The experimental setup is outlined in section “Experimental verification”. In the 

same section the damage identification results of a number of experimental case studies are 

discussed in detail. Finally, the conclusions are drawn in section “Conclusions”. 

 

 

 



 

 

Modelling of longitudinal wave in beams with damages 

Mindlin-Herrmann theory 

As opposed to the single mode theory such as elementary and Love theories, the 

Mindlin-Hermann theory
37

 describes the longitudinal wave using two coupled partial 

differential equations. It has been shown that the single mode theory cannot be sufficient to 

capture the wave propagation phenomenon for thick beams and/or high frequency wave
22,38

, 

which is the situation of the current study. Hence the Mindlin-Herrmann theory was 

employed to model the longitudinal guided wave in the beam. The Mindlin-Herrmann theory 

modifies the Love theory to take into account the shearing deformation due to the transverse 

displacement but retaining the Poisson’s ratio relation between the axial and transverse 

strains, and assumes that the transverse deformation is independent of the axial contraction. It 

should be noted that the beam model in this study does not consider effect of mode 

conversion from longitudinal wave to flexural wave at the step damage, hence, only 

longitudinal wave is modelled in the study. The section “Preliminary study of measurement 

position effect on guided wave signals” will discuss the guided wave signals measured at 

different positions at the beam cross-section, which shows that the flexural wave induced by 

mode conversion can be excluded in the measured signals by choosing an appropriate 

measurement position. The study shows that the understanding of the wave propagation 

phenomenon can be used to simplify the beam model in the damage identification. 

In the Mindlin-Hermann theory, a finite element has two nodes with two 

degrees-of-freedom per node, longitudinal ( , , )
j
u x y t  and lateral ( , , )

j
v x y t  displacements, 

and they are defined as 

 ( ) ( ) ( ) ( ), , , , , , ,
j j j j
u x y t u x t v x y t y x tφ≈ ≈  (1) 



 

 

where j
u  and 

j
φ  are the horizontal displacement and rotational angle on the neutral axis of 

the beam. Based on the Mindlin-Herrmann, the governing equations for the wave propagation 

problem
37

 are  
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( )

2 2

2 2

2 2

1 2,2 2

2
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φ φ
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∂ ∂ ∂
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 (2) 

where j
µ  and j

λ  are Lame constants and equal to / (2(1 ))j jE ν+  and 

/ ((1 )(1 2 ))j j j jEν ν ν+ − , respectively. j
ν  is the Poisson’s ratio. jE , j j jA b h= , 

3
/12j j jI b h=  and jρ  are the Young’s modulus, cross-section area, second moment of area 

and density. jb  and jh  are the width and thickness of the beam. 1
S   and 2, jS  are 

correction factors introduced to account both for the non-symmetry of the cross-section and 

the fact that the actual stresses are not distributed as assumed
37

. 2

1
12 /S π=  and   

  
S

2, j
= S

1
((1+ν

j
) / (0.87 +1.12ν

j
))2

. Using the Mindlin-Hermann theory the shearing 

deformation due to the transverse displacement is also taken into account in the prediction of 

the longitudinal wave propagation, which provides a more accurate prediction compared to 

elementary and Love theories. 

 

 

Frequency domain spectral finite element method 

In this study the frequency domain spectral finite element method
37

 is developed based on the 

Mindlin-Herrmann theory discussed in the last section. The method is essentially a finite 

element method formulated in the frequency domain. One of the advantages of using 

frequency domain spectral finite element method is that it not only gives the flexibility of 

conventional finite element modelling but also accurately simulates the wave propagation 

with much higher computational efficiency. Hence it is particularly suitable for damage 

identification through solving an inverse problem. 



 

 

As shown in Figure 1, a frequency domain spectral finite element based on the 

Mindlin-Herrmann theory with length j
L  was used to model the longitudinal guided wave 

in this study. The spectral representations for the response variables were 

 ( ) ( ) ( ) ( ), ,

1 1

ˆˆ, , , , ,n n

N N
i t i t

j n j n j n j n

n n

u x t u x e x t x e
ω ωω φ φ ω

= =

= =∑ ∑  (3) 

where 
,
ˆ
n j
u  and 

,
ˆ
n j

φ  are the Fourier coefficients associated with the response variables j
u  

and j
φ  at n-th angular frequency 

n
ω . i  is the imaginary unit. The summation is carried out 

up to the Nyquist frequency
N

ω . By substituting equation (3) into equation (2), the partial 

differential equations are reduced to two sets of ordinary differential equations with the time 

variation removed
39 

as 

 
( )

( )

2

, ,2

,2

2

, , 2

1 , 2, ,2

ˆˆ
ˆ2 0

1,...,
ˆˆ

ˆ ˆ2 0

n j n j

j j j j j n n j j j

n j n j

j j j j j j j n j j j n n j

u
A A u A

xx
n N

u
A I S A I S

x x

φ
µ λ ρ ω λ

φ
λ µ µ λ φ ρ ω φ

∂ ∂
− + − − =

∂∂
=

∂ ∂
− + + − =

∂ ∂

 (4) 

The general response variables in the frequency domain are written as 

 ( )
( )

( )
( )

, ,
ˆˆ , , ,

j n j ni k x t i k x t

n j n j n j n ju x U e x e
ω ω

ω φ ω
− − − −

= =Φ  (5) 

where jk  denotes a wavenumber corresponding to 
n

ω . 
jU  and 

jΦ  are amplitude 

spectrums at n-th angular frequency 
n

ω . Substituting equation (5) into equation (4), the 

characteristic equation for the solution of the wavenumber is obtained as 

 
( )

( )

2 2

2

1 2,

2
0

2

j j j j j j n j j j j

jj j j j j j j j j j j n

k A A ik A U

ik A I S A I S

µ λ ρ ω λ

λ µ µ λ ρ ω

⎡ ⎤− + + − ⎧ ⎫⎪ ⎪⎢ ⎥ =⎨ ⎬⎢ ⎥ Φ− − + + ⎪ ⎪⎩ ⎭⎣ ⎦

 (6) 

where the unknowns are jk , 
jU  and 

jΦ . Equation (6) can be rearranged to a second order 

standard polynomial eigenvalue problem as 

 { }
1,2

2, 1, 0,

2,

0
j

j j j j j

j

R
k k

R

⎧ ⎫⎪ ⎪
+ + =⎨ ⎬
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( )

2

0, 2
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0

0 2

j j n

j

j j j j j j n

A

A I S

ρ ω

µ λ ρ ω

⎡ ⎤
⎢ ⎥=
⎢ ⎥− + +⎣ ⎦

B  

There are four eigenvalues ( jk ) and eigenvectors { }
T

j jU Φ , which can be solved by the 

QZ algorithm
40

 and the eigenvectors are arranged in a matrix { }1, 2,

T

j j jR R=R . The 

general solution at frequency 
n

ω  can then be written as 
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( )

( ),,
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ˆ

m j jm j
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where ,m jC  for 1,2,3,4m =  are unknown coefficients to be determined from the boundary 

conditions at the left and right ends of the spectral element. As shown in Figure 1, the 

responses at the both ends of the spectral element are 

 ( ) ( ), , , ,
ˆ ˆˆ ˆ0 , 0n j j n j ju uα αφ φ= =  and ( ) ( ), , , ,

ˆ ˆˆ ˆ ,n j j j n j j ju L u Lβ βφ φ= =  (9) 

The relationship between the spectral longitudinal displacement and the lateral contraction 

with the unknown coefficient ,m jC  can be expressed as 
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The nodal spectral axial force and shear force at the left (x = 0) and right ends (x =
j
L ) are 



 

 

( )
( )

( )
( )

, , 1

ˆˆ 0, 0,
ˆ ˆˆ 2 0, ,

j n j n

j j j j j j j n j j j

u
F A A Q I S

x x
α α

ω φ ω
µ λ λ φ ω µ

⎡ ⎤∂ ∂
= − + + = −⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
 (11) 

( )
( )

( )
( )

, , 1

ˆˆ , ,
ˆ ˆˆ 2 , ,

j j n j j n

j j j j j j j j n j j j

u L L
F A A L Q I S

x x
β β

ω φ ω
µ λ λ φ ω µ

⎡ ⎤∂ ∂
⎢ ⎥= − + + = −

∂ ∂⎢ ⎥⎣ ⎦
 (12) 

Using these boundary conditions, the relationship between the nodal spectral forces and the 

unknown coefficients ,m jC  can be expressed as 
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where ( )1, 2j j j jAµ λΔ = + ,  
2, j j jAλΔ =  and 

3, 1j j jI SµΔ = . The dynamic stiffness matrix 

   
K

ω
n
, j

 can be obtained by 1

2, 1,j j
−

T T . 

 

Throw-off element for modelling semi-infinite and infinite beams 

As opposed to the conventional finite element method, the frequency domain spectral finite 

element method allows modelling semi-infinite and infinite beams without using a large 

number of elements, which substantially enhances the computational efficiency of modelling 

wave propagation in large structures. Guided wave is generated by a transient excitation and 

then propagates from the excitation location with no secondary disturbances. For a long beam, 

the guided wave reflection from the boundaries can be neglected because of attenuation after 

a long travel distance or if the wave does not reach the desired location within the timeframe 

of the observation. To further reduce the computational time of solving the inverse problem 

for damage identification, this section presents a formulation of a throw-off element for 

simulating a non-reflecting boundary condition for wave propagation problems. Considering 



 

 

a throw-off spectral element with a non-reflecting boundary at the right end, the unknown 

constants 
3, jC  and 

4, jC  in equation (8) can be ignored because they represent the wave 

propagating toward the left end of the beam. The matrices 
1, j
T  and 

2, j
T  can then be 

reduced to 
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The dynamic stiffness matrix for the throw-off element can be obtained by 
    
!K

ω
n
, j
= T

2, j
T

1, j

−1 . 

 

 

Damaged beam model 

With the frequency domain spectral finite element and the throw-off element developed in 

the last two sections, a damaged semi-infinite beam is modelled using three spectral finite 

elements and a throw-off element. The damaged beam model is then used for damage 

identification following the Bayesian approach in the next section. The throw-off element is 

located at the right end of the beam, and therefore, no wave is reflected from the right beam 

end. In this study a step damage is modelled by reducing the cross-sectional area of a beam 

region with length 
L
d . The location of the damage 

d
L  is defined as the distance from the 

left beam end to the left end of the step damage. The cross-section area reduction of the 

damage can be calculated based on the depth 
d
d  of the step damage as ( )

d
b h d− . The step 

damage is parameterized by 
d
L , 

L
d  and 

d
d , which control the damage location, length and 

depth. In reality, there exists some uncertainty in the beam material properties and the 

Mindlin-Herrmann theory in the spectral element method does not fully account for the 

three-dimensional (3D) effects on the longitudinal wave propagation in beams with a 



 

 

rectangular cross-section. Hence, Young’s modulus is also included as an uncertain 

parameter in the optimization problem. The proposed Bayesian approach was used to identify 

the damage in the beam. 

 

 

Bayesian approach for damage characterization 

Damage identification is an inverse problem. Damage is detected and identified from 

measured data. However, the number of sensors that can be installed on structures is limited 

and measurements always contain noise in real world situations. Damage identification 

results are therefore always associated with uncertainties that may lead to incorrect decisions 

about remediation. In attempts to overcome these issues, statistical approach has been 

employed to address the issue of limited number of sensors
41,42

 and handle the uncertainties 

in damage detection. Beck and Katafygiotis
36

 proposed a Bayesian statistical framework for 

damage detection using low frequency vibration characteristics of structures, e.g. natural 

frequencies and modeshapes. The framework was also applied to structural health monitoring 

applications
43

 but it has not yet been fully explored for damage detection using guided waves. 

Recently the maximum likelihood approach was employed to determine the location of 

damage using guided waves
44,45

. 

In the current study the Bayesian statistical framework
36

 was extended to provide a 

quantitative identification of damage using guided waves. The extended approach is 

experimentally verified to demonstrate its applicability in real situation. The proposed 

method not only identifies the damage in the beams, but also quantifies the uncertainties 

associated with the damage identification results. The uncertainty information of the damage 

identification results is particularly important for engineers and infrastructure managers who 

are trying to make judgements about remedial work, especially in situations where the 

damage is in inaccessible locations. In the following sections the Bayesian statistical 



 

 

framework is first introduced. The details of calculating the posterior PDF of the unknown 

damage parameters are then discussed. Damage identification was achieved by maximizing 

the likelihood function in the Bayesian statistical framework using a hybrid PSO algorithm. 

 

 

Bayesian statistical identification framework 

The Bayesian statistical identification framework
36

 embeds a class of deterministic structural 

models M  within a class of probability models. This arrangement allows for guided wave 

response predictions   u(t;θ)  and modelling of prediction error   e(t,θ) . θ  are the uncertain 

structural parameters chosen from a set of possible parameter values from a region  Γ(θ) . 

The prediction error   e(t,θ)  is defined as the difference between the predicted and the 

measured guided wave responses, which may be the result of measurement noise and 

modelling error. A class of probability models ( )P σ  is required that must be parameterized 

by a parameter σ  which is selected to be the standard deviation of the underlying PDF of 

the prediction error   e(t,θ) . By selecting the classes of M  and P , the class of structural 

and probability models 
P

M  can be defined and parameterized by    a ={θT ,σ}T
∈S(a) . In 

the damage identification process, a set of guided wave responses D  can be obtained 

through measurements. Using the Bayes’ theorem, the posterior PDF of a  for a given set of 

measured guided wave data D  and a given class of structural and probability models 
P

M  

can be calculated as 

 ( ) ( ) ( )| , | , |
P P P

p D M cp D M p M=a a a  (17) 

where ( | ) ( )
P

p M π=a a  is the prior PDF of a  over the set ( )S a  of possible parameter 

values. The prior PDF can be chosen as a smooth and slowly-varying PDF to roughly reflect 

the engineer’s judgement of the relative plausibility of the different values of the parameters 



 

 

a  and achieve a mathematical convenience. c  is a normalizing constant such that the 

expression on the left-hand side of equation (17) is equal to unity and can be defined as 

 
( ) ( )

( )

1

| , |P P
S

c
p D M p M d

=

∫
a

a a a

 (18) 

It is common that the signal-to-noise ratio of the measured guided wave signals is improved 

by averaging the signals over number acquisitions. Hence the measurement noise is generally 

very small and the prediction error   e(t,θ)  is mainly due to the modelling error. It is assume 

that the prediction error   e(t,θ) , which is the discrepancy between predicted signals 

simulated by the numerical model and experimentally measured signals, is normally 

distributed and can be approximated by Gaussian distribution. In this case the likelihood of 

observing the data given the parameters a  from the class of models 
P

M , ( | , )
P

p D Ma , in 

equation (17) can be written as  

 

    

p D | a, M
P( ) = 2πσ( )

−N
t
N

o

exp −
1

2σ 2
!u t( )− u t;θ( )

2

t=1

N
t

∑
⎡

⎣
⎢

⎤

⎦
⎥  (19) 

where 
   
!u(t)  is the measured guided wave signal at the t-th time step;   u(t;θ)  is the predicted 

guided wave signal based on the model class 
P

M  for a given set of uncertain parameters θ ; 

o
N  is the number of measurement points, equivalent to the number of laser measurement 

points/transducers in the experiments; 
t
N  is the number of time steps in the measurements; 

⋅  denotes the standard Euclidean norm of the second kind. 

 

 

Posterior PDF of uncertain damage parameters 

The posterior PDF of the uncertain damage parameter 
  
p(θ | D, M

P
)  can be obtained from 

equation (17) by integrating σ  as 

 
  
p θ | D, M

P( ) = cp D |θ,σ , M
P( )π θ,σ( )

0

∞

∫ dσ  (20) 



 

 

As the number of measured time steps 
t
N  is sufficiently large, it can be assumed that the 

prior distribution 
   
p(a | M

P
) = π (a)  is a slowly varying function of σ ; the value of 

  
p(θ | D, M

P
)  becomes negligible everywhere, except for the region of the parameter space 

where the posterior PDF of the uncertain parameters θ  is close to its global maximum at the 

value  

 

   

σ̂
2
θ̂( ) = J θ̂( ) =

1

N
t
N

0

!u t( )− u t;θ̂( )
2

t=1

N
t

∑  (21) 

where   J (θ)  is a measure-of-fit function between the predicted and measured guided wave 

signals. The integral in equation (20) can be approximated
46

 as 

 
  
p θ | D, M

P( ) = c
1
J θ( )

N
t
N

o
−1( )/2

π θ,σ̂ θ( )( )  (22) 

where 
1
c  is another normalizing constant. In this situation, the region of important 

probabilities locally extends around the points that globally minimize   J (θ) . 2
σ̂  is the 

optimal variance in the prediction error model. In identifiable cases, there is either one 

optimal value for θ  or more than one optimal value, but the distance between the optimal 

values is finite within region   S(θ) . The posterior PDF of the uncertain parameter vector θ  

can be approximated by a weighted sum of Gaussian distributions centred at R  optimal 

points as 

 

   

p θ | D, M
P( ) ≈

π θ̂
r( )( ) A

N
θ̂

r( )( )
−1/2

π θ̂
r( )( ) A

N
θ̂

r( )( )
−1/2

r=1

R

∑
N θ̂

r( )
,A

N

−1
θ̂

r( )( )( )
r=1

R

∑  (23) 

where ( , )N µ Σ  denotes a multivariate Gaussian distribution with mean µ  and covariance 

matrix Σ . It is assumed that the posterior PDF of the parameters is concentrated in the close 

neighbourhood of a finite number of optimal points. 1

N

−
A  is the inverse of the Hessian 

matrix of the function 
  
g(θ) = ln J (θ)(N

t
N

o
−1) / 2  evaluated at r-th optimal point   θ̂

(r )
 for 

1,...,r R= . 



 

 

Signal envelope and hybrid optimization strategy 

In the proposed Bayesian approach, the posterior PDF 
  
p(θ | D, M

P
)  in equation (20) is 

maximized to identify the most ‘plausible’ damage scenario. This can be achieved by 

minimizing the measure-of-fit function   J (θ)  in equation (21) while treating the uncertain 

parameters as unknowns in the optimization. This is, however, a highly nonlinear 

optimization problem. The direct use of guided wave signals in the measure-of-fit function 

  J (θ)  results a large number of local optimums in the parameter space   S(θ)
32,34

. The 

current study used the signal envelopes as the data in order to minimize the number of local 

optimal points in the optimization. In addition, a hybrid optimization strategy was put in 

place to minimize the measure-of-fit function   J (θ)  in equation (21), thereby further 

improving the robustness and efficiency required for solving the optimization problem. 

 

 

Hilbert transform for signal envelope extraction 

The Hilbert transform can be used as a signal processing tool to extract the signal envelope of 

the guided wave. The Hilbert transform is defined as
5
 

 ( )
( )1 u t

H t d
t

τ
π τ

∞

−∞
=

−
∫  (24) 

where ( )H t is the Hilbert transform of guided wave signal ( )u t . Equation (24) performs a 

90° phase shift of the signal ( )u t . An analytic signal can be constructed by 

 ( ) ( ) ( ) ( ) ( )i t

A
u t u t iH t H t e

ϕ
= + =  (25) 

where the envelope 
env
u  and instantaneous phase ( )tϕ  are defined as 

 ( ) ( )2 2

env
u u t H t= +  and ( )

( )

( )
arctan

H t
t

u t
ϕ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (26) 



 

 

In the present study the Hilbert transform was used to extract the signal envelope of the 

guided wave calculated using the spectral finite element method and measured in experiments. 

The damage identification was then carried out using the signal envelopes, i.e. 
   
!u(t) = !u

env
(t)  

and 
  
u(t;θ) = u

env
(t;θ)  in equation (21). As the complexity of the signal envelopes is less 

than the time domain guided wave signal, it reduces the number of the local optimal points in 

the optimization. This improves the robustness and efficiency of solving the optimization 

problem. 

 

 

Hybrid optimization strategy 

A hybrid optimization strategy, combining a PSO algorithm and the simplex search method 

was adopted to solve the optimization problem in equation (21). The global optimum solution 

of these unknown parameters represents the most ‘plausible’ damage scenario. PSO is an 

evolutionary computation technique originally developed to simulate coordinated social 

behaviour among animals, such as schools of fish or flocks of birds. The idea was first 

proposed by Kennedy and Eberhart
47

. PSO is a population-based search method that is 

generally good at finding the global optimal solution, but computationally expensive when 

we seek to accurately determine the location of the global optimal point. This current study, 

therefore, experimented with a hybrid optimisation strategy to improve the computational 

efficiency when seeking to accurately determine the global optimal point. The PSO algorithm 

is first used to perform global searches in the parameter space   S(θ) . Once the local potential 

space is identified, the simplex search method is then used for a local exploitation, searching 

to accurately determine the global optimal solution.  

PSO is based on the particle swarm concept. At the initial stages of optimization, a 

number of particles are initialized randomly in the parameter space   S(θ) . The objective 

function of each of particle is then evaluated at its current position. An iterative process is 



 

 

carried for 
I
N  times. At m -th iteration, for 1,...,

I
m N= , an 

D
N -dimensional vector 

  
θ

i

m
={θ

i1

m
θ

i2

m ,...,θ
iN

D

m }T  is used to represent the position of the i-th particle of the swarm, for 

1,...,
P

i N= , where 
P
N  is the number of population. The position of each particle is a 

potential solution of the optimization problem. 
1 2{ , ,..., }

D

m m m m T

i i i iN
v v v=V  and 

   
!θ

i

m

i
={ !θ

i1

m , !θ
i2

m ,..., !θ
iN

D

m }T  are used to represent the velocity and the best position of the particle at 

the m -th iteration, respectively. PSO consists of two main processes, velocity update and 

position update. At ( 1m + )-th iteration the i -th particle is accelerated toward its previous best 

position 
  
!θ

i

m
 and the global best position 

  
!θ

g

m  based on equation (27). The position at ( 1m + )-th 

iteration is updated using equation (28). 

 
    
V

i

m+1
= w

m
V

i

m
+ λ

1
r
1

!θ
i

m
− θ

i

m( )+ λ2
r

2

!θ
g

m
− θ

i

m( )  (27) 

 
   
θ

i

m+1
= θ

i

m
+ V

i

m+1  (28) 

where 
1
r  and 

2
r  are random numbers drawn from a uniform distribution on interval [0, 1]. 

1
λ  and 

2
λ  are cognitive and social coefficients, which reflect the degree of confidence in 

the best solution found by each individual particle and by the swarm as a whole, respectively.  

In this study 
1
λ = 0.5 and 

2
λ = 1.25, which satisfies the stability condition 

1 20 ( ) 4λ λ< + <
48

. 

m
w  is the inertia weight at m -th iteration for controlling the exploration abilities of the swarm. 

The PSO used in the current study adopts a dynamic variation of inertia weight with a linear 

decrease in each iteration
49

. The inertia weight at ( 1m + )-th iteration is obtained as 

 1m I F

I

I

w w
w w m

N

+ −
= −  (29) 

where 
I
w  and 

F
w  are the initial weight and final weight, and they equal 0.9 and 0.4, 

respectively, which satisfy the stability condition 1

1 20.5( ) 1 1m
wλ λ

+
+ − < <

48
. 

I
N  is the 

maximum number of iterations. An advantage of using equation (29) is that the inertia weight 

is high during initial global searches and subsequently narrows the searches to feasible areas 



 

 

by decreasing the inertia weight toward the final weight, improving the efficiency and 

performance of the PSO. The PSO algorithm is summarized below. 

 

1. Initialize a set of particle positions 
  
θ

i

1  and velocities 1

i
V  with random 

distribution in parameter space 
 
S θ( )⊂ ℜ

N
D . 

2. Evaluate the objective function value of each particle. 

3. Determine the best position of each particle 
  
!θ

i

m
 and the best global position of 

the swarm 
  
!θ

g

m  at m -th iteration. 

4. Update the particle velocities and positions using equations (27) and (28). 

5. Repeat steps (2) – (4) until the maximum number of iteration 
I
N  or sufficiently 

good fitness are met. 

 

Once the PSO identifies the local potential space from the parameter space   S(θ) , the 

simplex search method can be used to accurately determine the global optimum solution 

using the optimum solution from the initial trial of the PSO. The hybrid optimization strategy 

tactically consolidates the advantages of PSO and the simplex search method in a search for 

the global optimum region and the accurate location of the optimum point, respectively, 

providing an enhanced strategy for solving damage identification problems.  

 

 

Measurement position effect on guided wave signals  

A 3D explicit finite element simulation using LS-DYNA was carried out to provide a 

preliminary study before the experimental verification. The aim of the preliminary study is to 

gain a fundamental understanding of the guided wave mode conversion at the damage and 

provide a validation that the mode conversion from longitudinal wave to flexural wave can be 

excluded in the measured signals by choosing an appropriate measurement position. 



 

 

A 2 m long aluminum beam (Grade 6060-T5) with 12×6 mm
2
 rectangular cross-section, 

which is identical to the beam specimens used in the experimental verification, was modeled 

using the LS-DYNA. Eight-noded 3D reduced integration solid brick elements with hourglass 

control were used to model the beam, in which each node has threes of freedom. The size of 

the solid brick elements is 0.4×0.4×0.4 mm
3
 that guarantees there are sufficient number of 

elements exist per wavelength of the longitudinal wave and in the through-thickness direction 

of the beam. The longitudinal wave was excited by applying the nodal displacement in the 

longitudinal direction of the surface nodes located at one of the beams end. The excitation 

signal was an 80 kHz narrow band eight-cycle sinusoidal tone burst pulse modulated by a 

Hanning window. A step damage located at 
d
L = 900 mm with 

L
d = 40 mm and 

d
d = 2.5 

mm was simulated by removing the finite elements.  

Figure 2 shows typical time snapshots of the finite element simulated displacement for 

the beam. Figures 2a and 2b shows snapshots of the simulated longitudinal wave propagation 

and interaction with the step damage in the beam, respectively. Figure 2c shows the mode 

conversion from the longitudinal wave to the flexural wave at the step damage and the 

flexural wave propagates toward the beam end.  

Using the coordinate system defined in Figure 2, the x-, y- and z- displacement 

modeshapes of the fundamental longitudinal and flexural modes at the shorter side of the 

beam cross-section are shown in Figures 3a and 3b, respectively. As indicated by the 

modeshape of the longitudinal mode in Figure 3a, the fundamental longitudinal wave 

propagating in x-direction not only induces the x-displacement but also z-displacement due to 

the Poisson effect. Hence, the longitudinal wave can be measured through the z-displacement. 

As shown in Figure 3b, the modeshape of the fundamental flexural mode is quite different 

compared to the longitudinal mode as shown in Figure 3a. The z-displacement of the 

fundamental flexural mode has zero magnitude at the center of the shorter side of the beam 

cross-section. This indicates that the flexural wave can be excluded in the measurements if 



 

 

the z-displacement is measured at this position. Hence, the Mindlin-Herrmann theory 

described in the section “Modelling of longitudinal wave in beams with damages” can well 

predicts the experimental data without considering the mode conversion at the step damage.  

As one-dimensional laser Doppler vibrometer was used to measure the longitudinal 

wave in this study, the displacements were only measured in one direction. Figures 4b – 4d 

show the simulated signals at x = 450 mm away from the excitation location but these signals 

were measured in different directions and at different y- and z-coordinate locations as shown 

in Figure 4a. Figure 4b shows the y-displacement at x = 450 mm, y = 6 mm and z = 6 mm, 

where is the center of the top longer side of the beam cross-section. Both longitudinal and 

flexural wave exist in the signal measured at this position. Figures 4c and 4d show the 

x-displacement at x = 450 mm, y = 6 mm and z = 0 mm, and x = 450 mm, y = 3 mm and z = 0 

mm, where are top and centre of the shorter side of the beam cross-section, respectively. 

Comparing the signals in Figure 4c and 4d, it shows that the flexural wave can be excluded in 

the measured signal for the measurement position at the center of the shorter side of the beam 

cross-section (x = 450 mm, y = 3 mm and z = 0 mm). The next section will discuss the details 

of the experimental setup and the signal measured using the laser Doppler vibrometer at this 

measurement position. 

 

 

Experimental verification 

Experimental setup 

Four aluminium beams (Grade 6060-T5), 2 m in length with a 12×6 mm
2
 rectangular 

cross-section, were used as specimens to verify the proposed methodology. A schematic 

diagram of the experimental setup is shown in Figure 5. A rectangular piezoceramic 

transducer with dimensions of 12×6×2 mm
3
 was adhesively bonded to the surface of the left 

end of each of the beam specimens. A 12×6×4 mm
3
 brass mass was attached to the 



 

 

piezoceramic transducer as a backing mass to increase the excitability of the longitudinal 

wave, and improve the signal-to-noise ratio. The excitation signal was an 80 kHz 

narrow-band eight-cycle sinusoidal tone burst pulse modulated by a Hanning window. The 

reason of selecting this excitation frequency is that better signal-to-noise ratio can be 

obtained in the measurements. A computer controlled arbitrary wave form generator 

[Stanford Research DS345] with 10 V peak-to-peak output voltages was used to generate the 

excitation signal, which was amplified by a factor of 10-50 using a power amplifier [Krohn 

Hite model 7500]. Pushed through the piezoceramic transducer, the signal produces a 

longitudinal wave at the left beam end, which is measured by a laser Doppler vibrometer 

[Polytech OFV 303/OFV 3001].  

Based on the understanding of the displacement modeshapes of the fundamental 

longitudinal and flexural wave mode in the section “Measurement position effect on guided 

wave signals”, the laser measurement position was located at the center of a shorter side of 

the beam cross-section as shown in Figure 5 to measure the longitudinal wave. At this 

position, the longitudinal wave can be measured through the out-of-plane motion due to the 

Poisson effect and the flexural wave can be excluded in the measured signals. The 

measurement location was 450 mm from the excitation point. The head of the laser Doppler 

vibrometer was positioned by a computer controlled positioning system [Newport ESP 300] 

to enhance the accuracy of the measurement location on the beams. The measured signals 

were then fed into a computer via an oscilloscope. The quality of the measurements was 

improved by averaging the signals over a number of acquisitions. 

 

Experimental case studies 

Four step damages, designated as Cases C1, C2, C3 and C4, were manufactured on four 

different aluminium beams. The location and length of the step damages were first marked on 

the beams and then manufactured using milling machine, and hence, there were ±1 mm 



 

 

measurement uncertainty in the damage location and length, and ±0.5 mm machining 

tolerance in the damage depth. The performance of the proposed Bayesian approach in 

identifying the damages was evaluated using a number of experimental case studies. All cases 

involved step damage at different locations (
d
L ), lengths (

L
d ) and depths (

d
d ) in the beams. 

Case C1 involved step damage at the greatest damage depth 
d
d = 2.50 mm. The damage was 

located at 
d
L = 1174.75 mm with a damage length of 

L
d = 50.50 mm. A smaller damage 

depth of 
d
d = 2.00 mm was located at 

d
L = 1062.50 mm (Case C2), but it exhibited a greater 

damage length of 
L
d  = 75.00 mm. Cases C3 and C4 were assigned the same damage 

location 
d
L = 980.00 mm and length 

L
d = 40.00 mm. The only difference was the damage 

depths, which were 
d
d = 2.00 mm and 

d
d = 1.00 mm in Cases C3 and C4, respectively. 

Overall, Case C4 was the most challenging situation because of the small damage depth 

resulting small reflected wave amplitude. A summary of all the damage cases is given in 

Table 1. The proposed Bayesian approach was employed to identify the damages using the 

extracted signal envelopes in all cases. 

To demonstrate the sensitivity of the longitudinal guided wave to the step damages, the 

measured time domain guided wave signals and the signal envelopes of Cases C3 and C4 are 

shown in Figures 6a and 6b. The first pulse is the incident wave and the second pulse is the 

wave reflected from the damage. The third pulse is the reflected wave from the damage 

rebounded from the left beam end. As shown in Figure 6a, there was an additional wave pulse 

immediately after the incident wave. Based on its arrival time, this pulse was found to be a 

flexural wave caused by the fact that the plane of the piezoceramic transducer was not 

attached perfectly parallel to the beam end surface. The existence and amplitude of the pulse 

therefore depended on the care with which the piezoceramic transducers were installed. As 

described in the experimental setup, a backing mass was attached to the piezoceramic 

transducer to minimize the additional pulse. Overall, the amplitude of the pulse was 



 

 

indistinguishable from the reflected waves from the damage, and hence, the impact on 

damage identification was negligible. 

As shown in Figures 6a and 6b, the reflected waves from the damages contained the 

information of the damage location, length and depth. In theory, damage location was 

indicated by wave arrival time while the length and depth of the damage could be assessed 

using wave shape. In practice, however, the identification of the damages from direct 

observation of the signal was not straightforward, especially for characterization of the 

damage length, because of the pulse distortion, attenuation, existence of additional wave 

modes and reflections from boundaries. A Bayesian approach was therefore applied to 

provide a quantitative identification of the damages in the beams. 

 

 

Damage identification results and discussions 

The proposed Bayesian approach was first applied in Case C1. A summary of the damage 

identification results is shown in Table 2. The identified damage location, length and depth of 

Case C1 are ˆ
d
L = 1140.61 mm, ˆ

L
d = 52.28 mm and ˆ

d
d = 2.57 mm. The identified values are 

very close to the true values (1174.75±1 mm, 50.50±1 mm and 2.50±0.5 mm). The 

corresponding errors are 2.91%, 3.52% and 2.73% in the damage location, length and depth, 

respectively. Case C2 considered a damage located at 
d
L = 1062.50±1 mm with greater 

length (
L
d = 75.00±1 mm) but with less depth (

d
d =2.00±0.5 mm). The identified values are 

ˆ
d
L = 1062.50 mm, ˆ

L
d = 76.67 mm and ˆ

d
d = 2.01 mm, which are in good agreement with the 

true values. As an example of how well the predicted signal envelopes match the measured 

results, a comparison between the signal envelopes predicted by the spectral finite element 

using the identified values and the measured data for Cases C1 and C2 are shown in Figures 

7a and 7b, respectively. The predicted data matches the measured data very well. The figures 



 

 

also illustrate that it is difficult to identify the damage length from the direct observation of 

the signals. 

Because the proposed damage identification method was developed based on the 

Bayesian approach, the posterior PDF of the identified damage locations, lengths and depths 

were also obtained to determine the uncertainties associated with the damage identification 

results. Figures 8a and 8b show the normalized marginal PDF of the identified damage length 

and depth for Cases C1 and C2, respectively. The high confidence level of the identified 

damage characteristics in these two cases is indicated by the PDF value dropping very 

sharply even for small deviations from the identified damage length and depth. As shown in 

the Figures 8a and 8b, both cases have similar high confidence level in the identified damage 

depth. However, the PDF of the identified damage length in Case C2 drop more slowly 

compared to Case C1. This shows that the uncertainties associated with the identified damage 

length are higher in Case C2. 

The coefficient of variation (COV) of the identified damage parameters were calculated 

based on the posterior PDFs and summarized in Table 2. The COV is a normalized measure 

of the dispersion of a probability distribution about its mean value. It provides a convenient 

way to analyze and compare the uncertainties associated with the identified damage 

parameters. As shown in Table 2, the COV of the identified damage locations (0.01% in Case 

C1 and 0.03% in Case C2) was relatively small compared to the COV of the identified 

damage lengths (0.08% in Case C1 and 0.19% in Case C2) and depths (0.29% in Case C1 and 

0.33% in Case C2), which means that the identified damage locations have less uncertainties 

associated with the identified damage lengths and depths. This is consistent with the fact that 

guided waves can provide accurate information related to damage location
13

.  

The damage identification results of Cases C3 and C4 are also summarized in Table 2. 

The damages in these two cases were at the same location and had the same damage length. 

The only difference is the lower damage depth in Case C3 (
d
d =2.00±0.5 mm) compared with 



 

 

Case C4 (
d
d =1.00±0.5 mm). Using the proposed Bayesian approach, the identified values 

were ˆ
d
L = 952.340 mm, d̂

L
= 46.42 mm and ˆ

d
d = 1.91 mm and ˆ

d
L = 953.91 mm, ˆ

L
d = 

37.82 mm and ˆ
d
d = 1.13 mm for Cases C3 and C4, respectively. All the identification values 

exhibited a reasonable agreement with the true values. The results show that the proposed 

damage identification method has no problem identifying the damage, even when the damage 

depth is very small. 

The COV of the identified value in Cases C3 (0.46% for damage length and 0.45% for 

damage depth) and C4 (0.78% for damage length and 1.96% for damage depth) shows that 

lower damage depth leads to large uncertainty in damage identification because shallow 

damage produces a reduced amplitude wave, i.e. smaller signal-to-noise ratio. There is less 

damage information offered by the measured data, increasing the uncertainties associated 

with the identified values. 

 

 

Conclusions 

This paper presented a Bayesian approach for damage identification in beams using 

longitudinal guided wave signals. Signal envelopes extracted using the Hilbert transform and 

a hybrid PSO algorithm were proposed to enhance damage identification. The proposed 

method was verified through a number of experimental case studies. Aluminium beams with 

different damage scenarios were used to investigate the ability of the proposed Bayesian 

method to identify structural damage location, length and depth. Very encouraging results 

were obtained from the experimental case studies. The results show that the proposed method 

is able to accurately identify the damages even in cases the damage depths were relatively 

small. The method is also cost effective in terms of instrumentation as the damages can be 

identified in long structures based on the guided waves measured at a single location. In 

addition the uncertainties associated with the damage identification results can be quantified, 



 

 

although the uncertainties of the identified damage parameters increase with smaller damage 

depths as less damage information is contained in the waves reflected from the damages. It is 

worth noting that although the current study focused on laminar type of damage, the proposed 

method is general and applicable to different types of damages or more complex engineering 

structures by modifying the embedded spectral finite element model in the Bayesian 

statistical framework. In practical situations, the types of damages could usually be 

pre-determined based on engineering judgment and the material composition of the damaged 

structures, and hence, the proposed Bayesian damage identification approach is feasible for 

practical applications. 
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Figure 1. Spectral finite element based on the Mindlin-Herrmann theory 
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Figure 2. Typical contour snapshots of finite element simulated displacement for the beam: (a) 

incident longitudinal wave, (b) incident longitudinal wave interacts with the step damage, and 

(c) mode conversion from longitudinal wave to flexural wave at the step damage. 

 



 

 

 

Figure 3. Fundamental (a) longitudinal and (b) flexural mode displacement modeshapes at the 

shorter side of the beam cross-section at 80 kHz (solid line with circles: x-displacement; 

dotted line with circles: y-displacement; dashed line with circles: z-displacement). 

 



 

 

 

Figure 4. (a) Measurement positions of the beam cross-section located at x = 450 mm. Finite 

element simulated (b) y- displacement signal at y = 6 mm, z = 6 mm and z-displacement 

signal at (c) y = 6 mm and z = 0 mm; and (d) y = 3 mm and z = 0 mm. 

 



 

 

 

Figure 5. Schematic diagram of the experimental setup. 

 

 
 

Figure 6. Experimental measured time domain signal (solid line) and signal envelope (dashed 

line) for Cases (a) C3 and (b) C4. 
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Figure 7. Comparison of the predicted and measured guided wave signal for Cases (a) C1 and 

(b) C2 (solid line: prediction using identified parameters; dashed line: experimental data). 

 

 

Figure 8. Normalized marginal PDF of the damage length and depth for Cases (a) C1 and (b) 

C2. 

  



 

 

Tables List 

Table 1. Summary of all damage cases in the experimental case studies 

Case 
Damage location (

d
L ) (mm) Damage length (

L
d ) (mm) Damage depth (

d
d ) (mm) 

C1 1174.75±1 50.50±1 2.50±0.5 

C2 1062.50±1 75.00±1 2.00±0.5 

C3 980.00±1 40.00±1 2.00±0.5 

C4 980.00±1 40.00±1 1.00±0.5 

 

Table 2. Summary of the results in damage identification 

Case Damage location (mm) Damage length (mm) Damage depth (mm) 

 Identified value 

( ˆ
d
L ) 

True value 

(
d
L ) 

Identified value 

( ˆ
L
d ) 

True value 

(
L
d ) 

Identified value 

( ˆ
d
d ) 

True value 

(
d
d ) 

C1 
1140.61 

(0.01%) 
1174.75±1 

52.28 

(0.08%) 
50.50±1 

2.57 

(0.29%) 
2.50±0.5 

C2 
1040.10 

(0.03%) 
1062.50±1 

76.67 

(0.19%) 
75.00±1 

2.01 

(0.33%) 
2.00±0.5 

C3 
952.34 

(0.03%) 
980.00±1 

46.42 

(0.46%) 
40.00±1 

1.91 

(0.45%) 
2.00±0.5 

C4 
953.91 

(0.03%) 
980.00±1 

37.82 

(0.78%) 
40.00±1 

1.13 

(1.96%) 
1.00±0.5 

Note: Values in brackets are the coefficient of variation (COV) 

 


