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Abstract

This thesis develops models and associated Bayesian inference methods for flexible univariate
and multivariate conditional density estimation. The models are flexible in the sense that they
can capture widely differing shapes of the data. The estimation methods are specifically designed
to achieve flexibility while still avoiding overfitting. The models are flexible both for a given
covariate value, but also across covariate space. A key contribution of this thesis is that it pro-
vides general approaches of density estimation with highly efficient Markov chain Monte Carlo
methods. The methods are illustrated on several challenging non-linear and non-normal datasets.

In the first paper, a general model is proposed for flexibly estimating the density of a contin-
uous response variable conditional on a possibly high-dimensional set of covariates. The model
is a finite mixture of asymmetric student-t densities with covariate-dependent mixture weights.
The four parameters of the components, the mean, degrees of freedom, scale and skewness, are
all modeled as functions of the covariates. The second paper explores how well a smooth mix-
ture of symmetric components can capture skewed data. Simulations and applications on real data
show that including covariate-dependent skewness in the components can lead to substantially im-
proved performance on skewed data, often using a much smaller number of components. We also
introduce smooth mixtures of gamma and log-normal components to model positively-valued re-
sponse variables. In the third paper we propose a multivariate Gaussian surface regression model
that combines both additive splines and interactive splines, and a highly efficient MCMC algo-
rithm that updates all the multi-dimensional knot locations jointly. We use shrinkage priors to
avoid overfitting with different estimated shrinkage factors for the additive and surface part of the
model, and also different shrinkage parameters for the different response variables. In the last pa-
per we present a general Bayesian approach for directly modeling dependencies between variables
as function of explanatory variables in a flexible copula context. In particular, the Joe-Clayton cop-
ula is extended to have covariate-dependent tail dependence and correlations. Posterior inference
is carried out using a novel and efficient simulation method. The appendix of the thesis documents
the computational implementation details.
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1. Introduction and background

1.1 Motivating flexible Bayesian modeling

Statistical methods have been developed rapidly in the past twenty years. One driving factor of
this development is that more and more complicated high-dimensional data require sophisticated
data analysis methods. A noticeably successful case is the machine learning field which is now
wildly used in industry. Another reason are the dramatic advancements in the statistical com-
putational environment. Computationally expensive methods that in the past couldonly be run
on expensive super computers are now possible to run on a standard PC. This has created an
enormous momentum for Bayesian analysis where complex models are typically analyzed with
modern computer-intensive simulation methods.

Traditional linear models with Gaussian assumptions are challenged by the new large compli-
cated datasets, which have in turn generated interest in new approaches with flexible model with
less restrictive assumptions. Moreover, research has shifted the attention from merely modeling
the mean and variance of the data to sophisticated modeling of skewness, tail-dependence and out-
liers. However such work demands efficient inference tools. The development of highly efficient
Markov chain Monte Carlo (MCMC) methods has reduced the barrier. Moreover, the Bayesian
approach provides a natural way for prediction, model comparison and evaluation of complicated
models, and has the additional advantage of being intimately connected with decision making.

1.2 Bayesian inference

In Bayesian statistics, inference of an unknown quantity @ combines data information y with prior
beliefs about O via Bayes’ formula

_ p(yo)p(6)
PO) = ,516)p(0)d0

where p(y|6) is the likelihood function and p(6) is the prior knowledge of 6 and [ p(y|0)p(6)d6
is also know as the marginal likelihood or prior predictive distribution. In many simple statistical
models with vague priors, Bayesian inference draws similar conclusions to those obtained from a
traditional frequentist approach, see e.g. (Gelman et al.|(2004). The Bayesian approach is however
more easily to extended to more complicated models using MCMC simulation techniques.

In all but the most simplistic models, the posterior distribution is analytically intractable and
Markov chain Monte Carlo (MCMC) algorithms are used for sampling the posterior distribution
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p(0]y). The Metropolis-Hastings algorithm draws from the Bayesian posterior distribution of
0 by generating random draws from a proposal distribution and accepts each draw with a cer-
tain probability. The efficiency of Metropolis-Hastings algorithm depends how well the proposal
distribution approximates the true posterior. The Gibbs sampler is a special case of Metropolis-
Hastings algorithm in which the proposal draws are simulated from the full conditional posterior
and are accepted with probability one. When drawing from the posterior in complicated models
one usually needs to mix different algorithms. Metropolis-Hastings within Gibbs is one of such
combinations where the subsets of the posterior parameter vector 6 are sampled using the Gibbs
sampler with each parameter subset drawn via Metropolis-Hastings algorithm.

1.3 Density estimation

In statistics, density estimation is the procedure of estimating an unknown density p(y) from ob-
served data. The very early stage of density estimation techniques traces back to the usage of
histograms, later followed by kernel density estimation in which the shape of the data is approx-
imated through a kernel function with a smoothing parameter (bandwidth), see e.g. |Silverman
(1986). However due to the difficulty in specifying the bandwidth in kernel density estimation,
mixture models have become a popular alternative approach, see |[Frithwirth-Schnatter; (2006) for
a textbook treatment. The mixture densities are usually written as

p(y6) = Z o pr(y]6k),
k=1

where YX_| @ = 1 for non-negative mixture weights @y and py (x|6;) are the component densities.
When n < oo, the mixture is said to be finite. If K = oo, it is called an infinite mixture, the Dirichlet
process mixture being the most prominent example, see e.g. Hjort et al.|(2010).

One important property is that the moments of the mixture density are easily obtained through
the moments of its mixture components. If the m:th central moment exists for all of its component
densities, the m:th central moment for the finite mixture density exists and is of the form

E((y—p)" zzwk(> O )16

where U is the mean of k:th density component. Mixture densities can be used to capture data
characteristics such as multi-modality, fat tails, and skewness. |[Zeevi (1997) uses mixture densities
to approximate complicated densities. See Figure [I.T] for an example with a mixture of normal
densities. For other properties of mixtures, see Frithwirth-Schnatter (2006]).

1.3.1 Conditional density estimation

The conditional density estimation concentrates on modeling the relationship between a response
y and set of covariates x through a conditional density function p(y|x). In the simplest case, the
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Figure 1.1: Using mixture of normal densities (thin lines) to mimic a flexible density (bold line)

Gaussian linear regression y = x' 3 4 € with € ~ N(0, 62) is trivially equivalent to modeling p(y|x)
by a Gaussian density with mean function u = x'8 and constant variance 62.

Mixtures of conditional densities is the obvious extension of mixture models to the conditional
density estimation problem:

pOylx) = Z @ pr(y|x)
k=1
where p;(y|x) is the conditional density in i:th mixture component. A simple case is the mixture of
homoscedastic Gaussian regression models with constant mixture weights. The limitation of this
model is that it restricts the shape of the distribution to be the same for all x. A smooth mixture is
a finite mixture density with weights that are smooth functions of the covariates

exp(*X' %)

rE exp(x'y)
This model allows the density shape to be different for different x values. [Villani et al.| (2009)
propose the mixture of heteroscedastic Gaussian model with smooth weight functions. Norets
(2010) shows that large classes of conditional densities can be approximated in the Kullback-
Leibler distance by finite smooth mixtures of normal regressions.

In conditional density estimation, an important focus is modeling the regression mean E (y|x).
A spline is a popular approach for nonlinear regression that models the mean as a linear combina-
tion of a set of nonlinear basis functions of the original regressors,

ay(x) =

y=f) +e=xB+ YL x(&)Bi+e



where k is number of basis functions x(&) used and &; is the location of i:th basis function, often
referred to as a knot. Each basis function is defined by a knot &; in covariates space and the
knots determine the points of flexibility of the fitted regression function. In the case with multiple
covariates xi, ..., X4 it is common to assume additivity

q
Y=Y filxj) +e,
j=1

where f;(x;) are spline functions. The more general surface model does not assume additivity and
uses a multi-dimensional basis function with interactions among the covariates. It is possible to
have both additive and interactive splines in the regression.

1.3.2 Multivariate density estimation

The multivariate density estimation and conditional density estimation are analogues of their uni-
variate cases except that the densities p(Y') and p(Y|X) are multivariate. Therefore, kernel density
estimators can be naturally extended to the multivariate case with a multivariate bandwidth matrix,
but optimizing the bandwidth matrix is much more difficult. Alternatively, one may use mixture of
multivariate densities. Smooth mixture of multivariate regression models and multivariate splines
are extensions of conditional density estimation from univariate case to multivariate case. In ad-
dition to the methods mentioned above, copula is a more general choice for multivariate density
estimation because of its unique feature that a copula function separates the multivariate depen-
dence from its marginal functions, and it is possible to use both continuous and discrete marginal
models.

1.3.3 Copula density estimation

In the multivariate density estimation, research diverts into different directions. One of them is
to explore the multivariate dependence using copulas (Sklar, |1959). Let F(yy,...,yy) be a multi-
dimensional distribution function with marginal distribution functions Fj(y1),- -, Fpr(ym). Then
there exists a function C such that

F(y1, o ym) =C(F1(y1), -, Frm(ym))

=C (/y:ofl(zl)dzl,...,/nyM(zM)dzM> =C(uy,...,up)

(o)

where C(-) is the copula function and f(-) is the density of the marginal distribution F(-). Further-
more, if Fj(y;) are all continuous fori € {1,...,M}, then C is unique. The derivative c(uy,...,up) =
OMC(uy,...,upr)/(Auy...0up) is the copula density that corresponds to the multivariate density
function.

A nice feature of the copula construction is that it separates the marginal distributions fi(v1), ..., fur (Ym)
from the dependence structure given by the copula function. For instance, the Gaussian copula
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which is obtained from a Gaussian density function can be combined with non-Gaussian, or even
discrete, marginal distributions, see e.g. |Pitt et al. (2006)). In addition, a richer class of multivariate
distributions via copula is possible to construct through methods like Laplace transform, mixtures
of conditional distributions, and convolution efc, with appealing properties.

The dependence properties of copulas have been theoretically studied by Joe|(1997) and others.
Given a bivariate distribution function F'(y;,y;) and its copula function C(u;,u;), the correlation
between two marginal densities can be measured by Kendall’s 7

=4 [ [FOry)daP(ny2)~1=4 [ [ Clunsua)dClu ) 1.

Unlike Pearson’s correlation that can only measure linear dependence, Kendall’s 7 is a rank cor-
relation that is invariant with respect to strictly increasing transformations, i.e. the marginal den-
sities do not affect the Kendall’s 7 if they are strictly continuous. This property makes Kendall’s
7 a more desirable measure of association for multivariate non-Gaussian distributions. The same
property holds for Spearman’s p. See Joe (1997) for other characteristics of Kendall’s 7 for dif-
ferent copula densities. For example, for copulas generated via the Laplace transform, which are
also known as Archimedean copulas, Kendall’s 7 can be written as

T—1 —4/0°°s(¢'(s))2ds

where ¢’(s) is the first order derivative of the Laplace transform ¢ (s).

In addition to correlation, dependence in the tail is also important in many applications. Tail-
dependence measures the extent to which several variables simultaneously take on extreme values.
The lower tail-dependence A, and the upper tail-dependence Ay can be defined in terms of copulas
in the bivariate case

A= lim Pr(X; < F{ '(u)|Xo < F; '(u)) = lim M,

u—0t u—0+ u

ho = Tim PrX, > F )% > Fy () = lim =St
u—1- u—1- 1—u
Not all multivariate copulas generate tail-dependence. The Gaussian copula, for example, has
no tail-dependence and the student’s ¢ copula generates a rather restrictive tail-dependence as a
results of only having a single degrees of freedom parameter for all the modeled variables. In the
bivariate copula family, the Joe-Clayton copula has explicit parameters for the lower and upper
tail-dependence.

A copula function satisfies the inequalities L < C(uy,...,up) < U where L = Zﬁ-‘il ui—M+1
is Fréchet-Hoeffding lower bound and U = min{uy,...,up} is Fréchet-Hoeffding upper bound.
Note that U is also a copula but L is a copula if M = 2. Furthermore, in the bivariate case, if the
copula is close to the upper bound, it shows strong positive dependence and if the copula is close
to the lower bound, it shows strong negative dependence (Nelsen, |[20006).

The conditional density estimation of p(¥|X) in terms of a copula is expressed as



M
p(Y|X) = C(btl |X1,..., MM|XM> X Hpi(yi|X,')
i=1
where p;(yi|x;) is the conditional density in i:th marginal model with covariate vector x;. The
inference for a copula model is similar to the inference methods used for other multivariate models.
In particular, the likelihood for copula is written as

M

HC(Mjl,...,ujM) X HZ
j=1

i=1

where _Z; is the likelihood in i:th marginal model.

1.4 Regularization

Variable selection is a technique that is commonly used in regression models. Historically the
purposes for using variable selection are to select meaningful covariates that contributes to the
model, inhibit ill-behaved design matrices, and to prevent model over-fitting. Methods like back-
ward and forward selections are standard routines in most statistical software packages. However
the drawbacks are obvious in those techniques, e.g. the selection depends heavily on the starting
points, which becomes more problematic with high dimensional data with many covariates.

Most current methods rely on Bayesian variable selection via MCMC, as introduced by Smith
& Kohn| (1996); \George & McCulloch| (1997). A standard Bayesian variable selection approach
is to augment the regression model with a variable selection indicator .# for each covariate

s %fﬁjifo
0 ifB;=0,

where f3; is the jth covariate in the model. More informally, this can be expressed as

g 1 if the variable jenters the model
7710 otherwise.

Variable selection is then obtained by sampling the posterior distribution of all regression coeffi-
cient jointly with the variable selection indicators, thereby yielding the marginal posterior proba-
bility of variable inclusion p(.#|Data). More recent improved algorithms include (Brown et al.,
1998) for large covariate sets and the adaptive scheme for Bayesian variable selection in (Nott
& Kohn, 2005). See O’Hara & Sillanpad (2009) for a review of Bayesian variable selection ap-
proaches.

For the purpose of overcoming problems with overfitting, shrinkage estimation can also be
used as an alternative, or even complementary, approach to variable selection. A shrinkage esti-
mator shrinks the regression coefficients towards zero rather than eliminating the covariate com-
pletely. One way to select a proper value of the shrinkage is by cross-validation, which is costly
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with big data and complicated models. In the Bayesian approach, the shrinkage parameter is usu-
ally automatically estimated together with other parameters in the posterior inference. The lasso
(least absolute shrinkage and selection operator) (Tibshirani, | 1996) approach can be viewed as
shrinkage estimator with a Laplace prior (Park & Casella, 2008). Lasso can be shown to perform
both shrinkage and variable selection at the same time.

1.5 Bayesian predictive inference and model comparison

Two types of prediction are commonly used in predictive inference. Let Y}, be the testing dataset
for evaluating the predictions, and Y_;, the training dataset used for estimation. The prediction of
Y, given Y_,, is called in-sample prediction if Y, € Y_;, and out-of-sample prediction if Y, ¢ Y_,, .
Assuming that the data observations are independent conditional on the model parameters 6, the
predictive density can be written

p(Y|Y_p) = /ﬁP(Yj,b|9)p(9|Y—b>d9
=

where p(0]Y_;) is the posterior based on the training dataset Y_;, and H;le p(Y;»|0) is the like-
lihood for the observations conditional on the model parameters. The predictive density can be
viewed as a weighted average of the likelihood with p(0|Y_;) as the weight function. In time
series, the predictive distribution for predicting p period ahead is written differently due the de-
pendence of time,

p
PY ) repir) = H/p(YT+i|97Yl:(T+i—l))p(9|Y1:(T+i—1))d9-
i=1

Bayesian model comparison have historically been based on the marginal likelihood. It is well-
known, however,that the marginal likelihood is very sensitive to the specification of prior. This
sensitivity is apparent already from its definition since the marginal likelihood is the expected
likelihood where the expectation is taken with respect to the prior. Due to this prior sensitivity, it
is becoming more common to have model comparisons based on the log predictive density score
(LPDS)

| B
LPDS = EZ:’:I log p(Yp,|Y_p,)

in which the dataset are partitioned into B subsets, Y}, , ...,Y;,. The LPDS sacrifices a part of the
data, uses that data to train the prior into a more robust posterior, and then uses that posterior to
integrate out the model parameters. In cross-sectional data, the data can be partitioned randomly
or with a systematic pattern. In time series it is more common to use the past data as the training
data and predict the future.






2. Summary of papers

Paper I: Flexible modeling of conditional distributions using smooth
mixtures of asymmetric student ¢ densities

In this paper we propose a general model for flexibly estimating the density of a continuous re-
sponse variable conditional on a possibly high-dimensional set of covariates.

The paper introduces a new model class with mixtures of flexible asymmetric student # densi-
ties (split-f)with covariate-dependent mixture weights, also referred to as a smooth mixture. The
properties of the split-f are studied. The four parameters of the mixture components - the mean,
degrees of freedom, scale and skewness -are all modeled as functions of covariates. The modeling
philosophy is the complex-and-few approach where enough flexibility is used within the mixture
components, so that the number of components can be kept to a minimum.

Inference is Bayesian and the computation is carried out using Markov chain Monte Carlo
simulation. We use a tailored Metropolis-Hastings-within-Gibbs algorithm for sampling the pos-
terior distribution of the parameters. The number of components in the mixture model are selected
via a Bayesian version of out-of-sample cross-validation. To enable model parsimony, a variable
selection prior is used in each set of covariates and among the covariates in the mixing weights.
We use variable-dimension finite-step Newton proposals in the Metropolis-Hastings algorithm to
update coefficients and variable selection indicators efficiently.

The model is applied to analyze the distribution of daily stock market returns of the S&P500
index conditional on nine covariates including the historical returns and volatility measures such
as a geometrically decaying average of past absolute returns. The out-of-sample evaluation shows
that mixtures of few asymmetric student ¢ densities outperforms widely used GARCH models and
other recently proposed mixture models during the recent financial crisis. We also investigated
estimation stability over different subsamples for the popular Value-at-Risk measure.

Paper II: Modeling conditional densities using finite smooth mix-
tures

In this paper we explore the flexibility of modeling conditional densities using finite smooth mix-
tures, with particular emphasis on skewed data. We explore how well a smooth mixture of sym-

metric components can capture skewed data. Simulations and applications on real data show that
including covariate-dependent skewness in the components can lead to substantially improved
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performance on skewed data, often using a much smaller number of components. Furthermore,
variable selection is effective in removing unnecessary covariates in the skewness, which means
that there is little loss in allowing for skewness in the components when the data are actually
symmetric. We also explore the use of splines in the mixture components and demonstrate the
efficiency of variable selection in smooth mixtures on a well known environmental data set from
the nonparametric regression literature.

In the simulation study, we analyze the relative performance of smooth mixtures adaptive
Gaussian densities and split-¢ densities by comparing the estimated conditional densities g(y|x)
with the true data-generating densities p(y|x) using estimates of both the Kullback-Leibler diver-
gence and the L, distance. We find that smooth mixtures with a few complex components can
greatly outperform smooth mixtures with many simpler components. Moreover, variable selec-
tion is effective in down-weighting unnecessary aspects of the components and makes the results
robust to mis-specification of the number of components, even when the components are complex.

We also introduce smooth mixtures of gamma and log-normal components to model positively-
valued response variables where the parameters are reparametrized in terms of mean and variance.
This reparametrization makes the prior specification easier for practitioners. A large set of model
with gamma and log-normal components are compared on a dataset of electricity expenditures in
1602 Australian households.

Paper III: Efficient Bayesian multivariate surface regression

In this paper we further investigate nonparametric modeling for multivariate conditional density
estimation using a Gaussian multivariate regression with a mean surface modeled flexibly using a
spline surface.

Methods for choosing a fixed set of knot locations in additive spline models are fairly well
established in the statistical literature. While most of these methods are in principle directly
extendable to non-additive surface models, they are less likely to be successful in that setting
because of the curse of dimensionality, especially when there are more than a couple of covariates.

We propose a regression model for a multivariate Gaussian response that combines both ad-
ditive splines and interactive splines, and a highly efficient MCMC algorithm that updates all the
knot locations jointly. We use shrinkage priors to avoid overfitting with different estimated shrink-
age factors for the additive and surface part of the model, and also different shrinkage parameters
for the different response variables. This makes it possible for the model to adapt to varying
degrees of nonlinearity in different parts of the data in a parsimonious way.

We compare the performance of the traditional fixed knots approach to our approach with
freely estimated knot locations using simulated data with different number of covariates and for
varying degrees of nonlinearity in the true surface. We use shrinkage priors with estimated shrink-
age both for the fixed and free knot models, but no variable selection.

We also compare three types of MCMC updates of the knots: 1) one-knot-at-a-time updates
using a random walk Metropolis proposal with tuned variance, ii) one-knot-at-a-time updates with

10



the tailored Metropolis-Hastings step, and iii) full block updating of all knots using the tailored
Metropolis-Hastings step. The massive efficiency and speed gains from updating all the blocks
jointly using a tailored proposal when our algorithm is used comparing to other algorithms.

Moreover, the sensitivity study of the posterior inferences with respect to variations in the
prior shows the free knots model is also more robust in the sense that it performs consistently well
across different datasets.

Our surface model is illustrated in a finance application where a firms leverage is modeled as a
function of the proportion of fixed assets, the firm’s market value in relation to its book value, firm
sales and profits. It is shown that our approach is computationally efficient, and that allowing for
freely estimated knot locations can offer a substantial improvement in out-of-sample predictive
performance.

Paper I'V: Modeling covariate-contingent correlation and tail-dependence
with copulas

In this paper we propose a general approach for modeling a covariate-dependent copula. The
copula parameters as well as the parameters in the marginal models are linked to covariates. Our
method allows for variable selection among the covariates in the marginal models and in the copula
parameters. Posterior inference is carried out using an efficient MCMC simulation method.

We first introduce the reparametrized Joe-Clayton copula where the correlation and lower
tail-dependence parameters are used as explicit copula parameters. Our parameterization reduces
the effort for specifying the prior information in our Bayesian approach. Most importantly, this
parameterization make it possible to directly link correlations and tail-dependence to covariates
via separate link functions. We also study some new properties for this copula.

We describe the prior specification for the model in details and we also consider a special
situation where the model parameters are variationally dependent of each other. Our solution
involves introducing a conditional link function, which is demonstrated in our application to make
the MCMC algorithm more robust and gives higher acceptance probability in Metropolis- Hastings
algorithm.

We illustrate our covariate-dependent copula model with daily returns from the S&P100 and
S&P600 daily stock market indices during the period from September 15, 1995 to January 16,
2013. In the marginal models, we use an asymmetric student’s t density in all margins with all
four parameters in the model linked to covariates. The use of covariates in the correlation and
lower-tail dependence parameters in the copula is shown to improve out-of-sample predictive
performance. Moreover, variable selection also enhances the model’s predictive performance, and
provides interesting insights into which covariates are associated with lower-tail dependence and
correlation between the variables.
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