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Abstract

This article focuses on handling measurement error in predictor variables using item

response theory (IRT). Measurement error is of great importance in assessment of theoretical

constructs, such as, intelligence or the school climate. Measurement error is modeled by treating

the predictors as unobserved latent variables and using the normal ogive model to describe

the relation between the latent variables and their observed indicator variables. The predictor

variables can be defined at any level of an hierarchical regression model. The predictor variables

are latent but can be measured indirectly by using tests or questionnaires. The observed

responses on there itemized instruments are related to the latent predictors by an item response

theory model. It will be shown that the multilevel model with measurement error in the observed

predictor variables can be estimated in a Bayesian framework using Gibbs sampling. In this

article, handling measurement error via the normal ogive model is compared with alternative

approaches using the classical true score model. Examples using real data are given.

Key words: classical test theory, Gibbs sampler, item response theory, Hierarchical

Linear Models (HLM), Markov Chain Monte Carlo, measurement error, multilevel model, two-

parameter normal ogive model.
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Introduction

In much research, and especially in social sciences, measurements are subject

to measurement error. Examples are educational measurement and attitude measurement.

Ignoring measurement error often leads to incorrect inferences (see, for example, Cook &

Campbell, 1979). Most important in assessing measurement error is classifying the type and

nature of the error and the sources of data which allow modeling of this error. Measurement

error can be attributed to the method of data collection, to respondent behavior or to properties

of the instrument. A typical class of errors is the class of systematic errors, or bias. These

errors, for instance, arise when sampling covers the population of interest unevenly, or when

treatment and control groups differ prior to treatment in ways that matter for the outcomes

under study (see, for instance, Rosenbaum, 1995). Another class of errors is the class of non-

systematic errors. These may, for instance, arise through, errors in coding and classification

of data. However, measurement errors also include response variation due to the unreliability

of a measurement instrument. Further, many forms of human response behavior are inherently

stochastic in nature, and also variation stemming from stochastic response behavior will be

categorized under the heading measurement error. In this context, Lord and Novick (1968,

chapter 2) adhere the so-called stochastic subject view in which it is reasonable to assume that

answers of the subjects depend on small variations in the circumstances of the persons or the test

taking situation. Accordingly, response variance is the variation in answers to the same question

when repeatedly administered to the same person. In the present paper, attention is primarily

focused on non-systematic measurement error, and in the sequel the term measurement error

will only signify random error.

There has been a continuing interest in the study of regression models wherein

the independent variables are measured with error. These models are commonly known as

measurement error models. The enormous amount of literature on this topic in linear regression

is summarized by Fuller (1987) and in this framework, measurement error is handled by the

classical additive measurement error model. An example is the classical test theory Model

used in educational measurement. Goldstein (1995) extended some of the techniques to handle

measurement errors in the independent variables in linear models to the multilevel model.

The classical additive measurement error model is based on assumptions that may not

always be realistic. First, measurement error is supposed to be independent of the predictor

variables. Further, the assumption of homoscedasticity entails equal variance of measurement

errors conditional on different values of the dependent variable, say, the score level of the
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Measurement Error - 4

test taker in educational measurement. Another problem is that the reliability of measures

are not easily assessed. One could take repeated measurements to obtain an estimate of the

error variance. However, besides the practical difficulties, it is not realistic to assume that the

repeated measures are independent. Second, a suitable population has to be defined because the

definition of reliability is population dependent. To overcome these problems it is assumed that

the variances and covariances of the measurement errors are known, or suitable estimates exists

(Goldstein, 1995, pp. 142). But the estimates of the measurement error variance are generally

imprecise. It is, for instance, well known that coefficient Alpha, which is the ratio of the

variance of the true scores to the variance of the observed scores, underestimates the reliability

(Lord & Novick, 1968). An estimate of the reliability is always based on the responses to the

items of a finite sample of persons and therefore also a standard error of the estimate is needed

(Verhelst, 1998). Further, in case of the usual maximum likelihood approach the ratio of the

error terms' variances or alternatively one or both of the variances ought to be known to identify

the model (Fuller, 1987, pp. 9-11).

In the present paper, attention is focused on another way of handling response

variance in the independent variables in a multilevel model. The sources of data to perform a

measurement error analysis are tests or questionnaires consisting of separate items. The idea is

to assemble these multiple discrete indicators of predictor variables into an item response (IRT)

measurement model. In item response theory, measurement error is defined conditionally on

the value of the latent ability. In IRT, measurement error can be defined locally, for instance, as

the posterior variance of the ability parameter given a response pattern. This local definition of

measurement error results in hetroscedasticity: in the Rasch model, for instance, the posterior

variance of the ability parameter given an extreme score is greater than the posterior variance

of the ability parameter given an intermediate score (see, for instance, Hoijtink & Boomsma,

1995, pp. 59, Table 4.1). Besides the fact that reliability can be defined conditionally on

the value of the latent variable, IRT offers the possibility of separating the influence of item

difficulty and ability level, which supports the use of incomplete test administration designs,

optimal test assembly, computer adaptive testing and test equating.

Besides IRT, another theme of this article wil be Bayesian data analysis. The

formulation of measurement-error problems in the framework of a Bayesian analysis have

recently been developed (Carroll et al., 1995; Richardson, 1996). It provides a natural way of

taking into account of all sources of uncertainty in the estimation of the parameters. Computing

the posterior distributions involves high-dimensional numerical integration but these can be

carried out straightforwardly by Gibbs sampling (Gelfand et al., 1990; Gelman et al., 1995).
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Furthermore, the Bayesian approach of estimating the parameters of an IRT model ensures

that the model is identified without needing prior knowledge about the variances of the

measurement errors. It will be shown that the model is identified in a natural way by fixing

the latent ability scale.

This article consists of eight sections. After this introduction section, a general

multilevel model will be presented, where some of the covariates are unobserved. In the

next section, two measurement error models will be discussed. Then, a Markov Chain Monte

Carlo (MCMC) estimation procedure will be described for estimating the parameters of a

multilevel model with measurement error in covariates on both levels. In the following section,

measurement error in correlated predictors will be discussed. Then, after a small simulation

study, examples of the procedure will be given. And finally, the last section contains a

discussion and suggestions for further research.

The Structural Multilevel Model

There is a growing interest in the problems associated with describing the relations

between variables of different aggregation level, for example, in the field of educational and

social research. In school effectiveness research, interest is focused on the effects of school-

variables on the educational achievement of the students. To evaluate school effectiveness,

information is needed on both the level of students and the school-level. The heterogeneity

in student and school characteristics requires a statistical model that takes the variation and

relationships at each of the levels into account. Multilevel models support these requirements.

A number of investigators have examined the issue of multilevel modeling of educational data

(Bryk & Raudenbush, 1992; De Leeuw & Kreft, 1986; Goldstein, 1995; Raudenbush, 1988,

Snijders & Bosker, 1999).

The hierarchical model that is commonly used in analyzing continuous outcomes

is a two-level formulation in which Level 1 regression parameters are assumed multivariate

normally distributed across Level 2 units. Suppose that students (Level 1), indexed ij

(i = 1, . . . , ni, j = 1, . . . , J) , are nested within schools (Level 2), indexed j (j = 1, . . . , J).

In its general form, Level 1 of the two level model consists of a regression model, for each

of J nesting Level 2 groups (j = 1, , J), in which the observations (yii, i = 1, . . . , J) are

modeled as a function of Q predictor variables A1j, Agi, that is,

yi; = QOj + /31jAlii + + + + +

7
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where e2 is an (ni x 1) vector of residuals, that are assumed to be normally distributed with

mean 0 and variance cr2In, . The regression parameters are treated as outcomes in a Level 2

model given by

Oo = + Nirio + + yqsr.so + ... + ygsrso + uo, for q = 0, , Q, (2)

where the Level 2 error terms ugh q = 0, . . . , Q, have a multivariate normal distribution with

mean zero and covariance matrix T,N, and I'so are Level 2 regression coefficients (fixed

effects) and predictor variables, respectively. Although the coefficients of all the predictors in

the Level 1 model could be treated as random, it can be desirable to restrain the variation in one

or more of the regression parameters to zero. This is accomplished by reformulating the model

as a mixed model (Raudenbush, 1988; Seltzer et al., 1996). This will be further explored below

in the estimation procedure.

The explanatory variables at Level 1 comprise information of students' characteristics,

such as, for example, gender or age. Level 1 explanatory variables can also be latent

variables, such as, for example, socio-economic status, intelligence, community loyalty, social

consciousness, managerial ability or willingness to adopt new practices. Explanatory variables

as region, school-funding or gender are directly observable, but latent variables are inherently

measured with error due to response variance. Below, an example will be given of an analysis

where students' abilities, regarding mathematics, are predicted by scores, on Level 1, obtained

using an IQ test and, on Level 2, obtained using an adaptive instruction test taken by teachers.

Both explanatory variables are measured with an error due to response variance. In predicting

students' abilities an increase in precision (i.e. reduction in cr2) could be obtained by using

student pretest scores as a covariate in the Level 1 model but errors in the predictor variables

cause bias in estimated regression coefficients (Carroll et al., 1995, pp. 22).

Below, the unobserved Level 1 covariates are defined as 8 whereas the directly

observed covariates are defined as A. Therefore, Level 1 of the structural model, formula

(1), is reformulated as

Yij = 130j + N1jelij + + 130°qii 001-10(q+1)ij + Co, (3)

where the first 1, , q predictors correspond to unobservable variables and the remaining

q+1, . . . ,Q predictors correspond to directly observable variables. The Level 2 model, formula

(2), containing predictors with measurement error, C, and directly observed covariates, r, is

S
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reformulated as

fiqj = 7q0 7q1Clqj . . . 7q.9(sqj + q(s+1)1' (8+1)qj . gsr sqj Uqj , (4)

for q = 0, . . . , Q, where the first 1, . . . , s predictors correspond to unobservable variables and

the remaining s + 1, . . . ,S correspond to known fixed constants. The set of variables 0 is never

observable but supplemented information about 0, denoted as X, is known. In this case, X is

said to be a surrogate, that is, X has no information about Y other than what is available in 9.

This is characteristic for nondifferential measurement error (Carroll et al., 1995, pp. 16-17).

On Level 2, W is defined as a surrogate for C. Nondifferential measurement error is important

because parameters in models for responses can be estimated given the true covariates even

when the true covariates (0, () are not observable, as will be shown below.

Suppose that on Level 1 and 2, formula (3) and (4), only unobserved predictor

variables are available, with all regression parameters on Level 1 varying across Level 2 groups.

Then the relationship between Yij and (Xi; , Wi) can be expressed as

E (Yi I xii,wi) = E [E (Yii I eii,C.oxii,wi) I xii,w.i]

= E {E (Yii 19ii, C;) I Xii, Wil

= E [0ii (C.' y) I xii,

= E[0ij I xij] (E [Ci I w ^y)

The second equality above is justified by the assumption of nondifferential measurement error.

The third and fourth equality follow from the substitution of formula (4) in (3) with no

directly observable variables and determining the conditional expectation of Yi given (Ofi,

Obviously, unless properly adjustments are made statistical inference can be very misleading

because of the product of measurement errors. That is, without appropriate methods for

correcting for the effects of measurement error, the effects can range from biased parameter

estimates to situations where real effects are hidden and signs of the estimated coefficients are

reversed relative to the case with no measurement error (Carroll et al., 1995, pp 21-23).

Measurement Error Models

It will be shown that all parameters in the model can be estimated on account of

the assumption of nondifferential measurement error, but first the relationship between the

9
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surrogate and the unobserved covariate is discussed. In this section, attention is focused on two

parametric models for the response: the well-known classical true score model and the normal

ogive model.

The Classical True Score Model

In psychological and educational measurement, the researcher attempts to measure an

unobservable characteristic with a test. This test is administered to a person repeatedly, where

the individual is assumed to remain unchanged throughout the process. The individual's score

on a particular test form, the observed score, is considered to be a chance variable with some,

usually unknown, frequency distribution. The mean (expected value) of this distribution, that is,

the average score that the person would obtain on infinitely many independent repeated trials is

interpreted as the true score. The error of measurement is the discrepancy between the observed

scores and the true score. Since, by definition, the expected value of the observed scores is the

true score, the expectation of the errors of measurement or error scores is zero. It is assumed

that the corresponding true scores and error scores are uncorrelated and that error scores on

different measurements are also uncorrelated. Denote Xijk as the measurement associated with

individual ij, let 0,j be the mean of the response distribution and let Eijk the sampling deviation

for the k-th response obtained from the k-th individual's response distribution, that is,

eijk = Xijk gip (5)

This is the classical true score model (see, for example, LOrd & Novick, 1968). The true score

Oij of a person indexed ij is defined as the expected value of the observed score where the

expectation is taken with respect to the response distribution. This response distribution is

hypothetical because in psychology and other subject areas it is usually not possible to obtain

more than a few independent observations. This model coincides mathematically with the

classical additive measurement error model (Fuller, 1987, equation 1.1.2), where a normal

distribution of the error variable is assumed.

It is not strictly necessary to assume that the response distribution variances are equal

for different persons. This means that it is possible to measure some persons' responses more

accurately than others. But error variances for individual examinees are usually subject to large

sampling fluctuations. In the sequel, the group specific error variance, denoted as so, is used as

an estimate of the individual error variances, where the group consists of the total number of

examinees. This group specific error variance is the variance over the examinees of the errors

10
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of measurement, which is equal to the specific error variance averaged over the total number

of examinees (Lord & Novick, 1968, pp. 155). The group specific error variance is used as an

approximation to the individual error variances of which it is the average.

The Normal Ogive Model

Item response models are item-based. In case of dichotomous items, the item response

function (traceline, item characteristic curve) is the probability of a correct response to an item

as a function of ability. In this section, the normal ogive model is considered as a measurement

error model (see Lord, 1980, pp. 27-41 for a complete description of the normal ogive model).

Accordingly, the probability of a correct response of a person indexed ij on an item indexed k

(k = 1, . . , K) , Xijk = 1, is given by

P (Xijk = 1 I Oij, ak, bk) = (I) (akeii bk) (6)

where (I) denotes the standard normal cumulative distribution function, and ak and bk are the

discrimination and difficulty parameter of item k, respectively. Below, the parameters of item k

will also be denoted by bk = (ak, bk) . An IRT model provides the frequency distribution of test

scores for an examinee indexed ij having a specified level Oij of ability or skill. The variance,

cd,,10,,, of this conditional distribution of number right-score Xi; is

- xiileij E P (Xijk = 1 I Oij, ak, bk) [1 P (Xijk = 11 Oii,ak,bk)1
k=1

(ak0ii bk) (I) (bk ak0ii)
k=i

(7)

Notice that this implies response variance given 0. The posterior distribution of Oij given

p (Bo I xii), is proportional to the distribution of xi; given the ability level Oij, p Oij) ,

multiplied by the standard normal distribution. Therefore, the posterior variance of p ((hi I xi;)

or local reliability, , is closely related to response variance and it follows that

this results in the possibility of hetroscedasticity. Furthermore, the measurement scale is

independent of the items in the test. This in contrast to classical test theory, where the true

score depends on the items in the test and homoscedasticity is assumed.

11
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An MCMC Estimation Procedure for a Multilevel Model with Measurement Error

Bayesian analysis of parametric models requires the specification of a likelihood and

prior. Often non-informative priors are used. The posterior distribution, which is derived

from the joint density of the data and parameters according to Bayes formula, summarizes

all of the information about the values of the parameters. Interest is focused on the expected

a posteriori values of the parameters and posterior standard errors. In principle, complex

models, such as the proposed multilevel model with measurement error in the covariates,

demand sophisticated numerical analytical methods to obtain estimates of the parameters of

interest. However, Markov Chain Monte Carlo algorithms (MCMC) have proven great potential

for estimating complex models and currently the Gibbs sampler (Geman & Geman,1984) is

receiving much attention in the literature (e.g., see, Bernardo & Smith, 1994; Gelfand & Smith,

1990; Robert & Casella, 1999). Gibbs sampling succeeds because it reduces the problem of

dealing simultaneously with missing data and a large number of related unknown parameters

into a much simpler problem of dealing with one unknown quantity at a time by sampling each

from its full conditional distribution. This sampling-based method is conceptually simple and

easily implemented. In a proper setting, the Gibbs sampler generates a Markov chain which

converges in distribution to the joint posterior distribution of the parameters of interest (Tierney,

1994). That is, a Markov chain is constructed in such a way that its stationary distribution, also

denoted limiting distribution, is the joint posterior distribution of the model parameters. The

chain can be simulated using only the full conditionals of the parameters, that is, these are the

only densities used for simulation.

First, the implementation of the Gibbs sampler is considered in case of a multilevel

model with a normal ogive model as measurement model for the predictor variables. In

this implementation it is assumed that all predictor variables are uncorrelated. Second, the

implementation of the Gibbs sampler is described with the classical true score model as

measurement model. Correlated predictors with measurement error will be discussed in the

next section.

Estimation using Gibbs Sampling

Evaluation of the model for the observed data is complicated by the fact that some

elements are missing. Here, as is usual in a Bayesian analysis the unobserved 9's and C's

are treated as unobserved random parameters. Let be the first q explanatory variables on

Level 1 which are latent, as in formula (3) . The set of explanatory variables on Level 1 for

12
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predicting Y i j is d e f i n e d as SZij = Ajj) where Aij consists of the remaining q + 1, . . . ,Q

observable covariates on Level 1 without measurement error. Further, let Cqj be the first s

latent explanatory variables in predicting 00 on Level 2, as in formula (4) . To complete the

description of the covariates on Level 2, let IP qj ((qj ro) represent the set of explanatory

variables for /3qj , where To are the remaining s + 1, . . . , S directly observable variables, also

according to formula (4) .

The MCMC algorithm is straightforwardly implemented with the introduction of the

continuous latent variable that underlies each binary response. This approach follows the

procedure of Albert (1992), which builds on the Data Augmentation algorithm of Tanner

and Wong (1987), and has been extensively used in other missing data problems (see, for

example, Beguin, 2000; Fox & Glas, 2000; Johnson & Albert, 1999, pp. 194-202; Maris,

1995; Robert & Casella, 1999, pp. 414-438). Assume that the latent variables Oqij are related

to the observed responses, Xqijk, of a person, indexed ij, on an item, indexed k (k = 1, . . . , K) .

This observation Xqijk can be interpreted as an indicator that a continuous variable with normal

density is below or above 0. Denote this continuous variable as 4:3),,, where the superscript x

denotes the connection with the observed response variable Xqijk. It is assumed that Xqijk = 1

if Zg(ixj)k > 0 and Xqijk = 0 otherwise. It follows that

P (Zqijk I Oqij, Sk7 Xqijk) f (zgijk; a/c° qi; bk, 1) (zoik > 0) I (Xqijk = 1)

I (Zojk 5. 0) I (xqijk = 0)] ,

where f (.; akeqi; bk, 1) stands for the normal density with mean equal to akOqij bk and

variance equal to one, and I (.) is an indicator variable taking the value one if its argument

is true, and taking the value zero otherwise. Further, Oqij and e) are the person and

item parameters for person ij and item k, respectively. The Z(x) matrix serves to simplify

calculations and the value of Z(x) does not affect the value of the estimator, that is, VT) is only

a useful device. Let Wsok be a dichotomous response variable of a Level 2 unit, indexed j,

on an item, indexed k, related to the sth Level 2 latent variable, (so, for predicting 130 For

example, C sqj might be the pedagogical climate of school j measured using a questionnaire

with dichotomously scored questions administered to a teacher or principal of school j. In the

same way as for Level 1, complete data are formed and the augmented data will be denoted

with Z(w)sqjk

Unlike the fully conditional distributions of the parameters, the full posterior

distribution has an intractable form and is very difficult to simulate. On the other hand,

13
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it will be shown below that the fully conditional distributions of the parameters are each

tractable and easy to simulate. The Gibbs sampler consists of sampling from one of the

parameters conditionally on all other parameters in a number of steps. Instead of showing

all steps in detail, references will be given for those steps which are well-known and don't

need any further explaining. The total procedure consists of stepwise drawing from the

conditional posterior distributions of the components Z(x), (x), 9, p,a2,-y, T, ZOO , (w) and

C. The procedure consists of 10 steps:

(1) Draw Z(x) conditional on 9, .(x) and X.

(2) Draw S(x) conditional on 9 and Z(x).

(3) Draw 9 conditional on Z(s), p, a2, n, and Y.

(4) Draw conditional on It, 4/, a2, -y, T and y.

(5) Draw y conditional on /3, W and T.

(6) Draw a2 conditional on /3, ft and y.

(7) Draw T conditional on /3, W and -y.

(8) Draw ZOO conditional on (, ew) and W.

(9) Draw ew) conditional on C and Z(w).

(10) Draw conditional on Dui), p, %If and -y.

Sampling augmented data, Z(x), and sampling the item parameters, ex), is described

by Albert (1992) and Fox and Glas (2000). The third step,'sampling 0, deserves a more detailed

description.

Step 3 The q latent predictor variables, 9,i;, , 903, can be sampled individually because it

is assumed that they are uncorrelated. The ability parameters given augmented data ;, and

parameters ex), Ai and a2 are independent and distributed as a mixture of normal distributions

in relation to the latent variable eqjj. That is, the augmented data Zqt and the observed data

Yij are normally distributed with, among others, parameter 9 qtj which is a priori normally

distributed. The two-parameter normal ogive model must be identified by fixing the origin and

scale of the latent dimension. Therefore, the mean and variance of the ability distribution is

fixed to zero and one, which avoids over-parametrization. Accordingly to formula (3) , the

definition of the augmented data and the prior for Oqii it follows that

p (Oqij IZqt,(x), j3. a2, yij) a p (zq(71 I eqi (X)) p (yij Gqij, cr2, sii7j) p(eqii) (8)

14
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where SITi are the set of explanatory variables for a person, indexed ij, on Level 1 without Bgtj.

Split the regression coefficients on Level 1, in 13 qi and Or), to distinguish the regression

coefficient of explanatory variable Bo; from the regression coefficients of the other explanatory

variables frjj, respectively. Formula (8) is the product of a normal model for the regression

of Zq(Vk + bk on ak with 0 qt3 as a regression coefficient, a normal model for the regression of

Yzj f3r)ItTi on with 0q0 as a regression coefficient and a standard normal prior for 610j.

Due to standard properties of normal distributions (e.g., see, Box & Tiao, 1973; Lindley &

Smith, 1972) is the fully conditional posterior density of 0q0 again normally distributed and

given by

I Z(qs1)3 (M) a2,
% V

^'y 13qu/v + 91,7,310 1

1/1) 1/0 + 1 1/v + 1/0 ± 1) (9)

Kwith k Ki; = 1.4k zv_4=1 ak (Zqiik + bk) , and Bgtj = Pqj (I 0(10110) I the
1

variances are v = (Ek=i 4) and = /3q; a2. Notice that the posterior expectation, formula

(9) , is the well-known composite or shrinkage estimator. The estimate of Oqi; is a combination

of two estimates, b' qi j and kij, where the amount of weight placed on the estimates depends on

the corresponding precision of the estimate. Notice that the standard normal prior for 0q0 adds

a factor 1 to the reciprocal of the total posterior variance but has no influence on the posterior

expectation.

The modification of the multilevel model to handle measurement error in the

covariates causes minimal change in the complete conditional distributions of the parameters

of the multilevel model, (0 , -y, cr2 ,T) , computed in steps 4-7. The full conditionals of the

multilevel model parameters, necessary for the estimation procedure, can be found in Fox and

Glas (2000) and Seltzer (1993, 1996).

Measurement error in the predictor variables on Level 2 are treated in the same way

as on Level 1, with a normal ogive model as measurement model. Therefore, augmented

data denoted as Zw), in relation to the observed data W, itemparameters ew) and C have

to be sampled. An adapted complete conditional of Z(w) given (, (iciv) can be found in Albert

(1992) and Fox and Glas (2000). Also an adapted complete conditional distribution of the item

parameters can be found therein. This comprehends steps 8 and 9.

Step 10 Split the regression coefficients -yq on Level 2 in -yqs and -yq(*), relating to the predictor

(sqj and remaining Level 2 covariates '19,, respectively, where X97 is the set of explanatory
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variables for /130 on Level 2 without (so. Notice that the latent predictor variables (10, , (so

can be sampled individually, because it is assumed that they are independent. Here, the Level

2 model, formula (4), is reformulated as,

fiqj Yq4)111qj 7qs(sqj Uqj) (10)

where uqj ti N (0, lq) and r q2q is the eh diagonal element of T. From formula (10) follows

the least squares estimator (sqj = 'TV (00 OP) 410) The parameters (sqj given augmented

data Zs(wj and parameters ew), Oqi ,L and -yq are independent and distributed as a mixture

of normal distributions. That is, augmented data, Z(swq), and regression coefficient, )30, are

normally distributed with, among others, parameter (so which is a priori normally distributed.

Therefore, it follows that

P (Csqj
I

z(wqj? )(tv))13qj7wqlj)7q) a P (zs(wq2 I (sqj) e)) P (fiqj I Csqjfnj)7q)P((sqj) (11)

For identification of the model the prior for (sqj is the standard normal distribution. Hence, the

fully conditional posterior density of (sqj is given by

0-.1Z

Csqj Zs(teq), (11.1)7 [3qj' Wq-j17q N ++1 '1+1+1
i

(12)

where Cso is the least squares estimator following from the regression ofZLWik + ek on ak and

n the variance of (so, as in Step 3. The item parameters ekw) = (cek, bik) are sampled in Step 9.

Finally, (so is the least squares estimator for (so, formula (10) , with variance b = 1/799.

This implementation of the Gibbs sampler is easily changed into an estimation

procedure for estimating the parameters of the structural (multilevel) model with the classical

true score model as measurement error model. It is assumed that the variance structure, (p, is

known and given by formula (5) . This is also necessary for identification of the model. The

surrogates X and W provide a sum-score or observed score X,5 of the examinee indexed ij on

Level 1 and a sum-score, WI, observed in school j. Thus, in this case the classical true score

model, instead of the normal ogive model, is used as measurement error model on Level 1 and

Level 2. It is easily seen that Step 1, 2, 8 and Step 9 can be left out. Step 3 and Step 10 changes

into the following two steps.

16
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Step 3' Let Xqij denote the observed score of a person, indexed ij, in relation to 190j, the

qth latent covariate on Level 1 in predicting Yij. Again, the latent predictors on Level 1 can

be sampled separately because it is assumed that they are independent. Further, Xqij is a

random variable taking on values from independent repeated measurements, which is normally

distributed with mean 0 qij and variance co. The complete conditional of 0 qij follows from the

regression of Xqij on 0q,.; and the regression of Yo on SZij, formula (3) . It follows that

p (0 qij I stij, p, cr2, Xqij yii) p (Xqij I 0 qij , (12) p (yii 0 qij fili, f3 , a2) .

The prior information for 0 qt.) is incorporated into the measurement error model, where the

distribution and variance structure of the true score is determined. It follows that the fully

conditional posterior density of Bgij is given by

Xqui(10 ±eQ2. 10
(

1
0qz3 I f2:-3 ) f 33 1 Cr2 ) C °7 X413 'Yz3 N 1cp +110 1I+110

(13)

with Bi3 and 4) as in formula (9) .

The classical true score model can also be used for modeling the measurement error in

the predictor variables on Level 2. Let (sqj be the expected value of the observed score, Wso,

where the expectation is taken with respect to the normal distribution, the assumed response

distribution. Further, define c as the variance, a priori known, over parallel observations of

Wao. It follows that (so can be sampled in the same way as in Step 3'. That is, Step 10', draw

(sqj conditional on Wsv, k, f3o, Alci and 'TV

In formula (3) it is assumed that every regression coefficient varies across Level 2

groups. In certain applications, it can be desirable to constrain the effect of one or more of

the Level 1 predictors to be identical across Level 2 units. An implementation of the Gibbs

sampler, where regression coefficients are treated as non-varying across Level 2 groups, needs

a further division of regression components. This calls for a division in regression coefficients

related to observed predictors and latent predictors, with a further subdivision of both parts into

components treated as random and components treated as non-random across Level 2 groups.

Finally, the complete conditional distribution of each subset, given the other parameters and

the data, must be specified (see, for example, Seltzer et al., 1996).

17
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The presented 10 steps define the Gibbs sampler for estimation of the parameters of

the multilevel model with measurement error in the predictor variables, where the normal ogive

model or the classical true score model is used as measurement error model. With initial

values for the parameters, the Gibbs sampler repeatedly samples from the full conditional

distributions with systematic scan, that is, the sampler updates the components in the natural

ordering. A different strategy in updating the components can affect the speed of convergence

(Roberts & Sahu, 1997). The values of the initial parameters are important for the rate of

convergence. Initial estimates can be obtained by running the MCMC procedure by Albert

(1992) for estimating the normal ogive model with estimates of the item parameters as starting

points using Bilog-MG (Zimowski et al., 1996). Means of the sampled values of the parameters

of the normal ogive model are used to sample the parameters of the multilevel model. After

convergence, means of the sampled values are used as initial estimates.

Convergence can be evaluated by comparing the between and within variance of

generated multiple Markov chains from different starting points (see, for instance, Robert &

Casella, 1999, pp. 366). Another method is to generate a single Markov chain and to evaluate

convergence by dividing the chain into subchains and comparing the between- and within-sub-

chain variance. A single run is less wasteful in the number of iterations needed. Besides,

a unique chain and a slow rate of convergence is more likely to get closer to the stationary

distribution than several shorter chains. In the example given below, the full Gibbs sample was

used in estimating all parameters instead of subsampling from this sample. The latter procedure

leads to losses in efficiency (MacEachern & Berliner, 1994). Finally, after the Gibbs sampler

has reached convergence and 'enough' samples are drawn, posterior means of all parameters

of interest are estimated with the mixture estimator to reduce the sampling error attributable to

the Gibbs sampler (Liu et al., 1994). The posterior standard deviations and credibility intervals

can be estimated from the sampled values obtained from the Gibbs sampler.

Measurement Error in Correlated Predictor Variables

In this section, measurement error in explanatory variables on Level 1 will be modeled

by an IRT model for the item responses related to these explanatory variables. Because it is

not realistic to assume that the predictor variables are independent, a multivariate IRT model

will be used as measurement error model. The same procedure can be applied to measurement

errors in correlated explanatory variables on Level 2. It is assumed that there exists a surrogate

for every unobserved predictor variable and every surrogate consists of a set of item responses.
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Assume that the latent variables eqij are related to observable variables Xqij

(q = 1, . . , Q) via a normal ogive IRT measurement model. In this case Xqij

(Xqiji Xqijic ) t, with realization (xq.iii , , , denotes a response vector on a test

with Kg items. Before the actual parameters 0 will be identified, consider a parametrization

0 *. Let 0 j be the vector of latent predictor variables for a person indexed ij, that is, 0 j has

elements 0q*ii. Further, suppose that for every predictor a two-parameter compensatory normal

ogive model holds, that is, P (Xqtik = 11 0:0,aq*k,b9k) = (a9k09,j NO, where aq*k and

bq*k are item parameters of an item of predictor q. Because the predictor variables 0,1%3 are

considered dependent, it will be assumed that 0i*j has a multivariate normal distribution with

mean zero and covariance matrix E*. However, the parametrization 0* can be transformed

to a parametrization 0 such that 9 has a multivariate normal distribution with mean zero and

covariance matrix I, that is, the variables 0 qij become independent. Under this transformation,

the normal ogive model transforms to

P (Xqiik = 11 eii,aqk,bqk) = (40i; bqk)

where aqk is a vector of disciimination-parameters, say, factor loadings (see, for instance,

McDonald, 1967, 1982, 1997). Notice that every item response now depends on all latent

dimensions. This gives rise to the following procedure.

Analogous with the above procedure, see Step 1 to 3 above, a random vector Zji =

i(Z1,31, . , Zc2iiKQ )
t

is introduced, where Zqiik ti N (afikei; bqk, 1), and it is supposed that

X qijk 7-= 1 when Zqiik > 0 and Xqiik = 0 otherwise. After deriving the fully conditional

distributions, the Gibbs sampler can again be used to estimate the posterior distributions of all

parameters.

Step 1: Sampling Z. Given the parameters 0i3 and 4,7k, the variables Zqiik are independent

and

N (a400 bgk, 1 truncated at the left by 0 if Xqiik = 1
Zqijk eij)4qk,xqiik N aq tN iceij bqk, 1 truncated at the right by 0 if Xqiik = 0.

(14)

Step 2: Sampling 0ii. Let 00 be the vector with Q predictor variables for a person indexed ij.

These are the regression coefficients in the normal linear model

Zji + b = A.00 + eii,
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where b = (b11, , b1K1, b21, . , bQKQ)t, 0i, = (01ii, , Och,)t and A is a (Eq Kg x Q)

matrix with row vectors atqk, concerning items k = 1, . . . , Kg and predictors q = 1, . , Q.

Furthermore, the vector E2 has elements Eqiik, which are independent and standard normally

distributed. Here, it is assumed that all Level 1 predictors are unobserved and their regression

coefficients are treated as varying across Level 2 groups. For identification of the model, 0i,

has a multivariate standard normal prior, it follows that

p (00 I zii,Y0, Sqk, 13j, 0.2) oc p (zi; 100, q/c) p (Yij 1 90, 13 ,
o.2) f (00;0,k)

As in the unidimensional case, described above, the mixture of multivariate normal

distributions results in a multivariate normal distribution with a shrinkage estimator as

expectation,

(15)
0i, I Z 3 172 No, Yij, CC

j) cD-1.+Ic2

where kJ = (AtArl At(zt, + b) and 0i, = At
.11.° -3 I

--1

(flip . 0Q,) . The corresponding variances are IC = (AtA)-1 and 43 = .2 (f3t_i3O_ i)

Step 3: Sampling Let Sqk = (aqk, bqk)t k = 1, . . . , Kg and q = 1, . . . , Q, which represent

the item-parameters of item k of a test relating to predictor q. Further, define 9 = (01, . eQ)

with 0q = (Bell) Or?, j)t Given 9, the Zqk = (Zql1k) ZqnjJk)t satisfy the linear model

Zqk = [ 0 1 1 Eqk (16)

where Eqk = (Eq111c7 EqnjJk)t are standard normally distributed. Combining the prior for

p (m) = FQ_i I (agk > 0) with equation (16) gives

Q

qk I 19 IZqk N (iqk, (HtH)-1) H (aqk > 0) ,
q=0

where H = [ 0 1 and iqk is the least squares estimator based on (16).

Again, this procedure could be extended to handle observed and non-observed

explanatory variables with regression coefficients altering or fixed across Level 2 units. Notice

that the steps described in the previous section for sampling the other parameters of the

structural model remain the same. Modeling measurement error in the correlated predictor
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variables with the classical true score model demands a lot of prior information. The group

specific error variance regarding all tests has to be known, that is, the covariance matrix of Q

explanatory variables of person ij has to be known. The covariance matrix of the correlated

latent predictor variables also identifies the model, in case of the classical true score model as

measurement error model. Then, the conditional distribution of Oij becomes

Oii I Xi Y (3 cr2 N , (T-1 + (13-1)-13, z3, 31 7
743-1

where xi; = . , xqii) and xqii is the sum-score of person ij on a test related to predictor

q. Further, T is the a priori known covariance matrix of the sum-scores of person ij. In most

cases, the covariance matrix is population dependent and fixed over persons taking the tests to

get a reliable estimate.

The location of the unobserved predictors can be fixed by transforming each sample

during the Gibbs sampling process. Grand mean or group-mean centering of an unobserved

explanatory variable is obtained by subtracting the grand mean or group-means from each

sample drawn in each step of the Gibbs sampler.

A Simulation Study

In this section, a numerical example is analyzed to illustrate parameter recovery with

the Gibbs sampler. Data were simulated using a multilevel model with two latent predictors.

The model is given by,

Yii

fioj

Nlj

=

=

=

/90j +

+

710 +

eii

+ uoi

(17)

where eii ti N (0, a2) and u2 N (0, T) . Furthermore, it was assumed that the surrogates X

and W were related to the latent predictors 0 and C through a normal ogive model. Response

patterns were generated according to a normal ogive model for tests of 20 items. For the test

relating to the latent covariate 0 at Level 1, 4, 000 response patterns were generated which were

divided over J = 200 groups of 20 students each. Accordingly, for the test relating to the latent

covariate at Level 2, 200 response patterns were generated. The generating values of the item

parameters are shown under the label Generated in Table 1 and the true values of the fixed and
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random effects, -7, cr2 and T, are shown under the label Generated in Table 2.

The normal ogive models were estimated with the MCMC procedure of Albert (1992)

with Bilog-MG estimates as starting values. Next, the parameters of the multilevel model

are sampled, given the parameters of the normal ogive models. In the simulation study, 500

iterations were needed to estimate the measurement error models and another 500 iterations

were needed to compute the parameters of the multilevel model. Subsequently, 20, 000

iterations were made to estimate the parameters of the multilevel model with the normal ogive

model as measurement error model. The convergence of the Gibbs sampler was checked by

examining the plots of sampled parameter values. It was concluded that a burn-in period

of 1, 000 iterations was sufficient. The model was identified by fixing a discrimination and

difficulty parameter of both tests to the true values to insure that (0, () were scaled the same

way as in the data generation phase.

In Table 1, the estimates of the item parameters issued from the Gibbs sampler,

associated with the measurement error model for 0, are given under the label Gibbs Sampier.

The reported standard deviations are the posterior standard deviations. Credibility intervals

are calculated as confidence regions for the parameters and they are given in the column

labeled CI. These credibility intervals are the 95%-equal-tailed-intervals whose endpoints

are the 2.5 and 97.5 percentiles of the marginal posterior distribution of the parameters.

The true parameter values are well within the computed credibility intervals, except for the

discrimination parameter of item 5 and the difficulty parameter of item 14. The estimates of the

item parameters, from the test relating to (, and the true parameter values are also quite close

but contain larger standard deviations due to the small number of groups.

Table 2 presents the results of estimating the parameters of the multilevel model. It

is remarkable that the estimate of the variance on Level 2, related to the intercept, and of

the covariance between the Level 2 residuals are too high in the case where the normal ogive

model is used as measurement error model. This probably arises from an inaccurate estimate

of C, which may be due to the small number of groups and items in the test. For comparative

purposes, the unweighted sums of the item responses were resealed to the same scale as the

true explanatory variables (9, () . The estimates of the fixed and random effects using observed

scores without measurement error are given under the label Classical True Score Model. It

can be verified that the estimated parameters obtained using the observed scores, instead of

the normal ogive model, differ more from the true parameter values. Additionally, only the

credibility intervals of the parameters (No, 'Yoi r1) contain the true parameter values.
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An Illustrative Example of Measurement Error in Hierarchical Models

The model was used in an analysis of a mathematics test, from a large scale study

in which 3713 pupils of grade 4 were followed in 198 regular primary schools (Bosker et

al., 1999). Among other things, interest was focused on the relation between achievement in

mathematics and educational provisions at the school level and adaptive instruction by teachers.

A test measuring the willingness, knowledge and capability to introduce educational program

changes was taken by teachers. This test, denoted as AI, consisted of 23 dichotomously scored

items.

By posing the following Level 1 model, the nested structure of the data was taken into

account. For each school j (j = 1, . . . , J) ,

Yij = Opi eii, (18)

where yi3 is the score of a mathematics test and /Qi, is an unobserved predictor representing

the intelligence of a person indexed ij. IQ was measured by an intelligence test of 37 items,

the response patterns of 3713 pupils were available. The e23 are assumed normally distributed

with mean zero and variance cr2.

First, it was assumed that the intercept was group-dependent and varies randomly from

school to school. Furthermore, the A/-scores are group level variables that express relevant

attributes of the schools and are supposed to have an influence in the diversity in mathematics

scores. Therefore, the variability in /30j was modeled as

Ocki = 700 701AlEj

131j = 7107

(19)

where u03 were assumed normally distributed with variance 1.

The number of iterations was fixed for each analysis. From examining the plots

of sampled parameter values, it was concluded that a burn-in period of 500 iterations was

sufficient. Then an additional 20,000 Gibbs cycles, from which parameters of the posterior

distribution were estimated, were run.

Table 3 presents the parameter estimates of model 1, formula (18) , where a

measurement error model was applied to the unobserved explanatory variable representing

the IQ values of the examinees. The estimated group specific error variance, co, was .39.
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Notice, this estimate for the group specific error variance was obtained by averaging the

unbiased estimates for the error variances of individual examinees (Lord & Novick, 1968,

pp. 155). For the moment, the mean observed score from the AI test was used, neglecting

its error component. Further, the model was estimated neglecting both error components of

the predictors, cp = 0. The main result of the analysis is that, conditionally on IQ, adaptive

instruction for teachers seems to have a small positive effect on mathematics achievements of

students, but this effect does not differ significantly from zero. Furthermore, individuals with

high IQ values score high on the mathematics test. The use of multilevel model was justified,

because a substantial proportion of the variation in the outcome at the student level was between

schools. This is the variance of the achievements of students in school j controlling for IQ,

around the grand mean, 'yoo, which does not differ significantly from zero.

There are some important differences between the parameter estimates from the

multilevel model with the normal ogive model and the classical true score model, with co = .39

and yo = 0 as measurement error model, denoted by M1, Ma and Mc2, respectively. The

parameter estimates in Table 3 are not comparable because the IQ predictors in the various

models are differently scaled. A better way to compare the models is by looking at the posterior

predictive data, YreP, under the different models (Carlin & Louis, 1996; Gelman et al., 1995,

1996). Let Y"P denote a future observation, independent of Y given the underlying model

parameters. Define LI; as the distance from Y7P to Yi given model M and data (X;, Wi) , so

E M,yi] =
f (yi xr3ep)2p

et;, i3 a2) a2 I Xi;, y) dy7d0iida2.
ill

Aggregating over schools results in

E I M, y] = E [(3r y' )2I 111,3]

= H E [Lt I I p (Ci I wi,yi) cli3jd(j,
2

(20)

where p (y7 I eij, , a2) is the probability of replicating data yUP given the underlying

parameters, p (92 ;, (72 I Xi;, y) and p (Ci I wi, y3) are the joint posterior density of the

unobserved explanatory variables 9 and variance o' at Level 1 and the posterior density of

at Level 2 given the observed data, respectively. This statistic summarizes the information

concerning the predictive data given the observed data. Besides, it is the sum of the variance

of the replicated data plus the square of the bias of the replicated data with respect to the
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observed data. Notice that replications of the predictive data are independent of the scale of the

predictors in the various models. This predictive criterion is based on the quality of prediction

of a replicate of the observed data. In examining a collection of models, predictive distributions

will be comparable. Further, it is a natural way to evaluate model performance by comparing

what it predict with what has been observed (Bernardo & Smith, 1994, pp. 397). If the model

fits, replicated data under the model should look similar to the observed data, which means that

E [L? I M, y] should be small. Large values of this statistic indicate that replicated data under

the model differ from the observed data, and the model does not fit the data.

Table 3 presents the E [4] and corresponding standard deviations for the various

models. Model M1 , with an IRT measurement error model, performs better than model Ma

which ignores measurement error in both predictor variables. In fact, model Ma is the standard

hierarchical linear model treating the AI and IQ variables as observed. So, using an IRT

measurement error model results in a better model fit in terms of minimization of E [4. Model

Mil, with a classical true score model and prior knowledge cp = 0.39, performs better than

model M1. That is, the classical true score model increases the variability of the predictors and

reduces the biases caused by the measurement error in a more effective way than the normal

ogive model.

Interesting at this point is to see what happens if a measurement error model is used

on Level 2. So the response variance of the AI test is modeled using (19). Table 4 presents the

parameter estimates of the multilevel model with measurement error in the predictor variables

on Level 1, IQ, and Level 2, AI. The model labeled M2i models both unobserved predictors

with a normal ogive model. Model Ma contains the classical true score model as measurement

error model for both predictors with cp, = .39 and co2 = .43 as the estimated response

variance for the IQ and AI test, respectively. The results from both models show that adaptive

instruction for teachers still has no significant effect on the mathematics achievements of

students. Further, students with high IQ scores still perform better than students with lower

scores. The proportion of variance in mathematics scores accounted for by group-membership,

controlling for IQ scores, is .291 using model M2 and .396 using model Ma. This indicates a

substantial difference between both models.

Model Ma considers response variance in all predictors. This results in better

replications of the data with respect to the E [g] . As before, the variability in the predictors

induces larger variances of the parameter estimates and decreases the distance between the

replicated data and the observed data. It can be seen that correcting for bias results in more

variable estimates but also in a better prediction of the data. Model M2 has no benefit from the
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normal ogive model as measurement error model on Level 2, the E [I4] stabilizes with respect

to model M1. The small number of responses, 20 items with 198 respondents, may highly affect

this result. More respondents taking the AI test, may lead to a better result with respect to using

the normal ogive model as measurement error model on Level 2. Here it can be concluded that

correcting for measurement error with the classical true score model on both levels resulted

in more variance of the parameter estimates but less bias and this is beneficial in terms of the

predictive criterium given by formula (20) . In general, the use of a measurement error model

led to a reduction in bias and variance of the replicated data in relation to the observed data in

all cases.

It seems that varying the measurement error, co, leads to the conclusion that more

variance results in better predictions with respect to the observed data. However, there is a

turning point where additional prior variance, co, leads to a higher value of E [Li] . Figure 1

displays the E [4 for various values of the error variance in the predictor variables on Level

1 and Level 2. It can be seen that the value of E [M] is above 1.5 when the variance in the

predictor variable, IQ, on Level 1 is low. For various values of error variance in AI this

statistic decreases to .4 when the error variance in IQ is between .1 and .4 and it goes up to 2.

when the variance in IQ rises to 1. For some error variances in the Level 2 predictor the E [L?]

stays below .5 for all error variances below 1. in the Level 1 covariate. Generally, the prior

information about the group specific error variance highly influences the results.

Discussion

In this article, a normal ogive model is imposed on the unobserved explanatory

variables in a multilevel model. In the social sciences, it is rarely possible to measure all

relevant covariates directly and accurately. Correcting for measurement error is dependent on

knowledge of the measurement error process. Here, the normal ogive model describes the link

between the observed data and the unobserved variables. This is compared with the classical

true score model as measurement error model. To strengthen the relevancy of the chosen

measurement error model the effects of measurement error are determined by the measurement

error distribution. Appropriate methods for correcting for the effects of measurement error

depend on the measurement error distribution (Carroll et al., 1995). It is shown that both

measurement error models reduce the bias in the estimates with an increase of the variance.

This bias versus variance trade-off works well in both cases. Better results are obtained with

the more flexible classical true score model in terms of the expected square distance between the
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observed and predicted data. But for a realistic way of modeling it requires information about

the group specific error variance. The classical true score model depends highly on this prior

information. This leads to a certain degree of arbitrariness. Moreover, the variance structure

of the errors in the predictor variables is difficult to estimate. Therefore, it can be said that the

alternative, the normal ogive model, is more conservative in terms of the used statistic, but it

encompasses a more realistic way of modeling measurement error in the predictor variables,

because it does not depend on any arbitrary assumption on the error variance structure.

An important point is the flexibility of the proposed estimation procedure. This

enables modeling of complicated measurement error models without artificial simplifying

assumptions. Prior knowledge is easily incorporated, which insures a more realistic way

of modeling measurement error. Further, it is possible to model unobserved compositional

variables at Level 2, that is, a measurement aggregated over the characteristics of the Level 1

units within Level 2 units. An example is the mean intake achievement of all the pupils in a

school.

It is possible to use other IRT models as a measurement error model. For example,

the three-parameter item response model and polytomously scored items can be estimated

within the Bayesian framework using the Gibbs sampler (Beguin, 2000; Johnson & Albert,

1999). If the conditional distribution of some parameters is difficult to sample from, then

a Metropolis-Hastings step within Gibbs sampler can be used to obtain samples from the

posterior distribution of the specific parameters (Chib & Greenberg, 1995). The test statistic

discussed above only focuses on the extent to which the observed data are reproduced by the

model. Other posterior predictive checks can be developed to judge the fit and assumptions

of the model with measurement error in the covariates, such as local independence and

homoscedasticity, but this is beyond the scope of the present article.

In the present article, the response variable, Y, is treated as observed without

measurement error. It is possible to extend the procedure and to model this variable also with an

IRT model. This more complex problem, where both the response and some of the predictors

are measured with error, deserves further research. The basic structure of this more complex

model is related to the multilevel IRT model (Fox & Glas, 2000) or the generic hierarchical

IRT model (Patz & Junker, 1999) with background variables measured with an error. This

whole framework is also strongly related to the framework of structural equation modeling,

where there is a measurement part and a structural part. The measurement part of the model

consists of the response variable and observed predictor surrogates and latent variables, and

the structural part is defined in terms of the latent variables regressed on each other and some
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observed background variables. In MIMIC modeling (see, for example, Bollen, 1989; Muthen,

1989), one or more latent variables intervene between the observed background variables

predicting a set of observed response variables and surrogates. The main difference between

these approaches and the one presented here is the use of an IRT model as a measurement error

model, and integration of these various approaches remains a point of further study.
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Table 1. Item parameter estimates of the normal ogive IRT model in measuring O.

Item
Generated Gibbs Sampler

ak bk ak s.d. CI bk s.d. CI

1 2.787 -.083 2.787 0 [2.787, 2.787] -.083 0 [ -.083, -.083]
2 1.240 -.764 1.217 .044 [1.132, 1.302] -.795 .030 [ -.855, -.736]
3 .720 .684 .726 .030 [.667, .785] .678 .025 [.629, .728]
4 2.119 -.217 2.184 .079 [2.031, 2.345] -.214 .036 [ -.284, -.143]
5 1.030 -.173 1.132 .040 [1.053, 1.213] -.184 .026 [ -.235, -.134]
6 .392 -.694 .362 .025 [.314, .411] -.674 .023 [- .720, -.631]
7 .584 -.834 .611 .030 [.554, .670] -.857 .026 [ -.908, -.806]
8 2.049 -1.063 2.084 .082 [1.924, 2.249] -1.059 .047 [-1.150, -.968]
9 1.125 -.650 1.110 .041 [1.030,1.191] -.605 .029 [-.622, -.549]
10 .805 .718 .795 .032 [.732, .858] .707 .026 [.656, .760]
11 1.084 .103 1.138 .039 [1.065, 1.215] .078 .025 [.028, .128]
12 1.351 .219 1.418 .048 [1.327, 1.517] .260 .029 (.203, .315]
13 .971 .328 .963 .034 (.897,1.030] .325 .025 (.274, .375]
14 1.742 .510 1.790 .064 [1.664,1.911] .590 .036 [.522, .661]
15 .912 .885 .929 .036 [.858,1.000] .886 .030 [.829, .946]
16 .743 1.529 .764 .042 (.684, .849] 1.589 .042 [1.508, 1.675]
17 1.256 .048 1.265 .044 [1.182,1.350] .080 .027 [.027,133]
18 1.453 1.326 1.524 .061 [1.405, 1.645] 1.395 .049 [1.295, 1.490]
19 1.462 -.726 1.549 .057 [1.439, 1.659] -.748 .035 [- .818, -.678]
20 1.073 -.575 1.115 .042 [1.031, 1.195] -.633 .028 [-.688, -.575]
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Table 2. Parameter estimates of the multilevel model with measurement error in the

covariates.

Fixed Effects
Generated IRT Model Classical True Score Model

Coefficient s.d. CI Coefficient s.d. CI

7oo
7o1
710

Random Effects

2
1

1

2.094
1.074
1.007

.074
.065
.037

[1.951, 2.235]
[.952,1.203]
[.936,1.079]

1.998
.949
.927

.048

.040
.034

[1.903, 2.0921
[.872,1.0261

[.860, .9901

Variance
Components

Variance
Components

s.d. CI Variance
Components

s.d. CI

To .447 .558 .047 [.479,.642] .652 .047 [.582,.724]

Ti .447 .464 .026 [.410, .521] .431 .022 [.382, .482]

Tot .316 .425 .027 [.363, .4891 .401 .026 [.347, .4711

a .707 .706 .014 [.687, .7251 .804 .015 [.786,.8231
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Table 3. Parameter estimates of the multilevel model with the normal ogive and the classical
true score model as measurement error models.

Fixed Effects

IRT Model
Ml

Classical True Score Model

= Mci = 0, Mc2
Coefficient s.d. Coefficient s.d. Coefficient s.d.

'No
701

7io

Random Effects

-.017
.055
.412

.075

.075
.017

-.016
.053
.425

.075

.075

.017

-.012
.053
.425

.074

.075
.016

Variance
Components

s.d. Variance
Components

s.d. Variance
Components

s.d.

To .348 .015 .340 .019 .347 .019

a .841 .018 .813 .018 .856 .017

E Li s.d. EILT1 s.d. .E171 s.d.

1.644 .051 1.547 .048 1.741 .058
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1

Table 4. Parameter estimates of the multilevel model with the normal ogive and the classical

true score model as measurement error models on Level 1 and Level 2.

Fixed Effects

IRT Model
M2

Classical True Score Model
(P1 = .39, co2 = .43, Mc3

Coefficient s.d. Coefficient s.d.

'You

Yoi

7io

Random Effects

.033
.031
.413

.108
.069
.017

.016
.069
1.093

.073

.091
.043

Variance
Components

s.d. Variance
Components

s.d.

To .346 .019 .339 .019

0 .841 .017 .517 .041

E ILf s.d. ElTil s.d.

1.645 .052 .760 .091
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Figure 1. The E [L,?] for different values of the error variance in the predictor variables on
Level 1 and Level 2.
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