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Summary: Capturing the potentially strong dependence among the peak concentrations of multiple air pol-

lutants across a spatial region is crucial for assessing the related public health risks. In order to investigate the

multivariate spatial dependence properties of air pollution extremes, we introduce a new class of multivariate

max-stable processes. Our proposed model admits a hierarchical tree-based formulation, in which the data are

conditionally independent given some latent nested positive stable random factors. The hierarchical structure

facilitates Bayesian inference and offers a convenient and interpretable characterization. We fit this nested

multivariate max-stable model to the maxima of air pollution concentrations and temperatures recorded at a

number of sites in the Los Angeles area, showing that the proposed model succeeds in capturing their complex

tail dependence structure.
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1 INTRODUCTION

1. Introduction

Modeling the joint behavior of multivariate extreme events is of interest in a wide

range of applications, ranging from finance to environmental sciences, such as hydrology

and applications related to climate change or air pollution monitoring. Simultaneous

exposure to multiple air pollutants seriously affects public health worldwide, causing

loss of life and livelihood and requiring costly health care. Therefore, policymakers such

as those at the US Environmental Protection Agency (EPA) are researching multivariate

approaches to quantify air pollution risks (Dominici et al., 2010). The issue of air

pollution is compounded by global warming and climate change, as increasingly high

temperatures are suspected to contribute to raising ozone concentrations and aggravating

their effect in the human body (Kahle et al., 2015). This situation urges a greater

understanding and better monitoring of air pollution extremes, the complexity of which

poses a challenge for standard statistical techniques. Several air pollutants are often

recorded at multiple spatial locations and the modeling of peak exposures across a

spatial region must transcend the assumption of independence in order to capture their

spatial variability. In this paper, we propose a new methodological framework based on

Extreme-Value Theory, for estimating the probability that various air pollutants and

temperatures will be simultaneously extreme at multiple locations.

The statistical modeling of single extreme variables observed over space is usually based

on spatial max-stable processes (see, e.g., the reviews by Davison et al., 2012, and

Davison et al., 2019), which are the only possible limit models of properly renormalized

block maxima from independent and identically distributed spatial processes. Notice

that although pointwise maxima may or may not occur simultaneously, the dependence

structure of maxima coincides asymptotically with the tail dependence structure from

the original process. Therefore, except in the case of asymptotic independence, max-

stable models can be used to capture the potentially strong spatial dependence that may

exist among original variables at extreme levels. Several spatial models for asymptoti-

cally (in)dependent data were proposed by Wadsworth and Tawn (2012), Opitz (2016),

Huser et al. (2017), Huser and Wadsworth (2019) and Krupskii et al. (2018). Here,

we restrict ourselves to asymptotic dependence by modeling multivariate block maxima

recorded over space using a suitable max-stable process. Genton et al. (2015) proposed

multivariate versions of the Gaussian (Smith, 1990), the extremal-Gaussian (Schlather,

2002), extremal-t (Opitz, 2013) and the Brown–Resnick (Kabluchko et al., 2009) max-

stable models, and Oesting et al. (2017) introduced a bivariate Brown–Resnick max-

stable process to jointly model the spatial observations and forecasts of wind gusts

This article is protected by copyright. All rights reserved.
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1 INTRODUCTION

in Northern Germany. In this paper, we propose a new class of multivariate max-

stable processes that extends the Reich–Shaby model (Reich and Shaby, 2012) to the

multivariate setting, and that is suitable for studying the spatial and cross-dependence

structures of multiple max-stable random fields within an intuitive and computationally

convenient hierarchical tree-based framework. Our model is unique in its flexibility for

capturing cross-dependence and it is applied below considering five variables over space.

Recent related work includes Reich and Shaby (2018b), but their proposed model has a

highly restrictive cross-dependence structure and has been applied in the bivariate case

only.

In contrast to the standard spatial processes based on the Gaussian distribution, such

as the Brown–Resnick, the computationally demanding nature of the likelihood function

for max-stable processes has hampered their use in high-dimensional settings within

both frequentist and Bayesian frameworks (Ribatet et al., 2012; Huser and Davison,

2013; Castruccio et al., 2016; Thibaud et al., 2016; Huser et al., 2019). In the Bayesian

context, Thibaud et al. (2016) showed how the Brown–Resnick max-stable process

may be fitted using a Markov chain Monte Carlo (MCMC) algorithm; however, this

remains excessively expensive in high dimensions. From a computational perspective, it

is convenient to relax the max-stable structure by assuming conditional independence of

the extreme data given an unobserved latent process (Casson and Coles, 1999; Cooley

et al., 2007; Davison et al., 2012; Opitz et al., 2018). This significantly facilitates Bayesian

and likelihood-based inference and is helpful for estimating marginal distributions by

borrowing strength across locations. Unfortunately, when the latent process is Gaussian,

the resulting dependence structure lacks flexibility and cannot capture strong extremal

dependence. The Reich–Shaby model (Reich and Shaby, 2012) on the other hand has a

conditional independence representation given some latent positive stable random effects,

and is jointly max-stable. Other popular max-stable processes do not possess such a

convenient hierarchical characterization. In this paper, we generalize the Reich–Shaby

process for modeling multivariate spatial extremes by assuming a nested, tree-based,

positive stable latent structure, which maintains a low computational burden.

In our proposed model, the dependence structure may be represented by a tree frame-

work, in which the “leaves” (i.e., the terminal nodes) correspond to different spatial

Reich–Shaby processes representing different variables of interest (e.g., pollutants), and

the tree “branches” describe the relationships among these processes, which are grouped

into clusters. The intra-cluster cross-dependence is assumed to be exchangeable and

stronger than the inter-cluster cross-dependence. In principle, the underlying tree struc-

This article is protected by copyright. All rights reserved.
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2 MAX-STABLE PROCESSES

ture can involve an arbitrary number of “layers” (i.e., node levels) in order to describe

more complicated forms of cross-dependence among the spatial processes, although more

complex trees necessarily imply an increased number of latent variables and parameters,

thus complicating the inference procedure.

The remainder of this paper is organized as follows. In §2, we review the modeling of

spatial extremes based on max-stable processes. In §3, we introduce our novel class of

multivariate max-stable processes and we describe the inference procedure based on

an MCMC algorithm. In §4, we use our model to study the dependence structure of

concentration maxima of various air pollutants and temperature, observed at a number

of sites across the Los Angeles area in California, US. §5 concludes with some final

remarks and perspectives for future research.

2. Max-stable processes

Owing to their asymptotic characterization, max-stable processes are widely used for

modeling spatially-indexed block maxima. Here, we briefly summarize the theory and

modeling of max-stable processes in the spatial context, and in §3 we extend these

processes to the multivariate spatial framework. Let {Y1(s), . . . , Yn(s)}s∈S be indepen-

dent and identically distributed processes defined over the region S ⊂ R2. If there

exist normalization functions an(s) > 0, bn(s) ∈ R such that the renormalized process

of the pointwise maxima, i.e., Mn(s) = an(s)−1{max{Y1(s), . . . , Yn(s)} − bn(s)}, s ∈ S,

converges in the sense of finite-dimensional distributions to a process Z?(s) with non-

degenerate margins, as n → ∞, then Z?(s) is a max-stable process (see, e.g., de Haan,

1984). The max-stability of Z?(s) implies that there exist functions αn(s) > 0 and

βn(s) for all n ∈ N, such that, for each collection of sites s1, . . . , sD ∈ S, D ∈ N, the

finite-dimensional distribution G(z1, . . . , zD) of the variables Z?(s1), . . . , Z
?(sD) satisfies

Gn{αn(s1)z1 + βn(s1), . . . , αn(sD)zD + βn(sD)} = G(z1, . . . , zD). The limit max-stable

process Z?(s) may be used to represent, e.g., monthly maxima of daily measurements

for a specific air pollutant observed at various locations s within the study region S.

For each location s ∈ S, the Extremal Types Theorem (see, e.g., Coles, 2001, Chapter

3) implies that the random variable Z?(s) follows the generalized extreme-value (GEV)

distribution with location µ(s) ∈ R, scale σ(s) > 0, and shape ξ(s) ∈ R parameters. To

disentangle marginal and dependence effects, it is convenient to standardize Z?(s) as

Z(s) =

{
1 + ξ(s)

Z?(s)− µ(s)

σ(s)

}1/ξ(s)

. (1)

This article is protected by copyright. All rights reserved.
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Thus, we obtain a residual, simple, max-stable process Z(s), which is characterized by

unit Fréchet marginal distributions, i.e., Pr{Z(s) 6 z} = exp(−1/z), z > 0, for all s ∈ S,

corresponding to the case µ(s) = σ(s) = ξ(s) = 1. In practice, data are collected at a

finite set of locations, and the joint distribution of Z(s) at s1, . . . , sD ∈ S is necessarily

a multivariate extreme-value distribution that may be expressed as

Pr{Z(s1) 6 z1, . . . , Z(sD) 6 zD} = exp {−V (z1, . . . , zD)} , z1, . . . , zD > 0, (2)

where V (z1, . . . , zD) is the associated exponent function containing information about the

spatial dependence of the maxima. By max-stability, we can verify that V is homogeneous

of order −1, i.e., V (tz1, . . . , tzD) = t−1V (z1, . . . , zD), t > 0; moreover, because of the

unit Fréchet margins in (2), we have V (z,∞, . . . ,∞) = 1/z for any permutation of

the arguments. In particular, in the case of independence between Z(s1), . . . , Z(sD) we

have V (z1, . . . , zD) =
∑D

d=1 z
−1
d ; in the case of perfect positive dependence, we have

V (z1, . . . , zD) = max
16d6D

z−1d . The pairwise extremal coefficient θ(si, sj) = V (1, 1) ∈ [1, 2],

where V is here restricted to sites si and sj, is a measure of the dependence between

the variables Z(si) and Z(sj). Perfect dependence corresponds to θ(si, sj) = 1, and

θ(si, sj) = 2 leads to complete independence.

Thanks to the spectral characterization of max-stable processes (de Haan, 1984), various

parametric models have been proposed in the literature. The most well-known in the

spatial framework are the Smith (1990), Schlather (2002), Brown–Resnick (Kabluchko

et al., 2009), extremal-t (Opitz, 2013), Reich–Shaby (Reich and Shaby, 2012), and Tukey

(Xu and Genton, 2017) max-stable processes. For comprehensive reviews on spatial

extremes, see, e.g., Davison et al. (2012) and Davison et al. (2019).

In this work, the Reich–Shaby max-stable model, which admits a hierarchical construc-

tion in terms of positive stable random effects, plays a key role. Its exponent function

in (2) is

V (z1, . . . , zD) =
L∑
l=1

[
D∑
d=1

{
zd

ωl(sd)

}−1/α]α
, z1, . . . , zD > 0, (3)

where ωl (s) > 0, l = 1, . . . , L, are deterministic spatial profiles (or kernels) such that∑L
l=1 ωl (s) = 1 for any location s ∈ S, and α > 0. Although other kernels are possible,

Reich and Shaby (2012) proposed using the isotropic Gaussian density function

gl(s) =
1

2πτ 2
exp

{
− 1

2τ 2
(s− vl)

>(s− vl)

}
, l = 1, . . . , L, (4)

with a bandwidth (i.e., spatial range parameter) τ > 0 and fixed spatial knots v1, . . . ,vL

distributed over the domain S, which is then rescaled as ωl(s) = gl(s)
{∑L

l=1 gl(s)
}−1

.

This article is protected by copyright. All rights reserved.
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3 NESTED MULTIVARIATE MAX-STABLE PROCESSES

The hierarchical construction of the Reich–Shaby model, detailed in Web Appendix A,

allows for fast Bayesian inference in high dimensions. In Section 3, we extend the Reich–

Shaby to the multivariate spatial setting.

3. Nested multivariate max-stable processes

3.1 Tree-based construction of multivariate max-stable processes

In our multivariate spatial process, the univariate spatial margins follow the Reich–

Shaby model and interact with each other according to a nested tree-based structure for

their latent positive stable random effects.

We first define the two-layer nested multivariate max-stable process, and then extend

it to multilayer tree structures. Analogously to the hierarchical construction of the

Reich–Shaby model detailed in Web Appendix A, for each k = 1, . . . , K, let Uk(s)
i.i.d.∼

exp{−z−1/(αkα0)}, z > 0, denote a random Fréchet noise process controlled by the prod-

uct of the two parameters αk, α0 ∈ (0, 1]; and let ϑk(s) =
{∑L

l=1Ak;lA
1/αk

0;l ωk;l(s)
1/(αkα0)

}αkα0

be a smooth spatial process, where the terms ωk;l (s) > 0 are L kernel basis func-

tions representing deterministic weights, such that
∑L

l=1 ωk;l (s) = 1 for any s ∈ S,

and the variables Ak;l and A0;l, l = 1, . . . , L, are mutually independent (across both

k = 1, . . . , K and l = 1, . . . , L) positive stable (PS) variables with parameters αk

and α0, respectively. Thus, Ak;l
i.i.d.∼ PS(αk) ⊥⊥ A0;l

i.i.d.∼ PS(α0). Although the positive

stable density is not available in closed form, the Laplace transform of A ∼ PS(α) is

E(e−tA) = exp(−tα). Using this, we can show that Ak;lA
1/αk

0;l follows a positive stable

distribution with parameter αkα0; therefore, each process defined as Zk(s) = Uk(s)ϑk(s)

(k = 1, . . . , K) is a univariate Reich–Shaby process defined over the region S ⊂ R2,

with the dependence parameter αkα0, kernels ωk;l(s), l = 1, . . . , L, and unit Fréchet

margins; see Web Appendix A for more details. Cross-dependence among these marginal

processes is induced by their shared latent variables A0;1, . . . , A0;L. Then, we combine the

residual univariate processes Zk(s), k = 1, . . . , K, into the multivariate max-stable pro-

cess Z(s) = {Z1(s), . . . , ZK(s)}>, whose finite-dimensional distributions at D locations

s1, . . . , sD are expressed as (2) in terms of the exponent function

V (z1, . . . , zK) =
L∑
l=1

(
K∑
k=1

[
D∑
d=1

{
zk;d

ωk;l(sd)

}−1/(αkα0)
]αk
)α0

, zk;d > 0 for all k, d.

(5)

In (5), zk = (zk;1, . . . , zk;D)> denotes the vector containing the maxima of the kth variable

observed at D locations, while the parameters 0 < αk, α0 6 1 (k = 1, . . . , K) control the

This article is protected by copyright. All rights reserved.
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3.1 Tree-based construction of multivariate max-stable processes3 NESTED MULTIVARIATE MAX-STABLE PROCESSES

spatial and cross-dependence structures. Model (5) corresponds to a max-mixture of L

independent nested logistic max-stable distributions (Tawn, 1990), with kernels ωk;l(s)

introducing spatial asymmetries. This nested cross-dependence structure, represented

by a simple tree in the top panel of Figure 1, assumes that all the univariate processes

are exchangeable. In the following, we refer to the max-stable process Z(s) with (5) as

a two-layer nested multivariate max-stable process.

[Figure 1 about here.]

The exchangeability of such two-layer processes is not always realistic, but we over-

come this limitation by generalizing the construction above to multilayer, partially

exchangeable, tree structures based on nested α-stable random effects. We now illustrate

the three-layer tree case. We define T exchangeable clusters, each comprised of Kt

(t = 1, . . . , T ) max-stable processes. Thus, we have a total of K =
∑T

t=1Kt spatial

processes. For each cluster t = 1, . . . , T and variable k = 1, . . . , Kt, let Ut;k(s)
i.i.d.∼

exp{−z−1/(αt;kαtα0)}, z > 0, be a random Fréchet noise process, and let ϑt;k(s) ={∑L
l=1At;k;lA

1/αt;k

t;l A
1/(αt;kαt)

0;l ωt;k;l(s)
1/(αt;kαtα0)

}αt;kαtα0

be a smooth spatial process, where

αt;k, αt, α0 ∈ (0, 1] are dependence parameters, ωt;k;l (s) > 0 are deterministic ker-

nels such that
∑L

l=1 ωt;k;l (s) = 1, for any s ∈ S, and At;k;l
i.i.d.∼ PS(αt;k) ⊥⊥ At;l

i.i.d.∼
PS(αt) ⊥⊥ A0;l

i.i.d.∼ PS(α0) are independent positive stable random amplitudes. Then, we

set Zt;k(s) = Ut;k(s)ϑt;k(s), and define the nested multivariate max-stable process with

unit Fréchet margins as Z(s) = {Z>1 (s), . . . ,Z>T (s)}> with Zt(s) = {Zt;1(s), . . . , Zt;Kt(s)}>,

t = 1, . . . , T . Analogously to (5), the finite-dimensional distributions of Z(s) observed

at D locations s1, . . . , sD ∈ S may be written as (2) with the exponent function

V (z1, . . . , zT ) =
L∑
l=1

{
T∑
t=1

(
Kt∑
k=1

[
D∑
d=1

{
zt;k;d

ωt;k;l(sd)

}−1/(αt;kαtα0)
]αt;k

)αt}α0

, zt;k;d > 0 for all t, k, d,

(6)

where zt = (z>t;1, . . . , z
>
t;Kt

)> and zt;k = (zt;k;1, . . . , zt;k;D)>, t = 1, . . . , T , k = 1, . . . , Kt.

The proof of (6) is provided in Web Appendix B. As illustrated in the bottom panel of

Figure 1, the multivariate process Z(s) with (6) may be represented graphically using a

tree, whereby the terminal nodes represent the marginal max-stable processes and the

upper nodes describe the cross-dependence relationships among the processes. When

T = 1 and α1;kα1 ≡ αk, (6) reduces to the two-layer case in (5). Hence, (6) provides

more flexibility than (5) for representing complex cross-dependence structures, and we

call it a three-layer nested multivariate max-stable process. Using the inverse of the

mapping (1), we get a multivariate max-stable process with arbitrary GEV margins and

This article is protected by copyright. All rights reserved.
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3 NESTED MULTIVARIATE MAX-STABLE PROCESSES3.2 Spatial and cross-dependence properties

the hierarchical formulation:

Z?
t;k(s) | {A0;l, At;l, At;k;l}Ll=1

ind∼ GEV{µ?t;k(s), σ?t;k(s), ξ?t;k(s)}, (7)

At;k;l
i.i.d.∼ PS(αt;k) ⊥⊥ At;l

i.i.d.∼ PS(αt) ⊥⊥ A0;l
i.i.d.∼ PS(α0), l = 1, . . . , L,

where µ?t;k(s) = µt;k(s)+σt;k(s)/ξt;k(s){ϑt;k(s)ξt;k(s)−1}, σ?t;k(s) = α0αtαt;kσt;k(s)ϑt;k(s)
ξt;k(s),

and ξ?t;k(s) = α0αtαt;kξt;k(s). By integrating out the positive stable random effects, the

process Z?
t;k(s) is max-stable and has GEV margins with parameters µt;k(s), σt;k(s),

ξt;k(s).

3.2 Spatial and cross-dependence properties

In a three-layer multivariate max-stable model (see §3.1), each marginal process Zt;k(s),

t = 1, . . . , T , k = 1, . . . , Kt, is a Reich–Shaby process with unit Fréchet margins;

therefore, it inherits its spatial dependence properties, which were studied in depth

by Reich and Shaby (2012). The product αt;kαtα0 plays the role of the dependence

parameter α in (3) and acts as a mediator between the noise component Ut;k(s) and the

smooth spatial process ϑt;k(s). Below, we describe the cross-dependence properties of

our new multivariate spatial model.

Similar to Reich and Shaby (2012), we propose using the Gaussian kernel (4) with a

different bandwidth τt;k > 0 for each marginal process, and the spatial knots v1, . . . ,vL ∈
S are fixed on a regular grid. Again, we rescale the kernels to ensure that they sum to one

at each location, i.e., ωt;k;l(s) = gt;k;l(s){
∑L

l=1 gt;k;l(s)}−1, t = 1, . . . , T , k = 1, . . . , Kt,

with gt;k;l defined similarly to gl in (4). In practice, we must choose a number of knots

L that balances computational feasibility with modeling accuracy. A too small L might

not be realistic and could affect subsequent inferences by artificially creating a non-

stationary process (Castruccio et al., 2016), whereas a too large L would significantly

increase the computational burden. Reich and Shaby (2012) suggested fixing the number

of knots, L, such that the grid spacing is approximately equal to or smaller than the

kernel bandwidth τt;k.

To understand the cross-dependence structure of (6) and the meaning of its parameters,

we consider the product of the dependence parameters along a specific path through the

underlying tree. The amount of noise assigned to the marginal (univariate) Reich–Shaby

process in the (t; k)th terminal node is governed by αt;kαtα0; in contrast, αtα0 controls

the cross-dependence among the variables belonging to the same cluster t. The cross-

dependence among variables belonging to distinct clusters is controlled by α0. Since

This article is protected by copyright. All rights reserved.
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αtα0 6 α0, the intra-cluster cross-dependence is always stronger than the inter-cluster

cross-dependence.

For model (6), the pairwise extremal coefficient θ{si, sj; (t1; k1), (t2; k2)} ∈ [1, 2] (see §2)

summarizes the strength of dependence between each pair of variables {Zt1;k1(si), Zt2;k2(sj)}>,

with t1, t2 = 1, . . . , T , k1 = 1, . . . , Kt1 , k2 = 1, . . . , Kt2 . The variables Zt1;k1(si) (pro-

cess k1 in cluster t1 observed at location si) and Zt2;k2(sj) (process k2 in cluster t2

observed at location sj) are perfectly dependent when θ{si, sj; (t1; k1), (t2; k2)} = 1, and

completely independent when θ{si, sj; (t1; k1), (t2; k2)} = 2. The dependence strength

increases monotonically as the value of the extremal coefficient approaches unity. Writing

θ{si, sj; (t1; k1), (t2; k2)} ≡ θ(si, sj) for simplicity, we distinguish three cases from (6):

θ(si, sj) =


∑L

l=1

{
ωt;k;l(si)

1/(αt;kαtα0) + ωt;k;l(sj)
1/(αt;kαtα0)

}αt;kαtα0
, t1 = t2 = t, k1 = k2 = k,∑L

l=1

{
ωt;k1;l(si)

1/(αtα0) + ωt;k2;l(sj)
1/(αtα0)

}αtα0
, t1 = t2 = t, k1 6= k2,∑L

l=1

{
ωt1;k1;l(si)

1/α0 + ωt2;k2;l(sj)
1/α0
}α0

, t1 6= t2, k1 6= k2.

(8)

Hence, as the two sites get closer to each other (i.e., as si → sj), the cross-extremal

coefficient reduces to θ(si, sj) → 2αt;kαtα0 if t1 = t2 = t, k1 = k2 = k (same cluster,

same variable), θ(si, sj) → 2αtα0 if t1 = t2 = t, k1 6= k2 (same cluster, different vari-

able), or θ(si, sj) → 2α0 if t1 6= t2, k1 6= k2 (different cluster, different variable). This

clearly confirms that intra-cluster cross-dependence is stronger than inter-cluster cross-

dependence. Moreover, the nugget effect is evident when we notice that 2α0 > 1 for all

values of α0 ∈ (0, 1]. Figure 2 illustrates these pairwise dependence properties and shows

realizations of the three-layer nested max-stable model with exponent function (6) and

the underlying tree structure displayed in the bottom panel of Figure 1, for specific

values of the dependence parameters.

[Figure 2 about here.]

The pairwise extremal coefficients shown in the top row confirm that spatial depen-

dence for each individual process is stronger than cross-dependence, and that intra-

cluster cross-dependence is stronger than inter-cluster cross-dependence. The realizations

displayed in the bottom row show that strong cross-dependence between two distinct

variables may result in co-localized spatial extremes. For example, by comparing the

plots of Z1;1(s) and Z1;2(s), which belong to the same cluster, it can be noticed that

spatial extreme events (red/yellow regions) tend to occur in the same area of the figure.

This figure appears in color in the electronic version of this article, and color refers to

that version.
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3.3 Inference

Parameter estimation for this type of model may be performed within a Bayesian

framework by implementing a standard Metropolis–Hastings Markov chain Monte Carlo

(MH-MCMC) algorithm, which takes advantage of the hierarchical formulation (7);

see, e.g., Reich and Shaby (2012). In Web Appendix C, we detail the implementation

of the MH-MCMC algorithm, which draws approximate samples from the posterior

distributions of the dependence parameters αt;k, αt, α0, and τt;k, where t = 1, . . . , T ,

k = 1, . . . , Kt, for the nested max-stable model (6). For simplicity, we assume here that

the prior distributions of the parameters αt;k, αt, and α0 are non-informative Unif(0, 1),

and that the range parameters τt;k have prior distribution equal to 0.5hmax × Beta(2, 5)

as suggested by Sebille (2016), p. 97, where hmax denotes the maximum distance between

stations. This slightly informative prior distribution stabilizes the estimation of the range

parameters, whose posterior distribution is usually right-skewed, but it should not have

an important impact on the fitted model when the spatial dependence is not too strong.

While our model inherits the same computational benefits as the (univariate) Reich–

Shaby model, the computational time increases by considering additional variables or

adding layers to the latent tree structure.

We conducted a simulation study reported in Web Appendix D, based on the two-layer

and three-layer multivariate models, which suggests that the MH-MCMC works correctly

and that the parameters can be properly estimated in a reasonable amount of time.

4. Multivariate spatial analysis of air pollution extremes

4.1 Motivation

High concentrations of pollution in the air can harm the human body. Current methods

for assessing air pollution dangers typically consider each pollutant separately, ignoring

the heightened threat of exposure to multiple air pollutants. In order to inform the

public and government administrations, the US Environmental Protection Agency (EPA)

and other international organizations are moving towards a multi-pollutant approach

for quantifying health risks of air pollution. In this work, we investigate the extremal

dependence among air pollutants and temperature jointly across space. Here, we use our

new methodology based on nested multivariate max-stable processes to characterize the

spatial and cross-dependence structures among these variables of interest. In this paper,

we focus on the estimation of the dependence structure, while the spatial modeling of

margins is carried out separately using the Bayesian hierarchical model proposed by

This article is protected by copyright. All rights reserved.
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Davison et al. (2012). More details on the marginal estimation and model assessment

are provided in Web Appendix E.

4.2 Data, model fitting and diagnostics

Following up on the study in Vettori et al. (2018), we here investigate the extremal de-

pendence between air pollutants and meteorological data jointly across space. We select

daily measurements of Carbon Monoxide (CO), Nitric Oxide (NO), Nitrogen Dioxide

(NO2), Ozone (O3) and temperature (T) at a number of sites in California from January

2006 to December 2015. Vettori et al. (2018) developed the Tree Mixture MCMC (TM-

MCMC) algorithm for investigating plausible multivariate cross-dependence structures

for each site separately. This algorithm exploits reversible jump MCMC and the tree-

structure of the nested logistic distribution to sample from the posterior distribution of

the parameters and the tree itself. In Vettori et al. (2018), the multivariate extremal

cross-dependence between air pollutants and meteorological parameters was analyzed

separately at each site, thus ignoring spatial dependence. Since the clusters CO-NO and

NO2-O3-T appeared to be characterized by stronger dependence, it makes sense to as-

sume two-layer dependence structures, with one single tree summarizing the dependence

of CO-NO and another tree summarizing the dependence of NO2-O3-T, over the 21 sites

under study. The results of the fits based on the MH-MCMC algorithm are reported in

Web Appendix F; see Web Figures S11 and S12.

We now extend this study by fitting a more complex three-layer nested max-stable model

to the five variables (CO, NO, NO2, O3, T), but at a smaller number (nine) of sites, see

Figure 3, for which stationarity and a single tree structure over space is a reasonable

assumption.

[Figure 3 about here.]

To choose the tree structure, we run again the TM-MCMC algorithm of Vettori et al.

(2018) (see details therein) to the stationary, standardized, monthly maxima data for

all variables separately for each site. The most likely dependence structures identified

by the TM-MCMC algorithm and the associated posterior probabilities are represented

in Figure 4.

[Figure 4 about here.]

The tree structures that appear more often across the chains are trees A, B and C.

In these three trees, the extreme concentrations of CO and NO are grouped together.

Moreover, extreme concentrations of NO2 are grouped with extreme concentrations of

This article is protected by copyright. All rights reserved.
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O3 and high temperatures in Tree B and with extreme concentrations of CO and NO in

Tree C.

We then proceed and fit the three-layer nested multivariate max-stable model with the

tree dependence structures A, B, and C; the posterior medians are reported in Figure 5.

[Figure 5 about here.]

The estimated parameters α0 take values close to 0.9 in all three trees, indicating that the

extreme concentrations of CO and NO are weakly related to the extreme concentrations

of NO2 and O3 and to high temperatures across the Los Angeles area. The cross-

dependence is strongest between the pollutants CO and NO in Tree A and between

CO, NO and NO2 in the case of Tree C, whereas Tree B also identifies the variables

NO2, O3, and high temperature with fairly strong cross-dependence. Web Figure S13

(in Web Appendix G) compares empirical and model-based estimates of the pairwise

extremal coefficients; recall §2 and (8). Overall, model-based estimates are similar to

their empirical counterparts (taking the high variability of empirical estimates into

account), which suggests that the fitted model is reasonable and adequately captures

the complex spatial cross-dependence structure of extremes in our dataset. As expected,

the pairwise extremal coefficient estimates computed for individual variables seem to

increase with the distance between sites. Moreover, both the empirical and model-based

pairwise cross-extremal coefficient estimates indicate a moderate dependence strength

between variables belonging to the same cluster, such as CO and NO, O3 and NO2,

or O3 and T, regardless of the distance between sites, whereas the variables belonging

to different clusters, such as O3 and CO or O3 and NO, are weakly dependent at any

distances.

To verify that the nested multivariate max-stable model provides a good marginal fit

for each of the processes under study, Web Figure S14 (in Web Appendix G) compares

the MCMC output obtained from the joint fit of our three-layer model to the posterior

medians of the dependence parameters α and τ obtained from the (univariate) Reich–

Shaby model fitted to each process independently. Overall, the joint and individual

models provide similar values for the marginal parameters, confirming that our approach

yields sensible marginal fits, while simultaneously providing information about the cross-

dependence structure. However, the processes characterized by a large dependence pa-

rameter α are quite noisy, and thus harder to estimate. The computational time for

the three-layer model fits was less than a few hours with R = 50000 MCMC iterations.

This article is protected by copyright. All rights reserved.
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Plots and results are produced after removing an initial burn-in of R/5 iterations, and

thinning the Markov chain by a factor 500.

4.3 Return level projections and air pollution risk assessment

The US EPA typically uses the Air Quality Index (AQI) to communicate air pollution

risks to the public. In order to illustrate the impacts of neglecting spatial and cross-

dependence structures on the AQI return level estimates, Figure 6 shows high p-quantiles

with probabilities ranging from p = 0.5 to p = 0.996, considering April 2009 as the

baseline, computed for the maximum AQI over the pollutants CO, O3, and NO2 and

across space, using different dependence models (but the same marginal model).

[Figure 6 about here.]

Under stationary conditions, the return levels for the return periods of 1 and 20 years

roughly correspond to p = 1−1/12 ≈ 0.917 and p = 1−1/(12×20) ≈ 0.996, respectively.

The AQI categories, representing different levels of health concern, are represented by

different colors. We compare the fits of the full nested multivariate max-stable model,

the Reich–Shaby model fitted to each individual process separately (ignoring cross-

dependence), the nested logistic distribution fitted at each site separately using the

TM-MCMC algorithm (ignoring spatial dependence), and the GEV distribution fitted

to each site and pollutant independently (ignoring both spatial and cross-dependence).

The AQI quantiles obtained from the posterior predictive distribution of the Reich–

Shaby fits are much smaller than the ones obtained from the multivariate distribution

fitted to each site separately or the GEV distribution fitted to each site and pollutants

separately. Furthermore, the high quantile projections based on the nested multivariate

max-stable model are generally smaller than the high quantiles based on the Reich–

Shaby model. Therefore, when neglecting spatial dependence or the multivariate cross-

dependence among processes, the return levels calculated for the maximum of several

extreme observations might be strongly overestimated. Such a large difference in return

levels for spatial risk measures was also similarly noticed by Huser and Genton (2016)

when they explored the effect of model misspecification in non-stationary max-stable

processes. Using our proposed multivariate max-stable process based on Tree A, the

high quantiles zp (for the maximum AQI across all sites and pollutants) lie within the

very unhealthy category for probabilities p > 0.92, indicating that at least one of the

criteria pollutants under study exceeds this critical threshold at one or more of the

monitoring sites approximately once every year. We obtained similar results from trees

B and C.
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5. Conclusion

We introduced a novel class of hierarchical multivariate max-stable processes that have

the Reich–Shaby model as univariate margins, and that can capture the spatial and cross-

dependence structures among extremes of multiple variables, based on latent nested pos-

itive stable random effects. These hierarchical models may be conveniently represented

by a tree structure, and the complexity of the dependence relations among the various

spatial variables might be increased by adding an arbitrary number of nesting layers.

Parameter estimation can be carried out within a Bayesian framework using a standard

Metropolis–Hastings MCMC algorithm. As shown in our simulation experiments, the

dependence parameters governing the spatial dependence of individual variables and

the cross-dependence among different variables can be satisfactorily identified using our

proposed algorithm.

We fitted the nested multivariate max-stable process to air pollution extremes collected

in the Los Angeles area. In addition to providing good spatial marginal fits for each of the

air pollutants under study, our model detects their extremal spatial cross-dependence,

and takes into account temperature extremes. Extreme concentrations of toxic air pol-

lutants, such as CO, NO, NO2, and O3 and high temperatures are weakly related across

the area of Los Angeles. Furthermore, a strong cross-dependence is detected between the

maxima of CO and NO, which are both pollutants released by fossil fuel combustion.

Also, high concentrations of O3 and high temperatures often occur simultaneously,

which leads to a heightened health threat according to Kahle et al. (2015). Modeling

air pollution extremes using the proposed nested multivariate max-stable model allows

us to provide sensible multi-pollutant return level estimates based on the Air Quality

Index (AQI); thus, our new methodology is useful for assessing the risks associated with

simultaneous exposure to several air pollutants over space, and might be used to develop

future air pollution monitoring regulations.

In order to fit the nested multivariate max-stable process, we must assume a single

fixed tree structure across space. To generalize our approach to spatially-varying tree

structures, one could define a partition of space with homogeneous sub-regions governed

by possibly different cross-dependence tree structures. For more flexibility, this partition

could also be treated as random, similarly to Reich and Shaby (2018a).

Another open problem is the modeling and characterization of multivariate spatial

extremes defined as high threshold exceedances. While Eastoe and Tawn (2009) dis-

cussed the modeling of non-stationary extreme ozone data in the univariate context,

and Thibaud and Opitz (2015) and de Fondeville and Davison (2018) showed how to
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model spatial threshold exceedances using suitable risk functionals, it is less clear how

to properly capture the joint spatial and cross-dependence structures of multivariate

high-threshold exceedances.
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Z1(s1)…Z1(sD) Z2(s1)…Z2(sD) Z3(s1)…Z3(sD) Z4(s1)…Z4(sD)

α1		

α0

α2 α3 α4

Z1;1(s1)…Z1;1(sD) Z1;2(s1)…Z1;2(sD)

α0αk=.7

α1;1
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α2
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α1;2 α2;1 α2;2

Z2;1(s1)…Z2;1(sD)  Z2;2(s1)…Z2;2(sD)

Figure 1. Example of simple two-layer (top) and three-layer (bottom) tree struc-
tures, summarizing the extremal dependence of a four-dimensional process written as
Z(s) = {Z1(s), Z2(s), Z3(s), Z4(s)}> (top) and Z(s) = {Z1;1(s), Z1;2(s), Z2;1(s), Z2;2(s)}>
(bottom). The cross-dependence strength among variables is controlled by the product
of dependent parameters assigned the nodes that they share; e.g., in the three-layer tree
(bottom), the intra-cluster cross-dependence, i.e., between processes Zt;1(s) and Zt;2(s),
is summarized by the product αtα0, whereas the inter-cluster cross-dependence, i.e.,
between the variables Zt1;k1(s), Zt2;k2(s), with t1 6= t2 and k1, k2 = 1, 2, is summarized by
the parameter α0. The number of latent α-stable random variables involved in the model
is equal to the number of upper tree nodes (excluding the terminal nodes) multiplied
by the number of basis functions, L; here, there are 5L (top) and 7L (bottom) latent
variables. This figure appears in color in the electronic version of this article.
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Figure 2. Top row: Pairwise extremal coefficient θ{si, sj; (t1, k1), (t2, k2)}, see (8), for
the three-layer multivariate max-stable model with exponent function (6) and underlying
tree structure displayed in the bottom panel of Figure 1, for fixed reference location
si = (0.5, 0.5)> and sj ∈ [0, 1]2. Here, α0 = 0.9, α1 = α2 = 0.7 and α1;1 = α1;2 =
α2;1 = α2;2 = 0.4, while the kernels are Gaussian densities as in (3) with bandwidths
τ1;1 = τ1;2 = τ2;1 = τ2;2 = 0.1, with knots taken on a 100× 100 regular grid. The panels
summarize the spatial dependence of each individual process (left), the intra-cluster
cross-dependence (middle) and the inter-cluster cross-dependence (right). Bottom row:
Realizations of Z1;1(s) (left), Z1;2(s) (middle) and Z2;1(s) (right). The color scale on the
right-hand side of each bottom panel indicates the level of each process simulated on
the standard Gumbel scale. This figure appears in color in the electronic version of this
article, and color refers to that version.
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Figure 3. Study region around Los Angeles, with the nine selected sites indicated by
numbers. This figure appears in color in the electronic version of this article.
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Figure 4. The most frequent tree structures (right), indicated by letters A–F, iden-
tified by the TM-MCMC algorithm of Vettori et al. (2018) after R = 5000 iterations,
burn-in R/4 and thinning factor 5. The histograms (left) report the posterior probability
associated with each tree for each site in Figure 3 calculated as the number of times each
tree appears in the algorithm chain. This figure appears in color in the electronic version
of this article.
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Figure 5. Posterior medians of the dependence parameters αt;k, αt, α0 obtained by
fitting our new three-layer nested multivariate max-stable model (6) to the concentration
maxima of CO, NO, NO2, O3, and temperature using the MCMC algorithm and
assuming the tree structures A, B, or C from Figure 4.
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Figure 6. High p-quantiles zp computed for the spatial maximum of the largest Air
Quality Index (AQI) for CO, O3, and NO2, setting April 2009 as baseline, obtained
by fitting the nested multivariate max-stable model (black lines); by fitting the Reich–
Shaby model to each individual process separately, neglecting cross-dependence (blue
lines); by running the TM-MCMC algorithm to estimate the cross-dependence between
variables at each site separately, neglecting spatial dependence (red lines); and by fitting
the GEV distribution to each site and pollutants independently, neglecting spatial and
cross-dependence structures (green lines). Results are shown underlying trees A (left), B
(middle), and C (right). Probabilities are displayed on a Gumbel scale, i.e., zp is plotted
against − log{− log(p)}. AQI categories: 0-50 satisfactory; 51-100 acceptable; 101-150
unhealthy for sensitive groups (orange); 151-200 unhealthy (red); >200 very unhealthy
(purple). This figure appears in color in the electronic version of this article, and color
refers to that version.
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