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Abstract. We present predictions for neutron star tidal deformabilities obtained from a Bayesian analysis
of the nuclear equation of state, assuming a minimal model at high-density that neglects the possibility of
phase transitions. The Bayesian posterior probability distribution is constructed from priors obtained from
microscopic many-body theory based on realistic two- and three-body nuclear forces, while the likelihood
functions incorporate empirical information about the equation of state from nuclear experiments. The
neutron star crust equation of state is constructed from the liquid drop model, and the core-crust transition
density is found by comparing the energy per baryon in inhomogeneous matter and uniform nuclear
matter. From the cold β-equilibrated neutron star equation of state, we then compute neutron star tidal
deformabilities as well as the mass-radius relationship. Finally, we investigate correlations between the
neutron star tidal deformability and properties of finite nuclei.

1 Introduction

The recent observation of the gravitational wave event
GW170817 has led to numerous inferred constraints on
the nuclear equation of state (EOS) and bulk neutron
star properties, such as radii, tidal deformabilities, and
moments of inertia [1–9]. Observations of the associated
electromagnetic counterpart, and in particular the ener-
getics of the resulting kilonova, suggest that the neutron
star merger remnant was a long-lived hypermassive neu-
tron star [10–15], which itself places strong constraints
on the dense matter equation of state and in particular
the maximum mass for nonrotating neutron stars. Antici-
pated multi-messenger observations of future neutron star
merger events have the potential to further refine such con-
straints, and in addition, the simultaneous measurement
of neutron star radii and masses expected from the NICER
mission [16] will complement these ongoing gravitational
wave searches.

During a neutron star merger event, the late-inspiral
gravitational wave signal contains information on the tidal
deformation induced from the gravitational field of one
neutron star on the other. For a given neutron star mass,
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the tidal deformability is strongly correlated with the mat-
ter radius. The observation of the post-merger peak fre-
quency, which characterizes the primary oscillation mode
of the hypermassive neutron star remnant, can also pro-
vide constraints on neutron star radii [17]. Current in-
ferred upper limits on neutron star radii and tidal de-
formabilities from GW170817 rule out stiff equations of
state that result in large radii (R1.4 � 13.6 km) and large
tidal deformabilities (Λ1.4 � 700).

In the past, neutron star tidal deformabilities have
been studied within the framework of Skyrme Hartree-
Fock theory [18–21], relativistic mean field theory [1, 20,
22], chiral effective field theory (EFT) coupled with ex-
trapolations to high density [3,5,6], and polytropic equa-
tions of state [23,24]. Since these different theoretical mod-
els have quite large uncertainties, especially with respect
to the high-density equation of state, most have been
shown to be consistent with the recent re-analysis [9, 25]
of the neutron star tidal deformabilities determined from
GW170817. This implies that current observational data
is not yet capable of favoring one model approach over an-
other, as long as the derived EOS obtained can produce
relatively soft equations of state with small neutron star
tidal deformabilities. What we can get from the various
equations of state consistent with GW170817 are nuclear
matter properties at and above nuclear saturation density
(n0 = 0.16 fm−3), especially the pressure at around two
to three times nuclear saturation density. This is natural
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since the central density of a 1.4M⊙ neutron star has a
distribution that peaks around three times nuclear satu-
ration density for soft equations of state, as we show in
more detail below.

In the simplest approximation one can regard a neu-
tron star as a giant nucleus containing ∼ 1057 nucleons.
In that case, one can derive from simple liquid drop model
arguments the typical radius of a neutron star:

R ≃ r0A
1/3 ≃ 12 km, (1)

where r0 = 1.2 fm. Neutron stars, however, are consid-
erably more complex, with phase changes occurring with
increasing density. In particular the outer crust consists of
a lattice of ionized nuclei in a gas of ultra-relativistic elec-
trons. The inner crust consists of neutron-rich nuclei in
a lattice together with unbound electrons and superfluid
neutrons. Finally, the core consists of uniform matter con-
taining minimally protons, neutrons, and electrons, with
possible novel states of matter in the inner core, including
hyperons, deconfined quark matter, and meson conden-
sates [26–42]. Since the average central density of neutron
stars with M > 1.4M⊙ is beyond three times nuclear
saturation density, the inter-nucleon spacing d = 0.78 fm
at n = 3n0 is smaller than the proton charge radius,
0.84 ∼ 0.88 fm [43]. Thus, there are strong motivations
for the hypothesized hadron-quark phase transitions in
neutron star inner cores. Even before such high densi-
ties, hyperons with chemical potentials lower than that
of nucleons are expected to appear, though there are still
significant uncertainties associated with hyperon-nucleon-
nucleon three-body forces [44–46] that may delay the onset
of hyperonic matter in neutron stars.

Besides the matter composition in neutron stars, the
nuclear equation of state is crucial for calculating the
macroscopic structure, mass-radius relation, tidal de-
formability, moment of inertia and other bulk properties of
neutron stars [47–51]. Thus, constructing the nuclear EOS
has been a primary challenge in dense matter research.
In the low-density region, the neutron star EOS is con-
strained entirely by the properties of finite nuclei. Upon
reaching the inner crust, nuclear properties such as neu-
tron skin thicknesses and the EOS of dilute neutron mat-
ter (available from microscopic many-body calculations)
help constrain neutron star structure. The properties of
dense nuclear matter beyond about twice saturation den-
sity are strongly model dependent and there is no theo-
retical framework that gives controlled uncertainty esti-
mates in this regime. Intermediate-energy heavy-ion col-
lisions [7, 52] allow for the experimental investigation of
matter at these densities, but resulting constraints on the
equation of state are model dependent with large uncer-
tainties. Thus, astrophysical observations of neutron stars
are expected to provide possibly the strongest constraints
on the properties of matter at supra-saturation density.
Such observational data include the maximum mass for
nonrotating neutron stars (Mmax > 1.97M⊙) [53, 54], the
tidal deformability from gravitational wave signals [55],
the mass-radius relation from X-ray burst data [56–61],
the potential measurement of neutron star moments of

inertia [8, 48, 51, 62], and simultaneous mass and radius
measurements from NICER [16]. Recently, the measure-
ment of M = 2.17+0.11

−0.10 M⊙ at the 1σ credibility level for
PSR J0774+6620 by Cromartie et al. [63] may result in
an increase of the lower bound on the maximum neutron
star mass, thereby excluding some nuclear force models.

In the present work, we outline a method for including
the latest constraints on the dense matter equation of state
from microscopic modeling of nuclear and neutron matter
together with empirical information about the equation of
state from laboratory measurements of finite nuclei. The
method is based on Bayesian analysis where prior prob-
ability distributions for the EOS model parameters are
obtained from chiral effective field theory calculations at
low to moderate densities and likelihood functions that in-
corporate empirical properties of medium-mass and heavy
nuclei. From the resulting posterior probability distribu-
tions for the model parameters, we then compute neutron
star tidal deformabilities, radii, and correlations among
bulk neutron star properties and equation of state parame-
ters, such as the symmetry energy and its slope parameter.
The paper is organized as follows. In sect. 2 we explain the
nuclear models we employ for dense matter as well as our
Bayesian methodology to generate the equation of state
with clear statistical interpretation. In sect. 3 we briefly
explain how to compute neutron star tidal deformabili-
ties from the Tolman-Oppenheimer-Volkoff (TOV) equa-
tion. In sect. 4 we present numerical results from our
parametrized equations of state and study the correlation
between neutron star quantities and nuclear matter prop-
erties. We summarize our results in sect. 5.

2 Nuclear modeling

2.1 Equation of state

The equation of state for cold beta-equilibrated nuclear
matter is required over a very large range of conditions
(density and particle composition) not accessible to labo-
ratory experiments on Earth. Thus it is necessary to ex-
trapolate the EOS to highly isospin-asymmetric systems
and to densities beyond nuclear matter saturation density.
A common framework is to employ polytropic equations
of state [64–67], which have the freedom to change the adi-
abatic index and account for the possibility of phase tran-
sitions at specified densities. In addition, Skyrme Hartee-
Fock or relativistic mean field (RMF) models [40, 68–72],
whose parameters are fitted to the properties of finite nu-
clei close to saturation density, are generally extrapolated
to much higher densities in order to study the mass-radius
relationship for neutron stars.

It has been shown [73,74] that many mean field model
calculations are not consistent with the low-density equa-
tion of state for pure neutron matter constrained by chi-
ral effective field theory [75–79]. Chiral effective field the-
ory is formally a well converged expansion for strongly
interacting systems when the characteristic momentum
scale is well below the chiral symmetry breaking scale
Λχ ≃ 1GeV, but in practice nuclear potentials impose a
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smaller cutoff scale Λ ≃ 400–600MeV to regulate the high-
momentum components of the interaction. The maximum
density at which the theory may provide controlled theo-
retical uncertainty estimates is therefore between 1–2n0.
While quantum Monte Carlo (QMC) calculations with re-
alistic two- and three-body nuclear potentials have been
frequently employed in the past to study the properties of
pure neutron matter [80–84], the symmetric nuclear mat-
ter equation of state is more challenging [85] due to the
low-density spinodal instability and the larger number of
nucleons needed to fill doubly-closed-shell box eigenstates.
Thus, many-body perturbation theory has been the most
widely used method to compute the equation of state for
asymmetric nuclear matter. These calculations and the as-
sociated theoretical uncertainties can then be used to con-
strain nuclear energy density functionals (EDF) for which
the energy density E of homogeneous matter is given as
a function of the baryon number density n and proton
fraction x = np/(nn + np).

Chiral effective field theory suggests that a natural ex-
pansion parameter for the energy density is kF , which
is proportional to n1/3 at T = 0MeV. We therefore
parametrize a set of energy density functionals according
to the following form:

E (n, x) =
1

2m
τn +

1

2m
τp

+[1 − (1 − 2x)2]fs(n) + (1 − 2x)2fn(n), (2)

where τp (τn) denotes the kinetic energy density of pro-
tons (neutrons), and fs (fn) corresponds to the poten-
tial energy density of symmetric nuclear matter (neutron
matter):

fs(n) =

3
∑

i=0

Ai n(2+i/3), fn(n) =

3
∑

i=0

Bi n(2+i/3).

(3)
For convenience we rewrite the above expressions formally
as expansions about a reference Fermi momentum kr

F :

E

n
(kF , x = 0.5) = 22/3 3

5

k2
F

2m
+

k3
F

9π2

3
∑

i=0

ai

i!
βi,

E

n
(kF , x = 0) =

3

5

k2
F

2m
+

k3
F

9π2

3
∑

i=0

bi

i!
βi, (4)

where β = (kF − kr
F )/kr

F and in both expansions we de-

fine kF = (3π2n)1/3. In the next section we will perform
a global fit of the equations of state from chiral effective
field theory to the form given in eq. (4), and therefore
the choice of reference Fermi momentum is unimportant.
In the present case we take kr

F = 1.68 fm−1, correspond-
ing to the neutron matter Fermi momentum at saturation
density.

In previous work [86] the authors have shown that the
above ansatz can well describe the density dependence of
the nuclear isospin-asymmetry energy S2(n) computed in
chiral effective field theory from low-densities up to twice

Fig. 1. Zero-temperature equation of state for pure neutron
matter (PNM) and symmetric nuclear matter (SNM) calcu-
lated from chiral two- and three-nucleon forces in many-body
perturbation theory at second order (dashed lines) and third
order (solid lines) with N2LO (circles) and N3LO nucleon-
nucleon potentials. In all cases the N2LO chiral three-body
force is included.

saturation density. The normal Taylor series expansion of
the isospin-asymmetry energy around saturation density

S2(n) = J + L

(

n − n0

3n0

)

+
1

2
Ksym

(

n − n0

3n0

)2

+
1

6
Qsym

(

n − n0

3n0

)3

+ · · · (5)

generally does not describe well the low-density behavior
since there is nothing to enforce S2(n) → 0 as n → 0.
Here we do not account for the effects of clustering, which
would lead to finite values of S2 as the density approaches
zero [87]. For the EDFs employed in this work, the ef-
fective masses of neutrons and protons are embedded in
the functional forms since the kinetic momentum term τ
is proportional to n5/3 at T = 0MeV in uniform nuclear
matter.

In fig. 1 we show the energy per baryon for pure neu-
tron matter and symmetric nuclear matter from chiral
two- and three-body forces [88, 89]. We choose three val-
ues for the momentum cutoff scale: Λ = 414MeV (blue),
450MeV (red), and 500MeV (black). The minimum value
Λ = 414MeV is the relative momentum corresponding to
the lab energy E = 350MeV for which nucleon-nucleon
(NN) elastic scattering phase shift data is typically in-
corporated into fits of high-precision nucleon-nucleon in-
teractions. In addition to the cutoff scale, we also vary
the order in the chiral expansion, where next-to-next-to-
leading order (N2LO) chiral NN potentials are denoted
with circles, while N3LO NN potentials have no symbols.
In all cases, we include the N2LO chiral three-body force
whose low-energy constants are fitted to the binding en-
ergies of A = 3 nuclei together with the lifetime of 3H.
To estimate the theoretical uncertainty from many-body
perturbation theory, we calculate the energy per particle
at second order with intermediate-state energies in the
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Hartree-Fock approximation (dashed lines, E
(2)
Σ1) and at

third order with self-consistent intermediate-state ener-
gies at second order (solid lines, E

(3)
Σ2). These results from

chiral effective field theory are fitted up to n = 2n0 to
the form in eqs. (2) and (3) with correlation coefficients
R ≃ 0.9999. This minimal energy density functional is also
useful to fit theoretical calculations from quantum Monte
Carlo as well as Skyrme or Gongy effective interactions,
unless phase transitions to exotic matter are involved. In
the following analysis, these predictions from chiral effec-
tive field theory will determine the Bayesian prior proba-
bility distributions for the ai and bi parameters of eq. (4).

It is often assumed that the energy density around
symmetric nuclear matter (x = 1/2) can be expanded
using a Maclaurin series,

E (n, x)

n
=

∞
∑

i=0

S2i(n)(1 − 2x)2i. (6)

In fact, it has been shown [90,91] that the series does not
generically converge due to the existence of logarithmic
terms that appear beyond the mean field approximation,
leading to the more general expansion

E (n, x)

n
= S0(n) + S2(n)(1 − 2x)2

+

∞
∑

i=2

(S2i + L2i ln |1 − 2x|)(1 − 2x)2i. (7)

Regardless of whether eq. (6) or (7) is considered, it
has been shown [91–94] that the contributions beyond S2

are small when computed microscopically and can be ne-
glected. We therefore assume a quadratic dependence on
the isospin asymmetry in the energy density functional in
eq. (2).

We use four parameters to describe the symmetric nu-
clear matter and pure neutron matter energy densities.
In the case of symmetric nuclear matter, the set of {ai}
parameters can be constrained from empirical properties
of medium-mass and heavy nuclei, and in particular the
values of the nuclear saturation energy B, saturation den-
sity n0, incompressibility K, and skewness Q defined at
n = n0 and x = 1/2:

B = −
E (n0)

n0
, p = n2

0

∂(E /n)

∂n

∣

∣

∣

∣

n=n0

= 0,

K = 9n2
0

∂2(E /n)

∂n2

∣

∣

∣

∣

n=n0

, Q = 27n3
0

∂3(E /n)

∂n3

∣

∣

∣

∣

n=n0

,

(8)

where p is the pressure of symmetric nuclear matter at
saturation density. In the case of pure neutron matter,
we can consider empirical constraints on the parameters
J , L, Ksym, and Qsym defined in eq. (5) in order to ob-
tain the set of {bi} in eq. (4). However, compared to the
parameters of the symmetric nuclear matter equation of
state around saturation density, the pure neutron matter
empirical parameters have much larger uncertainties. We

Table 1. Covariance matrix for the {ai} parameters associ-
ated with the symmetric nuclear matter equation of state from
chiral effective field theory.

a0 a1 a2 a3

a0 0.05 fm4 0.06 fm4 0.09 fm4 −4.01 fm4

a1 0.06 fm4 0.20 fm4 0.31 fm4 −9.11 fm4

a2 0.09 fm4 0.31 fm4 1.87 fm4 −16.35 fm4

a3 −4.01 fm4 −9.11 fm4 −16.35 fm4 696.53 fm4

Table 2. Covariance matrix for the {bi} parameters associated
with the pure neutron matter equation of state from chiral
effective field theory.

b0 b1 b2 b3

b0 0.04 fm4 0.19 fm4 0.40 fm4 0.21 fm4

b1 0.19 fm4 0.94 fm4 2.07 fm4 −0.20 fm4

b2 0.40 fm4 2.07 fm4 9.26 fm4 30.23 fm4

b3 0.21 fm4 −0.20 fm4 30.23 fm4 227.42 fm4

therefore employ experimental constraints on the symme-
try energy J together with correlations among J , L, Ksym,
and Qsym found in recent works [86,95–97].

2.2 Bayesian statistics

In Bayesian analysis, the posterior probability distribu-
tion for a vector of model parameters a is obtained as the
product of the likelihood function for a set of data given
the parameter distribution a and the prior distribution
function for a that incorporates previous knowledge [98].
More precisely,

P (a|data) ∼ P (data|a)P (a), (9)

where P (a|data) is the posterior distribution, P (data|a) is
the likelihood function, and P (a) is the prior distribution.
In the present case a = (ai, bi). For the present purposes,
the explicit normalization of the posterior probability dis-
tribution does not need to be specified.

Since the free parameters in chiral nuclear forces are
fitted to only the properties of A = 2, 3 nuclei, results for
the nuclear matter equation of state are theoretical pre-
dictions. We have therefore suggested in previous work [5]
that the prior probability distributions for {ai} and {bi}
be obtained by fitting the equations of state from chi-
ral effective field theory to the form in eqs. (2) and (3).
We fit each equation of state individually and then com-
pute the mean vectors and covariance matrices for the {ai}
and {bi} parameter sets independently. We obtain for the
means {āi} = {−3.48 fm2, 6.15 fm2,−1.51 fm2, 39.58 fm2}
and {b̄i} = {−1.70 fm2, 3.87 fm2, 4.61 fm2, 16.85 fm2}. Re-
sults for the covariance matrices are shown in tables 1
and 2.

In fig. 2 we show the resulting probability distribution
for the nuclear symmetry energy Esym defined as the dif-
ference between the energy per nucleon of pure neutron
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Fig. 2. Density-dependent symmetry energy Esym from the
prior probability distributions for {ai} and {bi}. The dashed
lines indicate the 1σ and 2σ uncertainty bands.

Fig. 3. Distributions of the symmetric nuclear matter empir-
ical parameters B, n0, K, and Q obtained from 205 Skyrme
force models. Also shown are the best-fit Gaussian distribution
functions for each quantity and their mean values.

matter and symmetric nuclear matter at a given density.
We sample from Gaussian prior distributions for the {ai}
and {bi} parameters from chiral effective field theory. In
fig. 2 the dashed lines correspond to the 1σ and 2σ proba-
bility contours. We observe that the theoretical uncertain-
ties on the nuclear symmetry energy grow rapidly with the
nuclear density, reaching ∆Esym ≃ 50MeV at n = 2n0.

We next discuss how to include experimental data,
such as the binding energies and charge radii of medium-
mass and heavy nuclei, into likelihood functions involving
the {ai} and {bi} parameters. For the {ai} parameters
entering the symmetric nuclear matter equation of state,
we employ a large set of 205 Skyrme effective interac-
tions benchmarked to the properties of nuclear matter in
ref. [99]. In particular, we consider four symmetric nuclear

Fig. 4. Probability densities for the symmetry energy param-
eters J , L, Ksym, Qsym associated with the Bayesian likelihood
function involving the bi parameters in eq. (4). The distribu-
tions are obtained from the empirical bound on the symmetry
energy at saturation density, J = 31 ± 1.5 MeV, together with
correlations between J and L, Ksym, Qsym.

matter properties B, n0, K, Q and compute the distribu-
tions of these quantities obtained from the 205 Skyrme in-
teractions. In fig. 3 we show these statistical distributions
together with Gaussian fits. From the explicit relation-
ship between these empirical nuclear matter properties
and the coefficients ai in our Fermi momentum expan-
sion in eq. (4), we then derive a joint likelihood function
involving the {ai}. Using just the individual distributions
of B, n0, K, Q to find the ai parameters for symmetric nu-
clear matter would neglect the correlations among those
quantities. Therefore, it is important to take into account
the full covariance matrices involving the ai.

For the pure neutron matter equation of state, we em-
ploy empirical data on the symmetry energy at saturation
density J , together with correlations among J , L, Ksym,
and Qsym. In particular, in ref. [86] it was shown that L
and J are linearly correlated, as well as Ksym and J . For
a linear correlation of the form Z = pX +Y , where X and
Y are uncorrelated, we have

cov(Z,X) = p var(X). (10)

This relationship allows us to extract from the correlation
bands among J , L, and Ksym in ref. [86] the mean and
covariance matrix elements for the bi parameters. Since
correlations between Qsym and the other symmetry energy
parameters were not considered in ref. [86], we simply ex-
tract from their parametrization a broad distribution for
the b3 neutron matter coefficient. In fig. 4 we show the
resulting distributions for the symmetry energy empirical
parameters J , L, Ksym, Qsym.

To generate an ensemble of equations of state, we sam-
ple from the ai and bi posterior probability distributions
obtained as a product of the prior probability distribu-
tion (determined from microscopic chiral EFT calcula-
tions) and likelihood function (determined from empirical
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Fig. 5. Distribution for J and L of the energy density func-
tionals generated from the posterior probability distributions
in this work. The dashed line denotes the 2σ correlation ellipse.

information about medium-mass and heavy nuclei). We
have assumed Gaussian prior probability distributions for
the ai and bi parameters obtained from microscopic mod-
eling of the dense matter equation of state. Since the like-
lihood functions in figs. 3 and 4 are also approximately
Gaussian, the values of ai and bi can be generated ran-
domly from the posterior probability distribution accord-
ing to the average of each variable and weighted by the
covariance matrix for each variable.

Since all equation of state constraints come from the
region n ≤ 2n0, our modeling at high densities is limited
and does not explore the widest range of theoretical sce-
narios, such as phase transitions, hyperons, or meson con-
densates. The description of neutron star properties de-
scribed below should therefore be interpreted as a minimal
model. In particular, the behavior of the nuclear equation
of state for dense nuclear matter beyond twice saturation
density is assumed to follow the energy density functional
in eq. (4). Thus, the polytropic slope does not evolve in
the density range n > 2n0. In the future we plan to allow
for the possibility of phase transitions and higher powers
of the Fermi momentum in eq. (4). In the present work we
generate 300000 samples each for symmetric nuclear mat-
ter and pure neutron matter. For arbitrary proton frac-
tions we interpolate between the symmetric nuclear mat-
ter and pure neutron matter equations of state, keeping
only the term in eq. (7) proportional to the square of the
isospin asymmetry δnp = (nn − np)/(nn + np) = 1 − 2x.

In fig. 5 we show the resulting correlation between J
and L from the energy density functionals generated by
the posterior probability distributions. The closed dashed
line denotes the 2σ correlation ellipse. The angle α be-
tween the aphelion-axis and L-axis is given as

tan(2α) =
2Rxyσxσy

σ2
x − σ2

y

, α = −7.178◦. (11)

Note that we can also see a similar correlation between J
and L from the liquid drop model and from the Hartree-
Fock approach for nuclear masses [95, 100]. As seen in

Fig. 6. Distribution for Ksym and 3J−L of the energy density
functionals generated from the posterior probability distribu-
tions in this work. The dashed line denotes the 2σ correlation
ellipse.

fig. 5, our findings for ai and bi naturally imply the corre-
lation among nuclear matter properties. In fig. 6 we plot
the posterior symmetry incompressibility Ksym against
the combination 3J − L, which were found in [97] to be
highly correlated. We find that the correlation between
the two parameters is Rxy = −0.955 with 〈3J − L〉 =
43.1MeV, σ3J−L = 6.02MeV, 〈Ksym〉 = −112MeV,
σKsym

= 40.3MeV, and α = 8.12◦.

2.3 Neutron star crust

The inhomogeneous nuclear matter in the crust of a neu-
tron star represents a phase co-existence problem between
dense and dilute matter [72]. The density of the heavy nu-
cleus corresponds to the dense phase while the unbound
neutrons correspond to the dilute phase. In the present
work we compute the equation of state in the crust of
neutron stars using the liquid drop model technique. The
total energy has contributions from the heavy nucleus, un-
bound neutrons, and electrons:

ε = unifi +
σ(xi)ud

rN
+ 2π(nixierN )2ufd(u)

+(1 − u)nnofno + εe, (12)

where fi and fno are the nucleonic contributions to the
total energy from the heavy nucleus and neutron gas out-
side, respectively, ni is the number density of heavy nuclei,
nno is the density of the unbound neutron gas, xi is the
proton fraction, rN is the heavy nucleus radius, and u is
the filling factor (the fraction of space taken up by a heavy
nucleus in the Wigner-Seitz cell). The second term σ(xi)
in the above equation stands for the surface tension as a
function of proton fraction. Finally, fd is a geometric func-
tion describing the Coulomb interaction [101] for different
dimensions d.

The surface tension σ(xi) is computed from the semi-
infinite nuclear matter density profile where the dense
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phase has the proton fraction xi. We adopt the fitting
function for the numerical calculation of the surface ten-
sion, approximated by

σ(x) = σ0
2 · 2α + q

(1 − x)−α + q + x−α
. (13)

The third term in eq. (12) represents the Coulomb energy,
with contributions from proton-proton, proton-electron,
and electron-electron interactions. The shape function
fd(u) takes into account nuclear pasta phases [102] and
is an analytic function of the dimension d and volume
fraction u of the heavy nucleus in the Wigner-Seitz cell.
Because of the nuclear virial theorem, we can obtain a
simplified equation for the total energy [102]:

ε = unifi + βD + (1 − u)nnofno + εe, (14)

where β = ( 243π
5 e2x2

i n
2
i σ

2)1/3 and D = D(u) is a contin-
uous dimension function. The energy density of electrons

is denoted by εe. At T = 0MeV, µe = ∂εe

∂ne

=
√

m2
e + p2

fe
.

From the constraints on the total baryon number den-
sity n and proton fraction Ye in the cell

n = uni + (1 − u)nno, (15)

nYe = unixi, (16)

we finally have five equations to solve with five unknowns
(u, ni, xi, nno, Ye):

pi +
2βD

3u
− βD

′ − po = 0, (17a)

µni −
2βxiDσ′

3unixiσ
− µno = 0, (17b)

µni −

(

2βD

3unixi
+

2βDσ′

3uniσ

)

− µpi − µe = 0, (17c)

n − uni − (1 − u)nno = 0, (17d)

nYe − unixi = 0, (17e)

where σ′ = ∂σ
∂xi

and D ′ = ∂D

∂u .

3 Tidal deformability

The macroscopic structure of the neutron star is computed
by solving the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions,

dp

dr
= −

(ε + p)(m + 4πr3p)

r(r − 2m)
, (18a)

dm

dr
= 4πr2ε, (18b)

where dp/dr describes the pressure change with the dis-
tance r from the center. Since the pressure at the center of
the neutron star is the highest, the pressure decreases with
increasing r according to eq. (18a). The energy density

also decreases as the distance from the center increases.
Equation (18b) describes how the total gravitational mass
of the neutron star increases with the distance. The nu-
clear equation of state then provides the input for p and ε.

The gravitational wave signal from the late inspi-
ral phase of binary neutron star coalescence is con-
nected [103, 104] to the neutron star equation of state
through the dimensionless tidal deformability Λ, which
can be determined from the Love number k2 = 3

2Λβ5 de-
fined through

k2(β, yR) =
8

5
β5(1 − 2β)2{2 − yR + 2β(yR − 1)}

×
[

2β{6 − 3yR + 3β(5yR − 8)}

+4β3{13 − 11yR + β(3yR − 2) + 2β2(1 + yR)}

+3(1 − 2β)2{2 − yR + 2β(yR − 1)} ln(1 − 2β)
]−1

, (19)

where β = M/R is the neutron star compactness and yR

is the solution at the neutron star surface to the first order
differential equation

ry′(r) + y(r)2 + y(r)eλ(r)[1 + 4πr2{p(r) − ε(r)}]

+r2Q(r) = 0. (20)

Here ε(r) is the energy density and p(r) is the pressure
obtained from the equation of state. In eq. (20), eλ(r) is
the metric function for a spherical star

eλ(r) =

[

1 −
2m(r)

r

]−1

(21)

and

Q(r) = 4πeλ(r)

[

5ε(r) + 9p(r) +
ε(r) + p(r)

c2
s

]

−6
eλ(r)

r2
− 4

e2λ(r)

r4
{m(r) + 4πp(r)r3}2. (22)

These equations are solved together with the TOV equa-
tions for hydrostatic equilibrium to obtain the neutron
star mass vs. radius relation and tidal deformabilities.
The tidal deformability of neutron stars has been stud-
ied [18,19,105–107] using many equations of state, includ-
ing polytropes, realistic nuclear interaction models, and
including the presence of quark matter.

4 Results

In the present work we generate 300000 neutron star equa-
tions of state by sampling from the Bayesian posterior
probability distributions for the ai and bi parameters. We
then compute for each equation of state the mass and
radius relation for a cold non-rotating neutron star. As
described in the introduction, the particle composition of
the neutron star inner core remains highly uncertain and
will depend sensitively on the density. For 1.4M⊙ neu-
tron stars, the most probable central density from our
modeling is around nc = 0.5 fm−3, which is three times
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Fig. 7. The blue band shows the 95% (68%) credibility range
for the mass-radius relationship of neutron stars obtained
within the present Bayesian modeling of the nuclear equation
of state. The red dashed curve area is obtained when we in-
clude only those equations of state that produce mass of neu-
tron stars greater 2.0 M⊙ neutron stars. The green dot-dashed
curve indicated 95% credibility when we include the EOS which
can make 2.17 M⊙ neutron stars.

nuclear saturation density. At this high density, nucleon
wave functions begin to overlap so that a description in
terms of conventional nucleonic degrees of freedom may
not be well justified. In addition, the chiral effective field
theory expansion is expected to be poorly behaved. Given
the lack of quality experimental constraints on the nu-
clear equation of state beyond nuclear saturation density,
we consider the simplest scenario and naively extrapo-
late to higher densities using the same functional form
as in eqs. (2) and (3). We have confirmed that it is al-
ways possible to modify the high-density equation of state
(n > 2n0) in our generated samples in order to reach
a maximum mass of 2.0M⊙ while imposing sub-luminal
speeds of sound [108,109]. In this work, however, we con-
sider the energy density functional as in eqs. (2) and (3),
keeping soft equation of states that produce mass-radius
relationships with Mmax < 2.0M⊙ for non-rotating neu-
tron stars.

In fig. 7 we show the 95% credibility band for the neu-
tron star mass-radius relationship. The blue band is the
result from all equations of state generated in our Bayesian
modeling, the red band shows the results from only those
EOSs that can produce Mmax ≥ 2.0M⊙, and the green
band further requires that Mmax ≥ 2.17M⊙. From the
constraint Mmax ≥ 2.0M⊙, the radius interval for 95%
credibility decreases by around 30% for typical neutron
stars with masses M ≃ 1.4M⊙. For example, the radius
credibility interval for a 1.4M⊙ neutron star decreases
from ∆R1.4 = 2.7 km to ∆R1.4 = 1.6 km when we im-
pose the additional maximum mass constraint. However,
the high-density equation of state remains highly uncer-
tain and a stiffening beyond n > 2n0 could repair those
models currently rejected from the red band without sig-
nificantly modifying R1.4. Bulk neutron star properties are
in fact strongly correlated with the pressure at n = 2n0. In

Fig. 8. Probability distribution for the pressure of beta equilib-
rium matter at the density n = 2n0 obtained from the present
Bayesian modeling of the neutron star equation of state.

fig. 8 we show the probability distribution for the pressure
of beta-equilibrium matter at n = 2n0 obtained within
our Bayesian modeling of the nuclear equation of state.
The pressure includes contributions from both nucleons
and leptons. We find that the most probable value of the
pressure is p̃2n0

= 19.5MeV fm−3, while the 95% cred-
ibility range for p2n0

is 13.8 ≤ p2n0
≤ 24.9MeV fm−3.

Recent work by Abbott et al. [9] re-analyzed data from
GW170817 to obtain for the 90% confidence interval on
the pressure 11.235 ≤ p2n0

≤ 38.7MeV fm−3, with central
value of pressure p2n0

= 21.8MeV fm−3. We note that the
combined predictions from nuclear theory and experiment
obtained in our work lies completely within the range from
gravitational wave analyses.

Table 3 shows the statistical distribution for neutron
star radii as a function of mass from the energy density
functionals constructed in the present work. At the 95%
credibility level, the radius of a 1.4M⊙ neutron star is con-
strained to within 2.7 km, having a most probable value
of R1.4 = 12.0 km. We observe that the most probable ra-
dius and the 95% credibility region for the radius do not
change rapidly in the mass range between 1.0 and 1.5M⊙.
Compared with the previous mass and radius range from
X-ray burst data analysis, our results from the energy
density functionals based on chiral effective field theory
and nuclear experiments give similar results to Steiner
et al. [56, 57, 110]. Current analysis of tidal deformabil-
ity constraints from GW170817 [9] give for the radius of
M ∼ 1.4M⊙ neutron stars the value R = 11.9+1.4

−1.4 km.
This is in close agreement with our credibility interval for
the mass and radius from nuclear modeling.

A key quantity associated with the possibility of phase
transitions in neutron stars is the central density of the
inner core. In fig. 9 we show the resulting statistical dis-
tribution of central densities for neutron star masses M =
1.2, 1.4, 1.6, 1.8M⊙ from our Bayesian modeling of the nu-
clear equation of state. Generically, the most probable cen-
tral density increases with the mass of the neutron star.
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Table 3. Statistical radius constraints for a given neutron star
mass from the 300000 energy density functionals constructed in
the present work. The quantity R̃ represents the most probable
radius for a given mass, while R−2σ (R+2σ) and R−σ (R+σ)
indicates lower (upper) limits of 95% and 68% credibility on
the radius.

M R−2σ R−σ R̃ R+σ R+2σ

(M⊙) (km) (km) (km) (km) (km)

1.00 10.70 11.56 12.25 12.57 12.95

1.10 10.61 11.53 12.25 12.56 12.94

1.20 10.51 11.48 12.20 12.54 12.92

1.30 10.39 11.43 12.20 12.52 12.90

1.40 10.26 11.36 12.15 12.48 12.87

1.50 10.11 11.27 12.10 12.44 12.82

1.60 9.99 11.16 12.05 12.37 12.76

1.70 9.89 11.04 12.00 12.29 12.68

1.80 9.89 10.92 11.85 12.19 12.59

1.90 10.00 10.82 11.75 12.06 12.46

2.00 10.20 10.77 11.55 11.91 12.32

The 68%(±σ) and 95%(±2σ) credibility intervals for the
central density widen as the mass of the neutron star in-
creases. This implies that the uncertainty increases as the
baryon number density increases. We see that the lightest
neutron stars (with M ≃ 1.2M⊙) are predicted on aver-
age to have central densities less than about three times
normal nuclear matter density n0. However, for heavier
neutron stars with mass M ≃ 1.8M⊙, the most probable
central density is greater than four times nuclear satu-
ration density and the distribution extends significantly
higher to 6–7n0, where a description in terms of well de-
fined nucleonic degrees of freedom would be questionable
due to the fact that the nucleons are strongly overlapping.
Nevertheless, as a minimal scenario we presently assume
no phase transitions as well as the absence of higher-order
powers of the Fermi momentum in the nuclear energy den-
sity functional.

Most of the equations of state derived from the
Bayesian posterior probability distributions produce a
mass-radius relation with a maximum mass Mmax >
2M⊙. In fig. 10 we show the probability distribution for
this maximum mass, which has a most probable value of
2.14M⊙ and an average value of 2.04M⊙. From observa-
tional data associated with the electromagnetic counter-
part to GW170817, numerous authors have argued that
the most likely post-merger object was a relatively long-
lived hypermassive neutron star. Such a scenario rules
out both very soft and very stiff equations of state, the
former would have led to a prompt collapse and black
hole formation, while the latter would have resulted in
a very long-lived supramassive neutron star. These argu-
ments [111–113] have been used [11,12,14,15] to give the

Fig. 9. Probability distribution for the neutron star central
density nc obtained in our Bayesian modeling for a series of
masses M = 1.2, 1.4, 1.6, 1.8 M⊙.

first observational upper bounds on the maximum neutron
star mass Mmax < 2.2–2.3M⊙. In our modeling approx-
imately 75% of the equations of state give a maximum
neutron star mass greater than 2.0M⊙, and very few pro-
duce maximum masses greater than Mmax = 2.3M⊙ as
seen in fig. 10. We have also included constraints from the
observed M = 2.17+0.11

−0.10 M⊙ neutron star from ref. [63].
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Fig. 10. Probability distribution (red) for the maximum neu-
tron star mass derived from our Bayesian modeling of the
nuclear equation of state including constraints from nuclear
theory and experiment. The blue dashed line represents the
probability distribution when we include in our posterior the
M = 2.17+0.11

−0.10 M⊙ observation [63].

Since the mass distribution has a large variance, we im-
pose the full posterior in our Bayesian analysis (see e.g.,
refs. [114,115]). The modified maximum mass distribution
is shown as the blue band in fig. 10.

In fig. 11 we show the neutron star energy density and
pressure as a function of the total baryon number density.
The red (blue) band shows the range of equations of state
when we impose that the maximum mass be greater than
2.0M⊙ (2.17M⊙). The EOS based on the SLy4 Skyrme
effective interaction is added for comparison. Note that
SLy4 gives a maximum neutron star mass of 2.06M⊙.
Since we sample 300000 equations of state, these bands
may be useful to test whether other models can reach cur-
rent maximum neutron star mass constraints.

In fig. 12 we show the probability distribution for the
radius of a 1.4M⊙ neutron star obtained within the cur-
rent modeling of the equation of state. The most probable
value of the radius is R1.4 = 12 km, but there is a large
asymmetry about this central value. In particular, the dis-
tribution extends to small radii close to R1.4 ≃ 10 km
for the softest equations of state generated within our
Bayesian analysis. Although such models typically pro-
duce maximum neutron star masses Mmax < 2M⊙, as
mentioned earlier it is possible to modify the high-density
equation of state (n > 2n0) to meet this astrophysical
constraint while not changing significantly the radius of a
1.4M⊙ neutron star. Only when we consider EOSs consis-
tent with the 2.17+0.11

−0.10 M⊙ constraint do the radii signif-

icantly shift to higher values. In this case R̃ = 12.21 km,
R−2σ = 11.43 km, R−σ = 11.84 km, R+σ = 12.56 km, and
R+2σ = 12.88 km. As further evidence that bulk neutron
star properties such as the radius and tidal deformabil-
ity are strongly correlated [5,47,116] with the pressure of
beta-equilibrium matter at the density n = 2n0, we show
in fig. 13 the probability distribution for the pressure and
radius. The dashed curve represents the phenomenological

Fig. 11. Neutron star energy density and pressure as a func-
tion of baryon number density. The red bands show the energy
density and pressure which produce maximum neutron star
masses greater than 2.0 M⊙, while the blue hatched regions
produce maximum neutron star masses greater than 2.17 M⊙.
The dashed green curves denote results from the SLy4 Skyrme
effective interaction.

relationship

p2n0
= pi + po

(

R1.4

12 km

)α

, (23)

where pi = 7.63MeV fm−3, po = 12.34MeV fm−3, α = 6,
and the correlation coefficient is rxy = 0.995.

From the inferred tidal deformability bounds for a
1.4M⊙ neutron star from GW170817, together with the
most conservative modeling of the equation of state, it has
been demonstrated [1–3,6] that the maximum radius for a
1.4M⊙ neutron star is given by R1.4 � 13.6 km. In fig. 12
we find that the equations of state employed in the present
work are apparently more constrained and typically gen-
erate radii R1.4 < 13.0 km. This is partly a result of our
limited treatment of the high-density equation of state.
With additional astrophysical constraints, such as simul-
taneous mass and radius measurements from the NICER
mission, additional tidal deformability bounds from grav-
itational wave observations, and possibly a measurement
of the moment of inertia of pulsar J0737-3039A, the prob-
ability distribution for the neutron star mass-radius rela-
tion can be narrowed by extending the present Bayesian
analysis [67].
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Fig. 12. Probability distribution (red) for the radius of a
1.4 M⊙ neutron star from the Bayesian analysis in the present
work. The blue dashed line represents the probability distri-
bution when we include in our posterior for R1.4 the M =
2.17+0.11

−0.10 M⊙ observation [63].

Fig. 13. Contour plot of the pressure of beta-equilibrium mat-
ter at the density n = 2n0 and radius of a 1.4 M⊙ neutron star.
The dashed curve represents the correlation in eq. (23).

In table 4 we show the statistical distribution of tidal
deformabilities for a given neutron star mass, ranging from
M = 1.0 − 2.0M⊙. The tidal deformability rapidly de-
creases as the mass of the neutron star increases. It was
shown [2] that the tidal deformability is proportional to
R7.5, and we confirm that our energy density functional
formalism constrained by nuclear theory and experiment
also follows such a relation. This suggests that the tidal
deformability would have an algebraic relation with the
mass of neutron stars. We find

Λ(M) = Λ1.4

(

1.4M⊙

M

)a+bM/M⊙

, (24)

where for our EDFs, (a = 3.76, b = 2.10) for the cen-
tral value of Λ50%, (a = 3.97, b = 1.73) for Λ+2σ, and
(a = 6.12, b = 1.17) for Λ−2σ. Compared with numerical

Table 4. Statistical constraints on the neutron star tidal de-
formability for a given mass from the 300000 energy density
functionals constructed in the present work. The quantity Λc

represents the most probable value of Λ for a given neutron star
mass, while Λ−2σ (Λ+2σ) and Λ−σ (Λ+σ) indicate the lower
(upper) limits of 95% and 68% credibility respectively.

M (M⊙) Λ−2σ Λ−σ Λc Λ+σ Λ+2σ

1.0 1240 2030 2800 3310 3880

1.1 673 1170 1590 1960 2300

1.2 372 688 976 1190 1410

1.3 208 412 604 738 879

1.4 116 249 379 465 557

1.5 65 150 240 296 357

1.6 37 91 150 189 230

1.7 21 54 93 121 148

1.8 13 32 58 76 95

1.9 9 20 34 48 61

2.0 7 12 19 29 38

Fig. 14. Probability distribution (red) for the tidal deforma-
bility of a 1.4 M⊙ neutron star obtained from the 300000 equa-
tions of state generated from the posterior distribution in our
Bayesian modeling. The blue dashed line represents the prob-
ability distribution when we include in our posterior for Λ1.4

the M = 2.17+0.11
−0.10 M⊙ observation [63].

calculations, this fitting function gives a relative error less
than 5% when Λ ≥ 100.

Assuming a common equation of state for the two
merging neutron stars, the LIGO collaboration re-
analyzed GW170817 and found a tighter bound of Λ1.4 =
190+390

−120 at the 90% confidence level [9]. From table 4 we
see that this value is consistent with the present model-
ing and does not impose strong constraints on our equa-
tions of state. In fig. 14 we show the probability distribu-
tion for the tidal deformability of a 1.4M⊙ neutron star
based on our Bayesian modeling of the nuclear equation
of state. The most probable value of the distribution oc-
curs at Λ1.4 = 379, and there is very little probability for
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Fig. 15. Joint probability distribution for Λ1 (more massive
companion) and Λ2 (less massive companion) associated with
the two neutron stars in the compact binary of GW170817. The
upper left half of the figure corresponds to the high-spins prior
mass distributions in ref. [55], while the lower right half of the
figure corresponds to the low-spins prior mass distributions. In
the top-left half, Λa = Λ1 and Λb = Λ2, while in the bottom-
right half Λa = Λ2 and Λb = Λ1.

tidal deformabilities extending beyond Λ1.4 = 600. How-
ever, the distribution extends to quite low values of Λ1.4

for the softest equations of state. Including also the re-
cent observation of a M = 2.17+0.11

−0.10 M⊙ neutron star into
the final posterior probability distribution, we show as the
blue curve in fig. 14 the resulting distribution for the tidal
deformability of a 1.4M⊙ neutron star. We see that the
probability to obtain tidal deformabilities with Λ1.4 < 200
become highly unlikely.

For the specific case of GW170817 we show in fig. 15
the joint probability distribution for Λ1 and Λ2 computed
within our Bayesian modeling of the equation of state for
a chirp mass

M =
(m1m2)

3/5

(m1 + m2)1/5
= 1.188M⊙. (25)

The individual probability distributions for m1 (heavier
neutron star) and m2 (lighter neutron star) are taken
from ref. [55], and once the component masses have been
sampled, we compute the associated tidal deformabilities
from our 300000 equations of state. In our calculations,
both neutron stars are assumed to be governed by the
same equation of state. Results for the tidal deformabil-
ity assuming the low-spin prior (|χ| ≤ 0.05) are shown
in the bottom-right half of fig. 15 for the case Λa = Λ2

and Λb = Λ1, while results assuming the high-spin prior
(|χ| ≤ 0.89) are shown in the top-left half of the figure
for the case Λa = Λ1 and Λb = Λ2. In the high-spin sce-
nario, the uncertainties in Λ1 and Λ2 are much larger than
that of the low-spin scenario because the mass range of
the two neutron stars is much larger in the former. For

Fig. 16. Estimates of the neutron skin thickness of 208Pb
from nuclear experiments (described in the text) and mean
field models fitted to neutron matter predictions from chiral
effective field theory.

the low-spins prior, the high-mass neutron star (m1, Λ1)
probability distribution peaks at Λ = 258 while the low-
mass neutron star distribution peaks at Λ = 628. These
results for the tidal deformabilities of the neutron stars
in GW170817 are consistent with the recent analysis in
ref. [25], though our distributions peak at larger values
of Λ.

Finally, we consider possible correlations between the
neutron star tidal deformability Λ and the neutron skin
thicknesses ∆Rnp of neutron-rich nuclei, especially 208Pb,
which has recently been investigated in ref. [1]. It is well
known [117] that the neutron skin thickness is highly cor-
related with the nuclear symmetry energy slope parameter
L in mean field theory calculations based on Skyrme en-
ergy density functionals or relativistic mean field (RMF)
models. An accurate measurement of the neutron skin
thickness may therefore well constrain L and the nuclear
equation of state beyond nuclear saturation density. At
the same time L is correlated with the neutron star ra-
dius and also the tidal deformability. Experimentally, the
neutron skin thickness of 208Pb has been investigated by
electric dipole response [118], exotic atoms [119], hadron
scattering [120], coherent pion photoproduction [121], the
PREX experiment at JLab [122, 123], and the combina-
tion of neutron star observations and chiral effective field
theory [124].

Figure 16 summarizes several of the constraints on the
neutron skin thickness of 208Pb from both nuclear exper-
iment and mean field model calculations. For the mean
field theory calculations, we obtained [72,125] Skyrme pa-
rameters fitted to the neutron matter equation of state
from chiral effective field theory [76, 78] and the binding
energies of doubly-closed-shell nuclei. From nuclear exper-
iments, we see that the overlapping region of neutron skin
has the boundary, 0.16 < ∆Rnp < 0.18 fm, which im-
plies that 40 ≤ L ≤ 60MeV. This range is consistent
with the energy density functionals studied in this work,
which from the posterior probability distributions have
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Fig. 17. Distribution of the 208Pb neutron skin thickness
∆Rnp and tidal deformability Λ1.4 of a 1.4 M⊙ neutron star
obtained from the energy density functionals employed in this
work.

L = 51 ± 9MeV. The strong correlation between L and
∆Rnp enables us to find a direct correlation between ∆Rnp

and Λ for neutron star deformabilities.
In the liquid drop model (LDM), the neutron skin

thickness is given by [126]

∆Rnp =

√

3

5

[

t −
e2

70

Z

J
+

5

2R
(b2

n − b2
p)

]

, (26)

where t is the distance between the neutron and pro-
ton mean surface location, Z is the proton number, R =
r0A

1/3 is the nuclear radius, and bn and bp are the surface
width of neutrons and protons. The quantities bn and bp

have value 1 fm in the standard LDM and t is given by

t =
3

2
r0

J

Q

I − c1

12
Z
J A−1/3

1 + 9
4

J
QA−1/3

, (27)

where I = (N−Z)/A, Q is the surface stiffness coefficient,

and c1 = 3e2

5r0
.

The LDM formula for the neutron skin thickness gives
only a rough estimate for nuclei and it deviates from mean
field theory calculations by about 10–20%. A better ap-
proximation to the results from mean field theory calcu-
lations can be obtained by choosing J and L as indepen-
dent variables to determine the neutron skin thickness for
208Pb:

∆Rnp(
208Pb) =

(

− 0.0787 + 0.006736
J

MeV

+0.0009554
L

MeV

)

fm. (28)

This fitting function gives a root-mean-square deviation
for the 208Pb neutron skin thickness RMSD(∆Rnp) =
9.787 × 10−3 fm compared to RMSD(∆Rnp) = 1.328 ×
10−2 fm for the fitting function containing only L. We used

a total of 48 mean field models both from Skyrme Hartree-
Fock and relativistic mean field theory covering the range
27 ≤ J ≤ 43MeV and 7.17 ≤ L ≤ 135MeV which is wide
enough to represent our energy density functional mod-
eling. Figure 17 shows the two dimensional contour plot
of ∆Rnp and Λ. These results also imply that a precise
measurement of Λ may help to constrain the neutron skin
thickness of 208Pb or vice versa.

In the future we plan to consider a wider range of mod-
els for the high-density equation of state, including phase
transitions as well as different powers of the Fermi momen-
tum beyond those in eq. (4). For example, we may modify
the high-density equation of state by assuming, e.g.,

p = phi

(

n

nhi

)Γi

, (29a)

ε = mbn +
1

Γ − 1
phi

(

n

nhi

)Γi

(29b)

when ni ≤ n ≤ ni+1. This equation of state can be com-
pleted by adding several transition densities ni and cor-
responding polytropic indices. Since nuclear theory and
experiment provide limited insight into the properties of
dense nuclear matter beyond 2n0, the choice of ni’s and
Γi’s can be arbitrary except that such equations of state
should reproduce known masses, radii, and tidal deforma-
bilities of neutron stars.

5 Summary

In the present work, we have described a Bayesian
approach for implementing constraints on the low- to
moderate-density equation of state from nuclear theory
and experiment. Microscopic calculations based on high-
precision two- and three-body chiral nuclear forces in-
form our beliefs about the parameters in the equation of
state before they are constrained by medium-mass and
heavy nuclei experimental data. The latter are incorpo-
rated through the Bayesian likelihood function, whose
product with the prior probability distribution generates
the posterior. The present framework can naturally ac-
commodate future developments in microscopic modeling
and rare-isotope experimental data as refinements to the
prior and likelihood functions.

Sampling from our Bayesian posterior probability dis-
tribution and extrapolating without modification to the
high-density regime, we then generate 300000 equations of
state for the statistical analysis of bulk neutron star prop-
erties, such as the radius and tidal deformability. The ma-
jority of the equations of state are relatively soft, as found
in previous works that implemented constraints on the
equation of state from chiral effective field theory. At the
95% credibility level, we find that the radius of a 1.4M⊙

neutron star lies in the range 10.0 km < R1.4 < 12.7 km,
with the most probable value at R = 12.0 km. Similarly,
we find that at the 95% credibility level the tidal de-
formability of a 1.4M⊙ neutron star lies in the range
100 < Λ1.4 < 500 with a most probable value of Λ = 350.
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These results are consistent with current observational
constraints from GW170817.

Future neutron star observations inconsistent with our
modeling would require significant modifications to the
high-density equation of state. Presently, however, our
results are consistent with available astrophysical con-
straints, except for a fraction (∼ 30%) of equations of state
that fail to generate 2.0M⊙ neutron stars. As pointed out
earlier in the text, this can be remedied by an artificial
stiffening of the equation of state beyond twice satura-
tion density n = 2n0 while leaving the bulk properties of
typical neutron stars with M ≃ 1.2–1.5M⊙ essentially
unchanged. The statistical credibility intervals for the
pressure, radius, and tidal deformability obtained in the
present work can be reduced by future gravitational wave
observations from Advanced LIGO and VIRGO, neutron
star mass and radius measurements from NICER, a mo-
ment of inertia measurement of pulsar J0737-3039A, nu-
clear experiments involving exotic isotopes, and improved
microscopic constraints from chiral effective field theory.
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