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Abstract 

The need for error modeling, multisensor fusion, and robust algorithms is becoming increasingly recognized in 

computer vision. Bayesian modeling is a powerful, practical, and general framework for meeting these requirements. 

This article develops a Bayesian model for describing and manipulating the dense fields, such as depth maps, 

associated with low-level computer vision. Our model consists of three components: a prior model, a sensor model, 

and a posterior model. The prior model captures a priori information about the structure of the field. We construct 

this model using the smoothness constraints from regularization to define a Markov Random Field. The sensor 

model describes the behavior and noise characteristics of our measurement system. We develop a number of sensor 

models for both sparse and dense measurements. The posterior model combines the information from the prior 

and sensor models using Bayes' rule. We show how to compute optimal estimates from the posterior model and 

also how to compute the uncertainty (variance) in these estimates. To demonstrate the utility of our Bayesian frame- 

work, we present three examples of its application to real vision problems. The first application is the on-line extrac- 

tion of depth from motion. Using a two-dimensional generalization of the Kalman filter, we develop an incremental 

algorithm that provides a dense on-line estimate of depth whose accuracy improves over time. In the second appli- 

cation, we use a Bayesian model to determine observer motion from sparse depth (range) measurements. In the 

third application, we use the Bayesian interpretation of regularization to choose the optimal smoothing parameter 

for interpolation. The uncertainty modeling techniques that we develop, and the utility of these techniques in various 

applications, support our claim that Bayesian modeling is a powerful and practical framework for low-level vision. 

1 Introduction 

Over the last decade, many low-level vision algorithms 

have been devised for extracting depth from intensity 

images. The output of such algorithms usually contains 

no indication of the uncertainty associated with the 

scene reconstruction. The need for such error modeling, 

however, is becoming increasingly recognized. This 

modeling is necessary because of the noise inherent in 

real sensors, and the desire to optimally integrate infor- 

mation from different sensors or viewpoints. 

This article presents a Bayesian model that captures 

the uncertainty associated with low-level vision proc- 

esses and is applicable to two-dimensional dense fields 

such as depth maps. Our model consists of three com- 

ponents. The prior model describes the world or its 

properties that we are trying to estimate. The sensor 

model describes how any one instance of this world is 

related to the data (such as images) that we acquire. 

The posterior model, which is obtained by combining 

the prior and sensor models using Bayes' rule, describes 

our current estimate of the world given the data we have 

observed. 

The main thesis of this paper is that Bayesian model- 

ing of low-level vision is both feasible and useful. In 

the paper, we develop a Bayesian framework for low- 

level vision problems such as surface interpolation and 

depth-from-motion. To show that our approach is feasi- 

ble, we build computationally tractable Bayesian models 

using Markov random fields. To show that these models 

are useful, we develop representations and algorithms 

that yield significant improvements in capability and 

accuracy over existing regularization- and energy-based 

low-level vision algorithms. 

The computationally tractable versions of Bayesian 

models we use involve estimating first- and second- 

order statistics. The first-order statistics of a probability 

distribution are simply its mean values. Many low-level 

vision algorithms already perform this estimation, 

either by explicitly using Bayesian models, or by using 
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opdmizxttion to find the best estimate (the best and mean 

estimates often coincide in these problems). The second- 

order statistics, which encode the uncertainty or the 

variance in these estimates, are used much less fie- 

quently. The application of uncertainty estimation in 

computer vision and robotics has previously been 

limited to systems that have a small number of param- 

eters, such as the position and orientation of a mobile 

robot or the location of discrete image features. In this 

article, we extend uncertainty modeling to dense cor- 

related fields such as the depth or optical flow maps 

commonly used in low-level computer vision. 

1.I Modeling Uncertainty in Low-Level Vision 

Low-level visual processing is often characterized as the 

extraction of intrinsic images [Barrow and Tenenbaum 

1978] such as depth, orientation, or reflectance from 

the visual input (figure 1). A characteristic of these 

images is that they usually represent dense fields, that 

is, the information is available at all points in the two- 

dimensional visual field. This dense, retinotopic infor- 

mation is then segmented and grouped into coherent 

surfaces, parts, and objects by later stages of processing. 

Intrinsic images form a useful intermediate represen- 

tation and facilitate the task of higher-level processing. 

Intrinsic characteristics such as depth or reflectance are 

more useful than raw intensifies for scene understanding 

or object recognition since they are closer to the true 

physical characteristics of the scene. This intermediate 

representation also provides a framework for integrating 

information from multiple low-level vision modules 

such as stereo, shading, occluding contours, motion, 

and texture, and for integrating information over time. 

Much of the processing that occurs in these early 

stages of vision deals with the solution of inverse prob- 
lems [Horn 1977]. The physics of image formation con- 

found many different phenomena such as lighting, sur- 

face reflectance, and surface geometry. Low-level visual 

processing attempts to recover some or all of these 

features from the intensity image by making assumptions 

about the world being viewed. For example, when solv- 

ing the surface interpolation problem--the determination 

Objects, 
HIGH parts obJect-centered 

[ 
( t r  Coordinate -x  

ansformationj) 

Surfaces 
INTERMEDIATE "21/2-D Sketch" viewer-centered 

LOW Image(s) eye-centered 
(retmotopic) 

blg. 1. Visual processing hierarchy. 



Bayesian Modeling of Uncertainty in Low-Level Vision 273 

of a dense depth map from a sparse set of depth val- 

ues- the  assumption is made that surfaces vary smoothly 

in depth (except at object or part boundaries). 

The inverse problems arising in low-level vision are 

generally ill-posed [Poggio et al. 1985], because the 

data insufficiently constrains the desired solution. One 

approach to overcoming this problem, called regulari- 
zation [Tikhonov and Arsenin 1977], imposes weak 

smoothness constraints on the solution in the form of 

stabilizers. Another approach, Bayesian modeling 
[Geman and Geman 1984], assumes a prior statistical 

distribution for the data being estimated and models the 

image formation and sensing phenomena as stochastic 

or noisy processes. This latter approach is the one we 

examine in this article. I 

Currently, both regularization and Bayesian modeling 

techniques are used only to determine a single (optimal) 

estimate of a particular intrinsic image. Bayesian model- 

ing, however, can also be used to calculate the uncer- 

tainty in the estimate. Modeling this uncertainty, which 

is the main subject of this article, is important for sev- 

eral reasons. First, because the sensors used in vision 

applications are inherently noisy, the resulting estimates 

are themselves uncertain, and we must quantify this 

uncertainty if we are to develop robust higher-level 

algorithms. Second, the prior models used in low-level 

vision can be uncertain (because of unknown param- 

eters) or inaccurate (due to oversimplification). Third, 

the data obtained from the sensors and subsequent cal- 

culations may be insufficient to uniquely constrain the 

solution, or it may require integration with other meas- 

urements. The Bayesian approach allows us to handle 

both of these cases, namely underdetermined and over- 

determined systems, in a single unified framework. 

Lastly, uncertainty modeling is essential for dynamic 

estimation algorithms whose accuracy improves over 

time. These dynamic algorithms can then be applied 

to problems such as the on-line extraction of depth from 

motion [Matthies et al. 1989]. 

The Bayesian approach to low-level vision has other 

advantages as well. We can use this approach to estimate 

statistically optimal values for the global parameters 

that control the behavior of our algorithms (section 8.3). 

We can generate sample elements from our prior dis- 

tributions to determine if they are consistent with our 

intuitions about the visual world or the class of objects 

being modeled (section 4.1). We can also integrate prob- 

abilistic descriptions of our sensors--which can often 

be obtained by calibration or analysis--into our estima- 

tion algorithms (section 5). 

The specific Bayesian models we develop in this 

article are based on Markov Random Fields (MRFs), 

which describe complex probability distributions over 

dense fields in terms of local interactions. Markov ran- 

dom fields have several features that make them attrac- 

tive for low-level vision. The MRF description is very 

compact, requiring the specification of only a few local 

interaction terms, while the resulting correlations can 

have infinite range. MRFs can also easily encode (and 

estimate) the location of discontinuities in the visual 

surface. Markov random fields are amenable to mas- 

sively parallel algorithms for computing the most likely 

or mean estimates. As we will see in this article, these 

same algorithms can be used for computing uncertainty 

estimates. Using such algorithms, we can directly ex- 

ploit the increasing parallelism that is becoming avail- 

able in image processing architectures. 

1.2 Previous Work 

The formulation of low-level vision as a transformation 

from input images to intermediate representations was 

first advocated by Barrow and Tenenbaum [1978] and 

Marr [1978]. Marr [1982] particularly stressed the im- 

portance of representations in developing theories about 

vision. Marr's idea of a "2I/2-D sketch" was further 

formalized when Terzopoulos [1988] proposed visible 

surface representations as a uniform framework for in- 

terpolating and integrating sparse depth and orientation 

information. More recently, Blake and Zisserman [1987] 

have suggested that discontinuities in the visible sur- 

face are the most stable and important features in the 

intermediate-level description, a view that seems to be 

echoed by Poggio et al. [1988]. 

The computational theories used in conjunction with 

these surface representations were formulated first in 

terms of variational principles by Grimson [1983] and 

Terzopoulos [1983], then later formalized using reg- 

ularization theory [Poggio, Torre, and Koch 1985; 

Terzopoulos 1988]. Several methods have been pro- 

posed for discontinuity detection, including continuation 

[Terzopoulos 1986b], Markov random fields [Marroquin 

1984], weak continuity constraints [Blake and Zisser- 

man 1987], and minimum-length encoding [Leclerc 

1989]. Similar energy-based models have also been ex- 

tended to full three-dimensional surfaces by Terzopoulos 

et al. [1987]. 

The common element in these computational theories 

is the minimization of a global energy function composed 
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of many local energy components. This minimization 

is usually implemented using iterative algorithms. The 

earliest cooperative algorithms were applied to the 

stereo matching problem [Julesz 1971; Dev 1974; Marr 

and Poggio 1976]. A different class of iterative algo- 

rithms called relaxation labeling [Waltz 1975; Rosenfeld 

et al. 1976; Hinton 1977] was used to find solutions to 

symbolic constraint satisfaction problems. The idea of 

constraint propagation for numerical problems was first 

suggested by Ikeuchi and Horn [1981], and has been 

used in many subsequent low-level vision algorithms 

[Horn and Schunck 1981; Grimson 1983]. Multigrid 

methods [Terzopoulos 1983], which are based on multi- 

ple resolution representations [Rosenfeld 1980], have 

been used to speed up the convergence of numerical 

relaxation. 

The application of Bayesian modeling to low-level 

vision has received less attention. Markov random-field 

models have been used to characterize piecewise con- 

stant images [Geman and McClure 1987] or surfaces 

[Marroquin 1985]. Error models have been developed 

for stereo matching [Matthies and Shafer 1987] and for 

more abstract sensors [Durrant-Whyte 1987]. The use 

of different loss functions to derive alternative optimal 

posterior estimators has been studied by Marroquin 

[1985]. In the domain of real-time processing of dynamic 

data, the Kalman filter has been applied to the tracking 

of sparse features such as points or lines [Faugeras et al. 

1986; Rives et al. 1986], and has recently been extended 

to dense fields [Matthies et al. 1989]. Here, we apply 

the Bayesian approach to low-level vision by analyzing 

the uncertainty inherent in dense estimates and by devel- 

oping a number of new algorithms based on the Bayes- 

ian framework. 

Energy-based and Bayesian models have been applied 

to a variety of low-level vision problems. The one that 

we examine in detail here is surface interpolation. Addi- 

tional low-level vision problems include stereo [Barnard 

and Fischler 1982], motion [Horn and Schunck 1981], 

and shape from shading [Ikeuchi and Horn 1981]. While 

these latter applications are not examined in this article, 

the same uncertainty modeling techniques that are 

developed here can be applied to these problems. 

Surface interpolation is often seen as a post-processing 

stage that integrates the sparse output of independent 

low-level vision modules [Marr 1982], although it has 

recently been used in conjunction with other algorithms 

such as stereo [Hoff and Ahuja 1986; Chen and Boult 

1988]. Surface interpolation was first studied in the con- 

text of stereo vision [Grimson 1981]. An interpolation 

algorithm based on variational principles was developed 

by Grimson [1983], then extended to use multiresolution 

computation by Terzopoulos [1983], and finally refor- 

mulated using regularization [Poggio, Torre, and Koch 

1985]. Recent research has focused on using Markov 

random fields [Marroquin 1984], continuation methods 

[Terzopoulos 1986b], and weak continuity constraints 

[Blake and Zisserman 1987] to detect discontinuities 

in the visible surface. 

1.3 Overview 

This article first reviews the representations used with 

low-level vision and the Bayesian modeling framework. 

Next, this framework is instantiated by developing prior 

models, sensor models, and posterior models, and ex- 

tended to a dynamic environment using the Kalman 

filter. Finally, we describe a number of applications 

where our Bayesian modeling framework has been 

used. A more detailed overview of the article follows. 

In section 2, we introduce visible surface representa- 

tions as a framework for sensor integration and dynamic 

vision. A discrete implementation of this representation 

is presented, and the cooperative solution of regularized 

problems is explained. In section 3, we introduce Baye- 

sian models and Markov random fields and explain the 

role of prior models, sensor models, and posterior 

models in the context of low-level vision. In section 4, 

we use the stabilizer from regularization to define our 

probabilistic prior model. Using Fourier analysis, we 

show that the prior model is correlated Gaussian noise 

with a fractal power spectrum. In section 5, we apply 

probabilistic modeling to the sensors used in low-level 

vision. We develop the equivalence between a point sen- 

sor with Gaussian noise and a simple spring constraint, 

and show how to extend this model to other uncertainty 

distributions and to dense measurements such as 

correlation-based optical flow. 

After developing the prior and sensor models, we 

examine the characteristics of the posterior model in 

section 6. We show how the uncertainty in the posterior 

estimate can be calculated from the energy function of 

the system, and we devise two new algorithms to per- 

form this computation. In section 7, we extend our 

model to temporally varying data by developing a two- 

dimensional generalization of the Kalman filter that can 

be used to track a time-evolving surface. 

In section 8, we describe a number of problems to 

which our Bayesian framework has been applied. The 
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first application is an incremental depth-from-motion 

algorithm [Matthies et al. 1989]. This algorithm com- 

putes a dense estimate of scene depth that improves as 

more images are acquired. The second application com- 

putes the observer or object motion, when given two 

or more sets of sparse depth measurements, without 

using any correspondence between the sensed points 

[Szeliski 1988]. The third application estimates the opti- 

mal amount of smoothing to be used in regularization 

by maximizing the likelihood of the data points that 

were observed [Szeliski 1989]. To conclude, we dis- 

cuss the relative merits of mechanical and probabilistic 

models (section 9) and present some open questions 

and areas of future research (section 10). 

2 Representations for Low-Level Vision 

Representations play a central role in the study of any 

visual processing system [Marr 1982]. The representa- 

tions and algorithms that describe a visual process are 

a particular instantiation of a general computational 

theory, and are constrained by the hardware that is avail- 

able for their implementation. Representations make 

certain types of information explicit, while requiring 

that other information be computed when needed. For 

example, a depth map and an orientation map may rep- 

resent the same visible surface, but complex computa- 

tions may be required to convert from one representa- 

tion to the other. The choice of representation becomes 

crucial when the information being represented is un- 

certain [McDermott 1980]. 

In this section, we examine representations suitable 

for modeling visible surfaces. In the context of the 

hierarchy of visual processing (figure 1), these represen- 

tations are at the interface between the low and interme- 

diate stages of vision. We first review retinotopic visible 

surface representations and discuss their use. We then 

examine the use of regularization, finite element anal- 

ysis, and relaxation for specifying and solving low-level 

vision problems. This examination is followed by a 

review of multiresolution algorithms and discontinuity 

detection. 

2.1 Visible Surface Representations 

The visible surface representations tht we use here are 

related to Marr's 2½-dimensional (2½-D) sketch [Mart 

1978] and Barrow and Tenenbaum's intrinsic images 

[Barrow and Tenenbaum 1978]. The 2 a/2-D sketch is a 

retinotopic map that encodes local surface orientation 

and distance to the viewer as well as discontinuities in 

the orientation and distance maps. Intrinsic images rep- 

resent scene characteristics such as distance, orienta- 

tion, reflectance, and illumination in multiple retino- 

topic maps. 

Visible surface representations can be used to inte- 

grate the output of different vision modules or different 

sensors (figure 1). They can also be used to integrate 

information from different viewpoints and to fill in or 

smooth out information obtained from low-level proc- 

esses. Two possible techniques for performing this inte- 

gration and interpolation are regularization and Markov 

random-field modeling. 

Before proceeding with a description of these tech- 

niques, we should briefly discuss the question: "Are 

visible surface representations necessary?" The early 

work on intermediate representations [Barrow and 

Tenenbaum 1978; Marr 1978] was motivated by a disap- 

pointment with feature-based approaches to vision and 

a desire to incorporate computational models of image 

formation. Some of the recent research in computer 

vision, however, has suggested that image features can 

be grouped and matched directly to a model [Lowe 1985] 

or to a more general parts description [Pentland 1986]. 

Psychophysical studies and recent computational 

modeling suggest that both models of visual processing 

(hierarchical and direct) are present in human vision 

and can be used in computer vision applications. The 

human ability to obtain depth perception from random- 

dot stereograms [Julesz 1971] strongly suggests an inde- 

pendent stereo-vision module that produces an interme- 

diate depth map. Studies in neurophysiology show the 

existence of multiple visual maps in the cortex [Van 

Essen and Maunsell 1983]. These multiple maps may 

be the structure used by intermediate-level processes 

involving visual attention and preattentive grouping. In 

this article, we will concentrate on the formation and 

representation of intermediate-level maps and ignore 

the problems associated with higher levels of visual 

processing. 

2.2 Regularization 

Intensity images and visible surface representations 

define the input and output representations for low-level 

vision processes. To complete the description of a low- 

level vision module, we must define the algorithm that 

maps between these two representations. A number of 

general techniques have been proposed for this task, 

including constraint propagation [Ikeuchi and Horn 
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1981], variational principles [Grimson 1983], and regu- 

larization [Poggio, Torre, and Koch 1985]. Here, we 

will use regularization since it subsumes most of the 

previous methods and provides a general framework 

for many low-level vision problems. 

The inverse problems arising in low-level vision are 

generally ill-posed [Poggio, Torre, and Koch 1985], that 

is, the data insufficiently constrains the desired solution. 

Regularization is a mathematical technique, used to 

solve ill-posed problems, that imposes weak smooth- 

ness constraints on possible solutions [Tikhonov and 

Arsenin 1977]. Given a set of data d from which we 

wish to recover a regularized solution u, we define an 

energy function gd(U, d) that measures the compatibil- 

ity between the solution and the sampled data. We then 

add a stabilizing function gp(U) that embodies the 

desired smoothness constraint, and we find the solution 

u* that minimizes the total energy 

g(u) = (1 - ~,)gd(U, d) + ~,gp(U) (1) 

The regularization parameter k controls the amount of 

smoothing performed. In general, the data term d and 

the solution u can be vectors, discrete fields (two- 

dimensional arrays of data such as images or depth 

maps), or analytic functions (in which case, the ener- 

gies are functionals). 

For the surface interpolation problem, the data is usu- 

ally a sparse set of points {d,}, and the desired solu- 

tion is a two-dimensional function u(x, y). The data 

compatibility term can be written as a weighted sum 

of squares 

1 
gd(U, d) = ~ ~ c,[u(x,, Yi) - di] 2 (2) 

i 

where the confidence c i is inversely related to the vari- 

ance of the measurement di, that is, ci = aT e. Two ex- 

amples of possible smoothness functionals (taken from 

Terzopoulos [1986b]) are the membrane 

1 
f f (:x + u;) dx dy, (3) gp(u) = 

which is a small deflection approximation of the surface 

area, and the thin plate 

'ff ap(U) = g (u~ + 2u~ + u~) dr dy (4) 

which is a small deflection approximation of the surface 

curvature (note that here the subscripts indicate partial 

derivatives). These two models can be combined into 

a single functional 

1 

= ~ f f  p(x, y){[l - r(x, y)l[ux 2 + u~] gp(U) 
+ r(x, y)[u~ + 2U2y + U~y]} dr dy (5) 

where p(x, y) is a rigidity function, and ~'(x, y) is a ten- 

sion function. The rigidity and tension functions can 

be used to allow depth (p(x, y) = 0) and orientation 

(r(x, y) -- 0) discontinuities. The minimum energy 

solutions of systems that use the above smoothness con- 

straint are "generalized piecewise continuous splines 

under tension" [Terzopoulos 1986b]. 

As an example, consider the nine data points shown 

in figure 2a. The regularized solution using a continu- 

ous thin plate model is shown in figure 2b. We can also 

manually introduce two depth discontinuities and two 

orientation discontinuities to obtain the solution shown 

in figure 2c. These figures show some of the flexibility 

available with controlled-continuity splines, but do not 

address the problem of automatic discontinuity detection. 

The stabilizer gp(U) described by (5) is an example 

of the more general controlled-continuity constraint 

1,n~__o f m, gp(U) = ~ Wm(X) ~ jl! ' -Jd[  
Jl + ,  • • +Jd = m  

O m u ( x )  [2 
x Ox~T ~- 7 -OxJf dr (6) 

where x is the (multidimensional) domain of the func- 

tion u. 

Regularization has been applied to a wide variety of 

low-level vision problems [Poggio, Torre, and Koch 

1985]. In addition to surface interpolation, it has been 

used for shape from shading [Horn and Brooks 1986], 

stereo matching [Barnard 1989; Witkin et al. 1987], and 

optical flow [Anandan 1989]. Problems such as surface 

interpolation and optical-flow smoothing have a quad- 

ratic energy function, and hence have a single energy 

minimum. Other problems, such as stereo matching, 

may have many local minima and may require different 

algorithms for finding the optimum solution [Szeliski 

1986; Barnard 1989; Witkin et al. 1987]. 

2.3 Finite Element Discretization 

To find the minimum energy solution on a digital or 

analog computer, it is necessary to discretize the domain 

of the surface u(x) using a finite number of nodal vari- 

ables. The usual and most flexible approach is to use 

finite element analysis [Terzopoulos 1988]. Here, we 
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Fig. 2. Sample data and interpolated surface: (a) data points; (b) con- 

tinuous thin plate solution; (c) thin plate solution with two depth and 

two orientation discontinuities. The depth discontinuities are shown 

as missing line segments, while the orientation discontinuities appear 

as white dots at the nodes. 

restrict our attention to rectangular domains on which 

a rectangular fine-grained mesh has been applied. The 

topology of this mesh is fixed and does not depend on 

the location of the data points. It can thus be used for 

integrating data from various sensors or from various 

viewpoints. The fine-grained nature of the mesh leads 

to a natural implementation on a massively parallel array 

of processors. This kind of massively parallel network 

is similar to the visual processing architecture of the 

retina and primary visual cortex. 

When we apply finite element analysis to the func- 

tionals used in surface interpolation, using a triangular 

conforming element for the membrane and a noncon- 

forming rectangular element for the thin plate 

[Terzopoulos 1988], we obtain the energy equations 

1 
Ep(U) = ~ E [(Ui+I,J -- Uid)2 + (Uid+l -- Uid )21 

(i J) (7) 

for the membrane (the subscripts indicate spatial posi- 

tion) and 

1 
Ep(u) = ~ h - 2 ~  --] [(ui+u - 2uij + Ui-ld): 

q j) 

+ 2(Ui+I , j+ 1 -- Uzj+l -- Ui+I, J -']'- bttj) 2 

-'}- (Ut,j+ 1 --  2u,j + t l id_l )  2] (8)  

for the thin plate, where h = I xl = I yl is the size 

of the mesh (isotropic in x and y). These equations hold 

at the interior of the surface. Near border points or dis- 

continuities some of the energy terms are dropped or 

replaced by lower continuity terms [Szeliski 1989; Ter- 

zopoulos 1988]. The equation for the data-compatibility 

energy is simply 

1 
Ed(U , d)  = ~ E eid(blid --  d / j )  2 (9) 

0,J) 

with c/j = 0 at points where there is no input data. 

We can concatenate all the nodal variables { u J  into 

a single vector u, and write the prior energy model as 

one quadratic form 

1 
Ep(u) = ~ urapu (10) 

This quadratic form is valid for any controlled-continuity 

stabilizer, though the coefficients will vary according 

to the structure of the discontinuities. The stiffness 

matrix Ap is typically very sparse, but it is not tightly 

banded because of the two-dimensional structure of the 
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field. The rows of Ap are fields of the same dimen- 

sionality and extent as the discretized field u and can 

be described in terms of computational molecules [Ter- 

zopoulos 1988]. For the membrane and thin plate, typi- 

cal molecules are 

- 1  4 - 1  and h -2 1 - 8  20 - 8  1 

-1  2 - 8  2 

1 

For the data-compatibility model we can write 

1 
Ed(u, d) = ~ (u - d)rAd(U - d) (11) 

where A d is usually diagonal (for uncorrelated sensor 

noise) and may contain zeros along the diagonal. The 

resulting overall energy function E(u) is quadratic in u, 

1 urAu _ urb + c (12) e ( u )  = 

with 

A = Ap + A d and b = Add (13) 

The energy function has a minimum at u*, the solu- 

tion to the linear system of algebraic equations 

A u  = b (14) 

It can thus be rewritten as 

1 
E(u)  = ~ (u - u*)TA(u - u*) + k (15) 

2.4 Relaxation 

Once the parameters of the energy function have been 

determined, we can calculate the minimum energy solu- 

tion u* using relaxation. This approach has two advan- 

tages over direct methods such as Gaussian elimination 

or triangular decomposition. First, direct methods do 

not preserve the sparseness of the A matrix and thus 

require more than just a small amount of storage per 

node. Second, relaxation methods can be implemented 

on massively parallel, locally connected arrays of proc- 

essors (or even on analog networks [Koch et al. 1986]). 

A number of relaxation methods such as Jacobi, Gauss- 

Seidel, successive overrelaxation (SOR), and conjugate 

gradient have been used for visible surface interpola- 

tion [Terzopoulos 1988; Blake and Zisserman 1987; 

Choi 1987]. 

The simplest algorithm to implement is Gauss-Seidel 

relaxation, where nodes are updated one at a time. This 

method converges faster than the parallel Jacobi method 

and can easily be converted to a stochastic version 

known as the Gibbs Sampler (see section 4.2). At each 

step, a selected node is set to the value that locally 

minimizes the energy function. For node ui, this local 

energy (with all other nodes fixed) is 

l aziu~ + Ij~N~ - b~ ut + k (16) E(ui) = ~ a,juj 

where the subscripts i and j are actually two-element 

vectors that index the image position, and Nt is the 

neighborhood of i (the indexes of nonzero entries in 

row i of matrix A). The node value that minimizes this 

energy is therefore 

tt? =aisll~bi--j~Naijujl (17) 

Note that it is possible to use a parallel version of 

Gauss-Seidel relaxation so long as nodes that are depen- 

dent (have a nonzero aq entry) are not updated simul- 

taneously. This parallel version can be implemented on 

an array of processors for greater computational speed. 

2.5 Multiresolution Representations and Algorithms 

Unfortunately, the straightforward application of Gauss- 

Seidel relaxation to surface interpolation usually results 

in an extremely slow convergence rate (see [Terzopoulos 

1983; Szeliski 1989, 1990b] for examples). This slow 

convergence may not be a problem in a dynamic system 

(section 7) where iteration can proceed in parallel with 

data acquisition and the system can converge to a good 

solution over time. z However, for one-shot interpolation 

problems, the convergence speed may be critical. 

To accelerate the convergence of relaxation algo- 

rithms, we can use a number of multiresolution algo- 

rithms. These algorithms, which operate on pyramid 

image structures, have proved to be very useful for effi- 

ciently solving many image-processing tasks [Rosenfeld 

1984]. A popular multiresolution algorithm for visible 

surface interpolation is multigrid relaxation, which was 

first applied to this problem by Terzopoulos [1983]. 

Multigrid algorithms are based on the observation that 

local iterative methods are good at reducing the high- 

frequency components of the interpolation error, but are 

poor at reducing the low-frequency components [Hack- 

bush 1985; Briggs 1987]. By solving related problems 
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on coarser grids, this low-frequency error can be reduced 

more quickly. To develop a multigrid algorithm, several 

components must be specified: the method used to 

derive the energy equations at the coarser levels from 

the fine-level equations; a restriction operation that 

maps a solution at a fine level to a coarser grid; apro- 

longation operation that maps from the coarse to the 

fine level; and a coordination scheme that specifies the 

number of iterations at each level and the sequence of 

prolongations and restrictions. 

Conventional multigrid algorithms keep a full copy 

of the current depth estimate at each level. An alterna- 

tive to this absolute multiresolution representation is 

a relative representation [Szeliski 1989], where each 

level encodes details pertinent to its own scale, and the 

sum of all the interpolated levels provides the overall 

depth map estimate. The relative representation is thus 

similar to a band-pass image pyramid [Burt and Adelson 

1983; Crowley and Stern 1982], while the absolute rep- 

resentation is similar to a low-pass pyramid. The rela- 

tive mukiresolution representation offers several possible 

advantages over the usual absolute representation. Fully 

parallel relaxation can be used with this representation, 

and yields a multiscale decomposition of the visible sur- 

face. Discontinuities can be assigned to just one level, 

thus permitting a better description of the scene. The 

use of relative representations can also increase the 

descriptive power of a method when uncertainty is 

being modeled [McDermott 1980]. Unfortunately, 

designing a set of spline energies for each level that 

decompose the surface into a reasonable multiresolution 

description while maintaining the faithfulness to the 

original energy function is a difficult task. A solution 

based on Bayesian modeling is presented in [Szeliski 

1989]. Additional examples of relative representations 

can also be found in [Szeliski and Terzopoulos 1989b]. 

Perhaps the most promising fast relaxation algorithm 

for visual surface interpolation is a multiresolution ex- 

tension to conjugate gradient descent [Szeliski 1990b]. 

In this approach, the usual nodal basis set u is replaced 

by a hierarchical basis set v [Yserentant 1986]. Because 

certain elements of the hierarchical basis set have larger 

support than the nodal basis elements, the relaxation 

algorithm converges more quickly (this also manifests 

itself as a lowered condition number [Yserentant 1986; 

Szeliski 1990b]). The hierarchical basis conjugate gra- 

dient approach allows us to minimize exactly the same 

energy as the original one derived from the finest finite 

element grid. It does this by using the pyramid only 

to smooth the residual inside the conjugate gradient 

computation. As a result, this new approach is appli- 

cable to nonlinear problems such as shape from shading 

[Szeliski 1990a]. 

Mulfiresolution algorithms are an essential compo- 

nent of relaxation-based low-level vision algorithms and 

the application of Bayesian modeling to these problems. 

For reasons of brevity, however, we cannot present them 

here in more detail than what we have sketched above. 

The reader is referred to [Szeliski 1989] for a more 

detailed exposition of these algorithms. 

2.6 Discontinuities 

Representing and localizing discontinuities is an impor- 

tant component of surface interpolation and other low- 

level vision processes. The detection of intensity discon- 

tinuities (edge detection) has a long history, dating back 

to the earliest days of the computer vision field [Roberts 

1965; Hueckel 1971; Marr and Hildreth 1980; Canny 

1986]. The estimation of depth and orientation discon- 

tinuities in parallel with surface interpolation was first 

studied by Terzopoulos [1986b] using continuation 

methods, which gradually introduce discontinuities at 

locations of high curvature. Markov random fields have 

been used in conjunction with stochastic optimization 

by Geman and Geman [1984] and Marroquin [1984]. 

A deterministic approximation to these stochastic algo- 

rithms that uses analog "neural nets" was studied by 

Koch et al. [1986] and more recently by Geiger and 

Girosi [1989]. Weak continuity constraints, which are 

similar to Markov random-field descriptions, have been 

used in the graduated nonconvexity (GNC) algorithm 

developed by Blake and Zisserman [1987]. The use of 

intensity edges for constraining the location of depth 

discontinuities has been studied by Gamble and Poggio 

[1987]. 

The accurate localization of depth discontinuities is 

an important element of visible surface estimation. 

Without discontinuities, regularization-based methods 

tend to over-smooth the data, and the accuracy of the 

reconstruction is reduced. Discontinuity detection can 

also be combined with surface segmentation [Leclerc 

1987], which is an important first step in higher-level 

analysis. It has even been recently suggested that dis- 

continuities in the visible surface are more important 

than the depth values themselves [Blake and Zisserman 

1987; Poggio et al. 1988]. In this article, we ignore the 

problem of discontinuity detection. While this problem 

fits in well with the Bayesian framework [Geman and 
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Geman 1984; Marroquin 1984], it adds an extra level 

of complexity to both the implementation and exposi- 

tion of the interpolation algorithms. We consider the 

automatic detection and localization of discontinuities 

to be an important extension that should be added to 

the work described here. 

3 Bayesian Models and Markov Random Fields 

In the early days of computer vision, Bayesian modeling 

was a popular technique for formulating estimation and 

pattern classification problems [Duda and Hart 1973]. 

This probabilistic approach fell into disuse as the focus 

of computer vision research shifted to understanding 

the physics of image formation and the solution of in- 

verse problems. Bayesian modeling has had a recent 

resurgence, due in part to the increased sophistication 

available from Markov random-field models, and due 

to a realization of the importance of sensor and error 

modeling. In this section, we briefly review the general 

Bayesian modeling framework. This is followed by an 

introduction to Markov random fields and their imple- 

mentation. We then discuss the utility of probabilistic 

models in later stages of vision and preview the use 

of Bayesian modeling in the remainder of the article. 

3.1 Bayesian Models 

A Bayesian model is a statistical description of an esti- 

mation problem that consists of two separate compo- 

nents. The first component, the prior model, p(u), is 

a probabilistic description of the world or its properties 

before any sensed data is collected. The second compo- 

nent, the sensor model, p(dlu), is a description of the 

noisy or stochastic processes that relate the original 

(unknown) state u to the sampled input image or sensor 

values d. These two probabilistic models can be com- 

bined to obtain a posterior model, p(uld), which is a 

probabilistic description of the current estimate of u 

given the data d. To compute this posterior model we 

use Bayes' rule 

p(nld) - p(dlu)p(u) (18) 
p(d) 

where 

p(d) =~-~p(dlu) 
O 

In its usual application [Geman and Geman 1984], 

Bayesian modeling is used to find the maximum a 

posteriori (MAP) estimate, that is, the value of u that 

maximizes the conditional probability p(uld). In the 

more general case (section 6.1), the optimal estimator 

u* can be the solution that minimizes the expected 

value of a loss function L(u, u*) with respect to this 

conditional probability. As we will show in section 3.3, 

additional useful information (such as the uncertainty 

in our estimates) can be extracted from the posterior 

distribution. 

To use the Bayesian framework in conjunction with 

visible surface representations, we must somehow en- 

code the smoothness inherent in these fields. We can 

do this by using the prior model to describe the corre- 

lation between adjacent pixels. A simple method for 

modeling such correlation is presented next. 

3. 2 Markov Random Fields 

A Markov random field is a probability distribution 

defined over a discrete field where the probability of 

a particular variable ui depends only on a small num- 

ber of its neighbors, 

p(uiln) -- p(ui[ {uj}), j fi Ni (19) 

We can use MRFs to model the correlated structure of 

dense fields or the smoothness inherent in visible 

surfaces. 

The conditional probabilities p(uilu) can be used to 

generate a prior modelp(u). However, calculating p(u) 

such that all of the marginal distributions are correct 

is in general a difficult problem. Fortunately, there 

exists a simple--though indirect--way of specifying a 

probability distribution for which the conditional proba- 

bilities are Markovian. As shown by Geman and Geman 

[1984], we can use a Gibbs (or Boltzmann) distribution 

of the form 

1 
p(n) = ~p exp(-Ep(u)/Tp) (20) 

where Tp is the temperature of the model and Zp is the 

partition function 

Zp = ~ exp(-Ep(U)/Tp) (21) 
11 

The energy function Ep(u) can be written as a sum of 

local clique energies 
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Ep(u) = ~  Ec(u) 
c~C 

where each clique energy Ec(u) depends only on a few 

neighboring points. Thus, to build up our conditional 

probabilities, we use a linear summation of simple 

energy terms. These local energies (or cost functions) 

can be though of as a set of weak constraints [Hinton 

1977] that penalize unlikely configurations of our prior 

model. 

Computing the probability of any configuration u 

using (20) is straightforward, but may be prohibitively 

expensive due to the exponential complexity of the par- 

tition function. For most applications, however, this 

computation is not necessary. If we wish to generate 

a random sample from the distribution (20), we can 

use an algorithm called the Gibbs sampler [Geman and 

Geman 1984]. This iterative algorithm successively up- 

dates each state variable u i by randomly picking a 

value from the local Gibbs distribution 

where 

1 
p(uilu) = ~ exp(-gp(uilu)/Tp) (22) 

Zi = ~_~ exp(-gp(u, lu)/rp) 
gl 

This random updating rule is guaranteed to converge 

(in the ensemble) to a representative sample from the 

Gibbs distribution. To speed up this convergence, simu- 

lated annealing [Metropolis et al. 1953; Kirkpatrick et 

al. 1983; Hinton and Sejnowski 1983] can be used. The 

stochastic multigrid techniques discussed in section 4.2 

can also be used to to speed up convergence. 

The measurement model can usually be written as 

another Gibbs distribution 

1 
p(dIu) = ffd exp(-E~(u, d)) (23) 

with 

Ea(u, d) = Eh(.,, 4-) 
l 

For example, the distribution for white Gaussian noise 

has this form, with E~ = '/2(ui - d,)2/@ 

We are now in a position to derive the posterior dis- 

tribution p(u I d) using Bayes' rule. From equations (18), 

(20), and (23) we have 

p(uld) - p(dlu)p(u) _ 1 
p(u) z exp(-E(u) )  (24) 

where 

E(U) = gp(u)/Tp "t- gd(U , d) (25) 

We thus see that the posterior distribution is itself a 

Markov random field. To compute the MAP estimate, 

we need only to minimize E(u). 

The energy function described by (25) may have 

many local minima, in which case we must use simu- 

lated annealing to perform the optimization. The Gibbs 

sampler algorithm (using E(u) as the energy function) 

can be used directly to find the MAP estimate, so long 

as the system is frozen at the end of the annealing 

[Geman and Geman 1984]. Alternatively, we could cal- 

culate the maximizer of posterior marginals [Marroquin 

1985], which minimizes the expected number of mis- 

classified pixels. 

Comparing (25) to the regularization equation (1) 

developed in the previous section, we see that regulari- 

zation is an example of the more general Bayesian ap- 

proach to optimal estimation. This observation has been 

made previously in both the numerical analysis litera- 

ture [Kimeldorf and Wahba 1970] and in the computer 

vision field [Terzopoulos 1986b; Bertero et al. 1987]. 

Some newly discovered implications of the relationship 

will be discussed in section 4.1. The Bayesian interpre- 

tation of regularization will also be used in sections 6 

and 8 to develop uncertainty estimation and parameter 

estimation techniques. 

Markov random fields have recently been used for 

image restoration [Geman and Geman 1984; Marroquin 

1985], for solving the stereo correspondence problem 

[Marroquin 1985; Szeliski 1986; Barnard 1989], and 

for determining discontinuities in visible surfaces 

[Marroquin 1984]. In this latter application, line proc- 

esses can be used to represent the discontinuities 

[Geman and Geman 1984]. The use of line processes 

to encode and localize discontinuities is currently one 

of the chief attractions of the MRF approach to low- 

level vision [Poggio et al. 1988]. 

Despite their attractive computational properties and 

their flexibility, Markov random fields have some limi- 

tations. They represent distributions with a particularly 

simple structure, and may be unsuited for modeling 

more complicated distributions. MRFs are good at 

modeling fields or surfaces such as terrain maps that 

have a certain smoothness or coherence but that can 

have many bumps or wiggles. They are less appropriate 

for modeling surfaces with more global properties such 

as piecewise planar surfaces? The direct estimation and 

modeling of global geometric parameters may be more 

appropriate in such cases [Durrant-Whyte 1987]. 
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3.3 Using Probabilistic Models 

The Bayesian models and Markov random fields that 

we have introduced in this section have previously been 

used to obtain single optimal estimates. We show here 

that additional useful information can be extracted from 

the posterior distribution, and that a probabilistic devel- 

opment of prior and sensor models can yield new in- 

sights into the solution of low-level vision problems. 

A simple way to make better use of a posterior dis- 

tribution is to calculate higher-order statistics (such as 

variance) in order to quantify the uncertainty in our 

estimates. The variance of each point can be calculated 

independently using 

var (ui) = a~ = f (.i - ut) 2 P(l[ l ld)  du (26) 

The full covariance matrix of the field u can also be 

calculated using 

cov  (u) = : f (u - u*)(u - u*) p(utd) du 
d 

(27) 

but this information may be too voluminous to store 

for reasonably sized fields. Higher-order statistics could 

also be estimated, but these are even more voluminous 

and hard to compute. In many cases, the distributions 

that we deal with will be multivariate Gaussians, so that 

the first- and second-order statistics completely capture 

the information about the distribution. 

Maintaining a probabilistic description of our current 

estimate is particularly useful in the context of dynamic 

vision. In such a system, new information is continually 

being acquired due to either observer or scene motion, 

and estimates are continually being updated. A useful 

formalism for modeling such a system is the Kalman 

filter, which we will examine in section 7. The general 

Bayesian modeling framework presented in this section 

can be instantiated in many ways, depending on the par- 

ticular visual task, visual domain, and sensing strategies 

being studied. In the next three sections, we examine, 

in turn, prior models, sensor models, and posterior 

models. The prior models we study are based on Markov 

random fields and regularization. A variety of sensor 

models are then developed, including sparse depth sen- 

sors and dense flow estimators. Finally, probabilistic 

posterior models are developed, along with new tech- 

niques for estimating posterior uncertainty, estimating 

regularization parameters, and estimating observer 

motion. 

4 Prior Models 

As we have seen in the previous section, prior models 

play an essential role in the formulation of Bayesian 

estimators. When applied to low-level vision, prior 

models encode the smoothness or coherence of the two- 

dimensional fields being estmated from the image. In 

this section, we examine the spectral characteristics of 

our prior models, and develop algorithms for efficiently 

generating random samples. 

The use of Markov random fields for modeling smooth 

fields was first suggested by Geman and Geman [1984]. 

In their implementation, they used discrete values for 

the intensity and an energy function that favored piece- 

wise constant surfaces. They were also the first to use 

line processes in conjunction with a MRF representa- 

tion. Subsequent research has used fields with energies 

resembling the one obtained from discretizing the mem- 

brane model [Marroquin 1984]. In section 4.1, we show 

how this choice of energy function determines the 

power spectrum of the prior model. 

The ability to generate sample elements from our 

model space is one of the attractions of the probabilistic 

approach. This capability allows us to determine if these 

random samples are consistent with our intuitions about 

the domain we are modeling. To generate these typical 

samples, we use the Gibbs sampler algorithm described 

in section 3.2. As we show in section 4.2, the imple- 

mentation of this algorithm for models such as the 

membrane and thin plate is particularly simple and only 

requires adding a controlled amount of Gaussian noise 

to the usual Gauss-Seidel relaxation algorithm. We ex- 

amine how multiresolution (coarse-to-fine) stochastic 

relaxation can help speed up the approach of the Gibbs 

sampler toward equilibrium. 

The prior models that we study are commonly used 

to describe intrinsic images and can thus be thought of 

as "intrinsic models" (this term was coined by Gudrun 

Klinker). In the hierarchy of visual processing (figure 

1), intrinsic models span the middle ground between 

the object models used in high-level vision and the phys- 

ical models that describe image formation. Object 

models are normally used to determine the identity and 

pose (position and orientation) of a three-dimensional 

object. These models are typically described by a small 

number of lumped parameters, such as the pose, the 

relative positions of parts for articulated objects, and 

perhaps some shape parameters for models such as 

superquadrics [Pentland 1986]. In certain cases, the 
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parameters of these models can be determined directly 

from the image data [Lowe 1985; Pentland 1986]. In- 

trinsic models, on the other hand, have a large number 

of distributed parameters, such as the depth value at 

each node for a surface model. If we are to recover 

these parameters from the limited data available in the 

image, we have to specify a prior distribution and thus 

restrict the space of possible models. 

4.1 Regularization and Fractal Priors 

In constructing a Markov random field prior model, 

we must first choose the energy function defining the 

Gibbs distribution. As we saw in section 3.2, choosing 

the regularization smoothness constraint as the energy 

function results in a MAP estimate that is identical to 

the one obtained from regularization. While this obser- 

vation has been used as a statistical justification for reg- 

ularization [Kimeldorf and Wahba 1970], the charac- 

teristics of the prior model have not previously been 

investigated. 

One way of analyzing the prior model is to generate 

some typical random samples using the Gibbs sampler 

algorithm described in section 3.2 (the exact implemen- 

tation details are given in the next section). Using the 

thin plate whose energy is given in equation (4) as our 

model, we can generate a typical sample from the prior 

distribution as shown in figure 3. This surface has an 

interesting rough or bumpy structure that is quite dif- 

ferent from the smooth shape that one might expect. 

A convenient way to characterize this roughness is to 

compute the spectral characteristics of the surface using 

Fourier analysis. 

Fig. 3. Typical sample from the thin-plate prior model. 

The Fourier transform [Bracewell 1978] of a multi- 

dimensional signal v(x) is defined by 

5:{v} = f v(x) exp (27rif. x) dx = V(f) (28) 

and the transform of its partial derivative is given by 

( O v ( x ) )  = (27ri~)V(f) (29) 

Using Rayleigh's energy theorem 

f Iv(x)l ~ dx = f Iv(f)12 de (30) 

we can rewrite the smoothness functional gp(U) in 

terms of the Fourier transform U(f) = ~{u} to obtain 

the new energy function g~(U). 

For our smoothness functional, we will use the gen- 

eral form given in (6) with the simplifying assumption 

that the weighting functions Wm(X) are constant. While 

this assumption does not strictly apply to the general 

case of piecewise continuous interpolation, it provides 

an approximation to the local behavior of the regular- 

ized system away from boundaries and discontinuities. 

Applying (29) and (30) to (6) we obtain 

a ~ ( U )  = ~ W m - - -  
. .  " = " m=0 Jl +" a m i l l  Jd! 

[ ( 2 r i f l )  J1 . . .  ( 2 ~ r / f j * u ( f ) l  ~ d f  

or  

where 

1 
~ ( u )  = ~ f IHp(f)l~lu(f)l ~ df (31) 

P 

[no(f)l 2 = ~ Wml2~'f] em (32) 
m=0 

For the membrane interpolator, Ino(f)l  ~ ~ 127rf[ 2, and 

for the thin plate model, Inp(t)l  2 o, 12~fl4 

To derive the spectral characteristics of the prior 

model, we note that since the Fourier transform is a 

linear operation, if u(x) has a Gibbs distribution with 

energy gp(U), then U(f) has a Gibbs distribution with 

energy 8~(U). 4 We thus have 

P(U) oc exp ~- I f [Hp(f)[z[u(f)[Z df 1 

from which we see that the probability distribution at 

any frequency f is 

p(U(f)) ~ exp - ~ [np(~l~lu(f)l 
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Thus, U(f) is a random Gaussian variable with variance 

]np(f) 1-2, and the signal u(x) is correlated Gaussian 

noise with a spectral distribution 

an(f) --[np(f)1-2 (33)  

From this analysis, we conclude that using a regu- 

larization-based smoothness constraint is equivalent to 

using a correlated Gaussian field as the Bayesian prior. 

The spectral characteristics of this Gaussian field are 

determined by the choice of stabilizer. For the mem- 

brane and the thin-plate models, we have 

Smembrane(f ) oc 12~rf1-2 (34) 

and 

Sthin plate(f) oc 12~rf1-4 (35) 

These equations are interesting because they correspond 

in form to the spectra of Brownian fractals. 

Fractals are a class of mathematical objects that ex- 

hibit self-similarity over a range of scales [Mandelbrot 

1982]. Fractals have been used to generate intricate geo- 

metric designs, to study the statistical properties of 

coastlines and structured noise, and to generate realistic 

images of terrain. A stochastic fractal is a random proc- 

ess or a random field that exhibits self-affine statistics 

over a range of scales. A common way to characterize 

such a fractal is to note that it follows a power law in 

its spectral density 

Sv(f) oc 1/f  ~ (36) 

This spectral density characterizes a fractal Brownian 

function vH(x) with a fractal dimension of D = E + 

1 - H, where 2H = /3 - E, and E is the dimension 

of the Euclidean space [Voss 1985]. A function that 

satisfies (36) may also be fractional Gaussian noise 

[Rensink 1986]. 

Comparing (34) or (35) to (36), we conclude that 

the smoothness assumptions embedded in standard reg- 

ularization methods are equivalent to assuming that the 

underlying processes are fractal [Szeliski 1987]. When 

regularization techniques are used, it is usual to find 

the minimum energy solution (figure 2c), which also 

corresponds to the mean value solution for those cases 

where the energy functions are quadratic. Therefore, 

the fractal nature of the process is not evident. A far 

more representative solution can be generated if a ran- 

dom (fractal) sample is taken from this distribution (fig- 

ure 4). The amount of noise (and hence roughness) that 

is desirable or appropriate can be derived from the data 

(see section 8.3). 

Fig. 4. Fractal (random) solution corresponding to figure 2c. 

The fractal nature of the membrane and thin-plate 

models suggests that we could use priors with in- 

between (truly fractional) degrees of smoothness. In 

theory, this is straightforward, since we can specify the 

prior model to be a Brownian fractal field with an arbi- 

trary/3. In practice, implementing the resulting inter- 

polator is difficult. Boult [1986] has implemented such 

fractional interpolators using reproducing kernel splines. 

The prior models that we use also need not be isotropic 

or homogeneous. In general, we can choose a prior 

model with any arbitrary correlation function and thus 

model mountain ridges or terrain with locally varying 

degrees of smoothness. We will explore how to imple- 

ment such arbitrary prior models in the next section. 

4.2 Generating Random Samples 

To generate the random samples from either the prior 

or posterior models, we can use the Gibbs sampler algo- 

rithm described in section 3.2. In the Gibbs sampler, 

each state variable ui is updated asynchronously (se- 

quentially) by picking a value from the local Gibbs dis- 

tribution (22). For the surface interpolation problem 

that we studied in section 2.2, the local energy function 

(16) is quadratic, with a minimum value u + given by 

(17) and a second derivative equal to aii. The local 

Gibbs distribution is therefore 

aii(uz - u+)2-~ 
p(u, lu) ~ exp 2Tp _J (37)  

which is a Gaussian with mean u + and variance Tp/ai,. 
We thus see that the Gibbs sampler is equivalent to the 

usual Gauss-Seidel relaxation algorithm with the addition 
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of some locally controlled Gaussian noise at each step 

[Szeliski 1987]. The temperature parameter Tp controls 

the amount of roughness in the random sample. In sec- 

tion 8.3, we will present a method for determining the 

appropriate value of Tp from the sampled data. 

As with deterministic relaxation, the above algorithm 

may converge very slowly toward its equilibrium distri- 

bution (the point at which the system exhibits negligible 

statistical dependence on its starting configuration 

[Ackley et al. 1985]). To speed up this convergence, 

we can use a coarse-to-fine technique similar to the one 

used with deterministic relaxation. We simply generate 

a random sample using the Gibbs sampler at a coarser 

level, and then use the interpolated sample as a starting 

configuration for the finer level. This starting config- 

uration will already be closer to equilibrium than a non- 

random configuration such as the zero state. More 

importantly, it will contain more of the low-frequency 

components of the random field than can be obtained 

by iterating for a long time on the fine level [Szeliski 

1989]. Multiresolution stochastic relaxation has also 

been studied by Barnard [1989] and Konrad and Dubois 

[19881. 

We can use the multiresolution Gibbs sampler algo- 

rithm that we have just described to generate constrained 

fractals with arbitrary discontinuities. Using the same 

data points as we used for the thin-plate interpolation 

example (figure 2a) and also the same energy equations, 

we can apply the Gibbs sampler to the posterior dis- 

tribution defined by (24). A typical sample generated 

by this approach is shown in figure 4. While this sample 

is not truly fractal since it depends on the data points, 

it is a typical sample from the fractal prior distribution 

conditioned on the data points that were observed. We 

can thus shape the fractal by imposing arbitrary depth 

constraints, orientation constraints [Terzopoulos 1988], 

depth discontinuities or creases. For a detailed descrip- 

tion of our new fractal generation algorithm and a com- 

parison with previous algorithms, see [Szeliski and 

Terzopoulos 1989a]. 

5 Sensor Models 

Modeling the error inherent in sensors and using these 

error models to improve performance are becoming in- 

creasingly important in computer vision [Matthies and 

Sharer 1987]. In this section, we present two different 

sensor models that describe both sparse (symbolic) and 

dense (iconic) measurements, in order to demonstrate 

the usefulness of our Bayesian modeling framework. 

Some additional sensor models are presented in 

[Szeliski 1989]. 

5.1 Sparse Data: Spring Models 

A noisy depth measurement, such as the three- 

dimensional location of a feature obtained by stereo tri- 

angulation, can be characterized by a three-dimensional 

probability distribution. Although the shape of this dis- 

tribution may be quite complex, it can often be approx- 

imated by a 3-D Gaussian [Matthies and Sharer 1987]. 

An advantage of using a Gaussian is that the position 

vector Pi = (x,, y~, z,) and the 3x3 covariance matrix 

Ci completely specify the distribution. 

To determine the interaction between a data point and 

the visible surface that we compute from our depth 

measurements, we must first convert this three- 

dimensional distribution in space into a one-dimensional 

distribution in depth. Assuming that x and y are the 

underlying natural coordinates of our visible surface 

representation, we set di = zi and use the Gaussian 

probability distribution 

p(d~lu) - 1 exp I (u(xi'Yi)-di)21 2a~ - - ( 3 8 )  

/ 

If the errors for the various depth measurements are 

uncorrelated, which is usually the case, this distribution 

corresponds to the usual data-compatibility equation 

(2). When our retinotopic representation is not aligned 

with the sensor reference frame, the position and covar- 

lance measurements must first be transformed using 

simple matrix algebra [Matthies and Shafer 1987]. The 

effect of these depth constraints on the visible surface 

is similar to tying the surface to the depth values through 

springs [Terzopoulos 1988]. The strength of the spring 

constant is inversely proportional to the variance of the 

depth measurement. 

An alternative way to derive the discrete form of the 

data constraint is to write the measurement equation 

d i = H,u + r i (39) 

where ri - N(O, ~ ) .  The measurement matrix H, en- 

codes how the surface point u(xi, Yi), which gives rise 

to the measurement di, is obtained from the nodal var- 

iables u. The H~ matrix thus depends on the choice of 

interpolator. If we choose block (constant) interpolation, 

the discrete data constraint equation is as before (i.e., 

we associate the depth constraint with the nearest nodal 

variable). If we choose bilinear interpolation, we have 
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U(X, y) = hooui, j + holui,j+ 1 + hloUi+l, J + hHUi+l,j+ 1 

where uij,  . . . ,  U,÷l,j+l are the four nodal variables 

nearest to (x, y), and hoo, • . . ,  hi1 are interpolation con- 

stants that depend on x and y. The data constraint equa- 

tion thus becomes 

1 
Ed(d, u) = ~ a-2(d - hooui, j - holUi,j+ 1 

- hloUi+l, j - hllUi+l,j+l) a (40) 

This introduces off-diagonal terms into our data-com- 

patibility matrix Ad, but does not reduce the sparse- 

ness of the combined stiffness matrix A since the prior 

model matrix Ap already has such off-diagonal terms. 

The probability distribution used to characterize the 

uncertainty in our depth measurement need not be 

Gaussian. The advantages of using a Gaussian are that 

it is characterized completely by its mean and variance 

values (first- and second-order statistics) and that the 

resulting constraint energy is quadratic. A Gaussian 

distribution is appropriate when the error in the meas- 

urement is the result of the aggregation of many small 

random disturbances. Many sensors, however, have a 

normal operating range characterized by a small 0 .2 but 

also occasionally produce gross errors. A more appro- 

priate model for such a sensor is the contaminated 

Gaussian used by Durrant-Whyte [1987], which has the 

form 

p(dilu) - 1 - e  exp I (u(x .  y, ) -  di)2 1 

~ e x p (  (u(xi' Yi) - d ')21 
+ n/2~a2 - ~a~- (41) 

with a] >> cr~ z and 0.05 < e < 0.1. This model behaves 

as a sensor with small variance a~ z most of the time, 

but occasionally generates a measurement with a large 

variance a2. By taking the negative logarithm of the 

probability density function, we can obtain the con- 

straint energy shown in figure 5. This energy is similar 

in shape to the weak springs that arise in the weak con- 

tinuity models of Blake and Zisserman [1987], the ~b 

function of Geman and McClure [1987], and the effec- 

tive potentials of Geiger and Girosi [1989]. 

Gaussians and contaminated Gaussians are just two 

of the many possible distributions that can be used to 

characterize sensors. The advantage of using a Bayesian 

approach to visual processing is that any sensor model 

we develop can be incorporated directly into the estima- 

tion algorithm. In practice, finding good sensor models 
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Fig. 5. Constraint energy for contaminated Gaussian. 

involves a tradeoff between the fidelity of the model, 

the compactness of its representation, and the tractabil- 

ity of its equations. 

5.2 Dense Data: Optical Flow 

Probabilistic sensor modeling need not be restricted to 

sparse measurements obtained directly from sensors. 

We can also apply error analysis to low-level vision 

algorithms and characterize these algorithms as virtual 

sensors with their own associated error models. For 

example, such analysis has recently been applied to 

intensity-based optical-flow estimators. The work was 

originally done for 1-D (scalar) displacements by 

Matthies et al. [1989] and later extended to 2-D (vector) 

displacements by Szeliski [1989]. Both of these analy- 

ses show how the uncertainty in the flow measurement 

at each point can be determined from local measure- 

ments already present in the optical-flow algorithm, and 

how this information can be used in an incremental 

depth-from-motion algorithm (section 8.1). 

The problem of extracting optical flow from a se- 

quence of intensity images has been extensively studied 

in computer vision. Early approaches used the ratio 

of the spatial and temporal image derivatives [Horn and 

Schunk 1981], while more recent approaches have used 

correlation between images [Anandan 1989] or spatio- 

temporal filtering [Heeger 1987]. The error analysis we 

present here uses the simple version of correlation- 

based matching developed by Anandan [1989], which 

he calls the sum o f  squared differences (SSD) method. 

This algorithm integrates the squared intensity differ- 

ence between two shifted images over a small area to 

obtain an error measure 

et(d; x) = f w(~)[f(x + d + ~) - f - l ( x  + ~)]2 d~ 
d (42) 
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wheref  and f_ l  are the two intensity images, x is the 

image position, d is the displacement (flow) vector, and 

w(X) is a windowing function. The SSD measure is 

computed at each pixel x for a number of possible flow 

values d. The resulting error surface et(d; ~ is used 

to determine the best displacement estimate d and the 

confidence in this estimate. 

In analyzing the SSD algorithm, Anandan and Weiss 

[1985] observed that the shape of the error surface dif- 

fers depending on whether both, one, or none of the 

displacement components are known (corresponding to 

an intensity corner, an edge, or a homogeneous area). 

They proposed an algorithm for computing the confi- 

dence measures based on the principal curvatures and 

the directions of the principal axes in the vicinity of 

the error surface minimum. The analysis in [Szeliski 

1989, Appendix C] supports this heuristic by demon- 

strating that the variance of the flow measurement a 

is 2%2A -1, where A is obtained by fitting a quadratic 

to the error surface, and a] is the variance of the 

image noise. This analysis can also be used to derive 

the correlation between adjacent flow estimates and be- 

tween flow estimates obtained from successive frames. 

From these results, we see how the statistical analysis 

of an optical-flow algorithm can provide an error model 

for its output. This output can then be treated as a vir- 

tual sensor that can be incorporated into a Bayesian esti- 

mation framework. This approach permits us to take 

into account the spatially varying uncertainties that are 

often inherent in low-level visual processes. A similar 

analysis can be applied to other low-level vision algo- 

rithms with similar benefits. 

6 Posterior Models 

In the previous two sections, we have developed a prior 

model for visible surfaces and a number of sensor 

models for low-level vision algorithms. In this section, 

we show how the prior and sensor models can be com- 

bined using Bayes' rule to obtain a posterior model, 

and study how to compute optimal estimates of the visi- 

ble surface from the posterior distribution. We also 

show how to calculate the uncertainty inherent in a visi- 

ble surface estimate from this distribution, and discuss 

why such uncertainty modeling is important. 

61 MAP Estimation 

The probabilistic prior models and sensor models we 

have developed in this paper are instances of Markov 

random fields. From the results we obtained in section 

3.2, we know that the posterior distribution is also a 

MRE This field can be described by a Gibbs distribu- 

tion with an associated energy 

E(u) = Ep(U) + Ed(U, d) (43) 

where Ep(u) is the energy function associated with the 

prior model, and E0(u, d) is the energy function that 

describes the sensor model. Computing the maximum 

a posteriori estimate is thus equivalent to minimizing 

the energy E(u). 

Several techniques can be used for performing this 

minimization, depending on the application. For sur- 

face interpolation or optical-fiow smoothing, the energy 

functions Ep(u), Ed(U, d), and hence E(u) are quad- 

ratic. Performing the minimization is thus equivalent 

to solving a large set of sparse linear equations/As 

discussed in section 2.2, we can use one of several 

relaxation techniques to find the minimum energy solu- 

tion. The advantage of using such iterative techniques 

over direct solution methods is that they can be imple- 

mented on massively parallel architectures. 

The MAP estimate, however, is not the only estimate 

that can be computed from the posterior distribution 

p(u[d). As has been observed by Marroquin [1985], any 

loss function L(u, u*) can be used to define the opti- 

mal estimate. Given such a loss function, the optimal 

estimate u* is the one that minimizes the expectation 

of loss 

<L> = f L(u, u*)p(uld) du 

For MAP estimation, the loss function is a negative 

delta (we win one for guessing the correct estimate, 

but all other estimates are equally bad). A more sensi- 

ble loss function for applications such as terrain clas- 

sification or image restoration is one that counts the 

number of misclassified pixels. This leads to the max- 

imizer of posterior marginals (MPM) estimator 

[Marroquin 1985]. For many applications, we can also 

compute the minimum mean squared error (MMSE) 

estimate. 6 

The advantage of using loss functions to define the 

optimal estimate is that we can tailor the loss function 

to our particular application. In addition to allowing 

the development of task-specific algorithms, this ap- 

proach allows some top-down influence to be exerted 

on the low-level process. For example, in a robot navi- 

gation application where we want to avoid hitting obsta- 

cles, we can use a loss function that penalizes overesti- 

mates in distance more than underestimates. 
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Using different loss functions can increase the power 

of probabilistic methods over simple energy minimiza- 

tion approaches. Having a single optimal estimate, how- 

ever, still does not tell us how certain, accurate, or 

typical such an estimate might be. Ideally, we would 

like to pass the whole probability distribution on to the 

next level of processing. In practice, however, we usu- 

ally have to restrict ourselves to a more parsimonious 

description. 

6.2 Uncertainty Estimation 

To characterize the uncertainty inherent in the output 

of a low-level vision algorithm, we can compute the 

second-order statistics (covariance matrix) of the esti- 

mate. This uncertainty measure can be used to integrate 

new data, to guide search (e.g., to set disparity limits 

in stereo matching), or to indicate where more sensing 

is required. For many distributions, second-order statis- 

tics do not capture all of the useful information present 

in the distribution, but they are a good start. In this 

section, we examine how uncertainty can be derived 

from the energy function characterizing the posterior 

distribution, and we present two new algorithms for 

computing this uncertainty. 

When we combine the regularization-based prior 

models developed in section 4.1 with the simple sensor 

models developed in section 5.1, we obtain posterior 

models that are Markov random fields with a quadratic 

energy function. This energy can be rewritten in the 

form given in (15), that is, 

1 
E(u)  = ~ ( u  - U*)TA(u -- U*) + k (44) 

where u* is the minimum energy solution. The Gibbs 

distribution corresponding to this quadratic form is a 

multivariate Gaussian with mean u* and covariance 

A -1. Thus, to obtain the covariance matrix, we need 

only invert the information matrix A. 7 One way of doing 

this is to use the multigrid algorithm presented in sec- 

tion 2.2 to calculate the covariance matrix one row at 

a time. To obtain a single covarianee field, we set 

b = ei in (13), that is, we set all but one of the data 

points to 0 without modifying A, and solve as before. 

Figures 6a and 6b show two covariance fields, one 

for the point in the left comer, and one for the point 

in the middle of the top crease. These fields are iden- 

tical in shape (but not in magnitude) to the Green's func- 

tions (blending functions or shift-variant filters) that 

t / 

j /  

Fig. 6 Sample covariance and variance fields: (a) covariance field 
at (0, 0); (b) covariance field at (6, 16); (c) variance field. 

can be used to solve the interpolation problem. Their 

shape does not depend on the data values di, but only 

on the smoothing function (prior model) and the data 

confidence measures ci. Intuitively, these covariance 
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fields show how the overall surface would wiggle if one 

particular point was moved up and down. For the 

special case of isotropic (shift-invariant) smoothing, the 

Green's function is equivalent to the smoothing filter 

hs(x) derived by Poggio et al. [1985]. 

Storing all of the covariance fields is impractical 

because of their large size (for a 512×512 image, the 

covariance matrix has over 101° entries). We can, how- 

ever, keep only the variance at each point, that is, the 

diagonal elements of the covariance matrix. These vari- 

ance values are an estimate of the confidence associated 

with each point in the regularized solution (e.g., the 

residual uncertainty in optical flow after smoothing). 

Alternatively, they can be viewed as the amount of fluc- 

tuation at a point in the Markov random field (in the 

ensemble of typical fractal solutions). Figure 6c shows 

the variance estimate corresponding to the regularized 

solution of figure 2c (this variance has been magnified 

for easier interpretation). The variance of the field in- 

creases near the edges and discontinuities; this is as 

expected, if we interpret the variance as the wobble or 

inverse global stiffness of the thin plate. This variance 

field gives us a dense, distributed error model for the 

visible surface representation. 

Calculating the variance field using the above deter- 

ministic algorithm requires resolving the system for 

each point in the field and is therefore very time con- 

suming. An alternative to this approach is to run the 

multiresolution Gibbs sampler at a nonzero temperature, 

and to estimate the desired statistics using a Monte 

Carlo approach. For example, we can estimate the vari- 

ance at each point (the diagonal of the covariance 

matrix) by simply keeping a running total of the depth 

values and their squares. Unfortunately, the straightfor- 

ward application of the Gibbs sampler results in esti- 

mates that are biased or take extremely long to converge 

(figure 7a). This is because the Gibbs sampler is a 

multidimensional version of the Markov random walk. 

Successive samples are therefore highly correlated, and 

time averages are ergodic only over very long time 

scales (even if the system is already at equilibrium). 

To help decorrelate the signal, we can use successive 

coarse-to-fine iterations and gather only a few statistics 

at the fine level each time. Examples of the variance 

field estimates obtained with such a stochastic algorithm 

are shown in figures 7b and 7c. 

This stochastic estimation technique can also be used 

with systems that have nonquadratic (and nonconvex) 

energy functions. In this case, the mean and covariance 

Fig. 7. Stochastic estimates of variance field: (a) single level, 1000 
iterations; (b) multiresolution, I00 iterations; (c) multiresolution, 2500 
iterations. 
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are not sufficient to completely characterize the distri- 

bution, but they can still be estimated. For stereo match- 

ing, once the best match has been found (say by using 

simulated annealing), it may still be useful to estimate 

the variance in the depth values. Alternatively, stochas- 

tic estimation may be used to provide a whole distribu- 

tion of possible solutions, perhaps to be disambiguated 

by a higher-level process. 

Once we have calculated the variance field, we can 

use it to grow a confidence region around the mean or 

minimum energy solution. This confidence region can 

be used in applications such as path planning or naviga- 

tion. For example, we can use a 95 % confidence inter- 

val if we wish to be "95 % certain" of not hitting the 

surface. We can also look at the size of the confidence 

region (which is related to the local variance) to decide 

where additional active sensing may be required. Figure 

8 shows a one-dimensional example of such a confi- 

dence region built around a cubic spline solution. Note 

that--just as for the thin plate--the uncertainty grows 

as we extrapolate away from known data. 

Modeling the uncertainty in the visible surface is im- 

portant if we are using this representation to aggregate 

data. Uncertainty modeling is also important if we will 

be matching the visible surface to models from an object 

database or to other intermediate representations. In 

section 8.2 we show how including such uncertainty 

modeling is essential to developing a surface-to-surface 

matching algorithm that can handle occlusions, limited 

areas of overlap, and sparse data. 

The uncertainty representation scheme developed in 

this section differs in several important ways from pre- 
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dashed lines are the confidence interval for the whole curve. 

viously developed representations. The spatial likeli- 

hood map developed by Christ [1987] uses spherical 

coordinates to represent the likelihood of a surface patch 

at a particular location. This method does not have an 

explicit smoothness constraint; instead, it uses a local 

planar model to extrapolate the surface away from 

known data points. Occupancy maps [Elfes and Matthies 

1987; Moravec 1988] use a two- or three-dimensional 

array of scalar values to indicate the occupancy of dif- 

ferent portions of space. This method is well suited to 

path planning and can represent three-dimensional 

objects and obstacles. However, the resolution of the 

method is limited to the grid size. Finally, the approach 

used by Wahba [1983] to obtain confidence intervals 

on splines is similar to ours. However, Wahba's method 

computes a single variance estimate for the whole 

curve, rather than having a spatially varying variance. 

This method thus fails to capture some important char- 

acteristics of the uncertainty, such as the increase in 

variance as we extrapolate away from known data. 

7 Dynamic Models 

The Bayesian models we have described so far allow 

us to obtain optimal estimates of static visible surfaces, 

to integrate information from multiple viewpoints, and 

to analyze the uncertainty in our estimates. Many com- 

puter vision applications, however, deal with dynamic 

environments. This may involve tracking moving objects 

or updating the model of the environment as the observer 

moves around. Recent results by Aloimonos et al. [1987] 

suggest that taking an active role in vision (either 

through eye or observer movements) greatly simplifies 

the complexity of certain low-level vision problems. 

In this section, we develop a two-dimensional gener- 

alization of the Kalman filter suitable for modeling visi- 

ble surfaces. This framework can be used to construct 

incremental (on-line) vision algorithms. The advantages 

of using the incremental approach are that rough depth 

measurements are available immediately and that the 

quality of these estimates improves over time as more 

data is acquired. Incremental processing also has lower 

storage requirements than batch processing. 

7.1 Kalman Filtering 

The Kalman filter is a Bayesian estimation technique 

used to track a stochastic dynamic system being observed 

with noisy sensors. The filter is based on three separate 
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probabilistic models. The first model, theprior model, 

describes the knowledge about the system state rio and 

its covariance P0 before the first measurement is taken, 

u - N(fio, Po) (45) 

where the notation x - N(m, P) denotes that x is a 

multivariate normal variable with mean m and covari- 

ance P [Gelb 1974]. As we have seen in section 4, this 

model allows us to capture the smoothness constraint 

associated with visible surfaces by setting Po 1 = Ap. 

The second model, the measurement (or sensor) model, 
relates the measurement vector dk to the current state 

through a measurement matrix FI e and the addition of 

Gaussian noise re, 

dg = Heu e + r e r e - N(0, Rk) (46) 

When applied to surface estimation, the measurement 

matrix Ilk is used to convert the dense map u e into the 

sparse measurement dk (section 5.1). These two mod- 

els form the basis for the Bayesian estimation frame- 

work we have developed here. The Kalman filter intro- 

duces a third model, the system model, which describes 

the evolution of the current state vector u~ over time. 

The transition between states is characterized by the 

known transition matrix Fe and the addition of Gaus- 

sian noise qe, 

ue = Feue-i + qk qk -- N(0, Qk) (47) 

In the case of depth-from-motion, the transition matrix 

F k describes the mapping of surface estimates from one 

coordinate frame to the next as the observer changes 

position. 

The above three models describe the evolution of the 

state uk and its relationship to the measurements d e. 

To obtain an optimal estimate fik of the current state, 

the Kalman filter operates in two phases. The extrapola- 

tion phase predicts the new state given the previous best 

estimate and updates the covariance matrix associated 

with the predicted estimate. The correction phase up- 

dates the state estimate using the new measurements. 

It does this by first computing the Kalman filter-gain 

matrix, and then updating the state estimate by adding 

the residual between the observed and predicted meas- 

urements scaled by the Kalrnan filter gain [Gelb 1974]. 

The usual Kalman filter updating equations are not 

given here since we use the alternative formulation 

described below. 

Kalman filtering is usually applied to systems with 

a fairly small number of state variables. In the domain 

of motion sequence analysis, it has previously been used 

to track edges [Rives et al. 1986; Matthies and Shafer 

1987; Baker and Bolles 1989], but has not been used 

in conjunction with dense (iconic) fields such as depth 

maps. When modeling dense maps, the information 

matrixes (inverse covariance matrixes) are sparse and 

banded (because of the nature of the prior information 

matrix Ap), while the covariance matrixes are not. 

Bierman [1977] discusses a number of efficient tech- 

niques for doing the Kalman filter update that rely on 

using matrix decomposition or factorization methods. 

These various decompositions (including the square 

root information filter) do not, however, result in 

matrixes that are as sparse as the original information 

matrix. Thus, for applications where the prior and 

posterior distributions are Markov random fields (of 

reasonable size), factorization methods are not useful 

since they require too much storage space (O(N~-N) 
or O(N 2) where N is the number of pixels). 

For these reasons, we use the information matrix 

Ae = pk-1 and the cumulative weighted data vector 

be = Aefik as the quantities to be updated. The advan- 

tage of this formulation is that the updating equations 

are particularly simple, 

and 

A~ = Ak- + r a r R - l u r  (48) 
~ k ~ k  ~ k  

7: - 1  
b~- = b~- + HkR e d k (49) 

and they require no matrix inversions. The current esti- 

mate fi~- can be computed at any time by solving 

fi~- = (A~)-lb~ - 

using multigrid relaxation. In practice, we can use the 

previous state estimate fi~-_~ or the predicted state esti- 

mate fi~- as the starting point for the relaxation and only 

iterate for a few steps. This may not yield the optimal 

solution for the given data but, given enough time, the 

estimate will converge to such an optimal solution. Thus, 

a tradeoff can be made between the desired accuracy 

of the data and the amount of computation performed. 

The prediction equations for our depth estimation 

system are somewhat more difficult to implement. This 

is because the mapping from one depth map ue-i to 

the next is not a predetermined linear operation. Instead, 

the whole depth map is warped according to the local 

disparity to obtain the new depth map. The exact form 

of this warping is explained in [Matthies et al. 1989]. 

For now, we assume that we can compute the transition 

matrix Fk-1 by finding the linear mapping that defines 

how each point in the new field ue is obtained as a 
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weighted combination of points in the previous field 

uk-i (the alternative is to use the extended Kalman 

filter [Gelb 1974] to compute Fk_ 1 from the Jacobian 

of the state transition function). 

Using some simplifying assumptions, which are ex- 

plained in [Szeliski 1989], we can write the prediction 

equations as 

- I  + T 
A~- = (1 + e) Fk_IA~_IFk_ 1 

b~ = (1 + e)-lFt_lb~-_l 

In practice, we apply the warping FAF T to the data 

component of the information matrix and leave the prior 

model component invariant [Szeliski 1989]. 

The Kalman filtering framework we have developed 

in this section is specially matched to the structure of 

the visible surface estimation problem. By using infor- 

mation matrixes rather than covariance matrixes, we 

can keep the representations sparse and the computa- 

tions simple. This framework has been used as the basis 

of the incremental depth-from-motion algorithm re- 

viewed in the next section. 

8 Applications 

The Bayesian modeling framework developed here can 

be applied to many low-level vision problems. To dem- 

onstrate the feasibility of this approach and its useful- 

ness, we present three algorithms developed using this 

framework. The first algorithm extracts an on-line esti- 

mate of depth from an image sequence taken from a 

moving camera. The second computes observer motion 

by matching sparse range data. The third computes the 

optimal amount of smoothing from the sampled data. 

All three of these applications use a Bayesian formula- 

tion to model the uncertainty in the sensors and to statis- 

tically derive optimal algorithms. 

8.1 Incremental Iconic Depth-from-Motion 

The study of depth-from-motion has long been an active 

area of research in computer vision. Early work concen- 

trated on extracting the optical-flow field from a pair of 

images, using either gradient-based [Horn and Schunck 

1981] or correlation-based [Anandan 1989] techniques. 

More recent motion algorithms have attempted to use 

batch processing of the whole image sequence, either 

by fitting lines to the spafiotemporal data [Bolles et al. 

1987] or by using spatiotemporal filtering [Adelson and 

Bergen 1985; Heeger 1987]. 

In this section, we briefly review the incremental 

algorithm developed by Matthies, Kanade, and Szeliski 

[1989] that produces a dense on-line estimate of depth 

from the motion image sequence. As mentioned before, 

the incremental approach produces rough depth esti- 

mates whose quality improves over time. A similar 

algorithm that extends the analysis to arbitrary motion 

has recently been developed by Heel [1989]. 

The algorithm developed by Matthies et al. is based 

on the Kalman filter we developed in section 7.1. It con- 

sists of four main stages (figure 9). The first stage uses 

correlation to compute an estimate of the displacement 

vector and its associated covariance (section 5.2). It 

converts this estimate into a disparity (inverse-depth) 

measurement using the known camera motion. The sec- 

ond stage integrates this information with the disparity 

map predicted at the previous time step. The third stage 

uses regularization-based smoothing to reduce measure- 

ment noise and to fill in areas of unknown disparity. 
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Fig. 9. Iconic depth estimation block diagram. 
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The last stage uses the known camera motion to predict 

the disparity field that will be seen in the next frame, 

and resamples the field to keep it iconic (pixel-based). 

The information propagated between these four stages 

consists of two fields (iconic maps). The first field is 

the disparity estimate computed at each pixel in the 

image. The second field is the variance associated with 

each disparity estimate. Modeling the variance at every 

pixel is essential because it can vary widely over the 

image, with low variance near edges and in textured 

areas, and high variance in areas of uniform intensity. 

These two fields roughly correspond to the cumulative 

data vector bk and the information matrix Ak used in 

the previous section. 

The incremental depth-from-motion algorithm was 

tested on a number of image sequences acquired in the 

Calibrated Imaging Laboratory at Carnegie Mellon 

University. To measure the accuracy of the algorithm 

and to determine its rate of actual convergence, Matthies 

et al. digitized an image sequence of a flat-mounted 

poster. The ground truth value for the depth was deter- 

mined by fitting a plane to the measured values, and 

the accuracy of the estimates was determined by com- 

puting the RMS deviation of the measurements from 

the plane fit. These experiments showed that the algo- 

rithm converged to an error level of approximately 0.5 % 

percent after processing eleven images. Since the poster 

was 20 inches from the camera, this equates to a depth 

error of 0.1 inches, whereas the overall baseline between 

the first and the eleventh image was only 0.44 inches. 

The incremental depth-from-motion algorithm was also 

tested on complicated, realistic scenes obtained from 

the Calibrated Imaging Laboratory (figure 10). From 

these experiments, it was found that the main structures 

of the scene were recovered quite well [Matthies et al. 

1989]. This depth-from-motion algorithm is therefore 
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Fig. 10. Depth map computed from CIL image sequence: (a) first frame of image sequence; (b) intensity-coded depth map computed from 

combined sequence of horizontal and vertical motions; (c) perpsective view of intensity image texture-mapped onto depth map; (d) occluding 
boundaries computed during motion analysis. 
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a powerful demonstration of the advantages of using 

the Bayesian modeling framework for solving low-level 

vision problems. 

8.2 Motion Estimation Without Correspondence 

The probabilistic framework developed in this article 

shows how a sparse set of measurements can be con- 

verted into a dense iconic map, and how the uncertainty 

in this map can be modeled and estimated. This same 

framework can be used to solve an extended version 

of the motion estimation problem: given two sets of 

points that come from the same surface but from differ- 

ent viewing directions, what is the most likely coordi- 

nate transformation between the two sets? This question 

is important in robot navigation and manipulation appli- 

cations where the motion of the observer or object is 

to be determined. 

Traditionally, motion estimation and pose determina- 

tion problems have assumed that a correspondence is 

given or is computable between the two sets of points 

to be matched [Ullman 1979]. The problem is then to 

find a transformation T(p, O) such that the distance be- 

tween the transformed points and the original points is 

minimized [Tsal and Huang 1984; Faugeras and Hebert 

1987]. The method developed in [Szeliski 1988], which 

is based on our Bayesian framework, shows how to esti- 

mate this transformation even when no such correspon- 

dence exists. The two point sets can have a different 

number of points and a limited area of overlap. The 

approach is thus well suited for use with laser range 

finders or other active range sensors that do not sample 

the same points from different viewing positions. It is 

also particularly well suited for terrain maps, since it 

can handle data points that are irregularly spaced (from 

perspective de-projection), and it can incorporate prior 

knowledge from cartographic data. We will briefly sum- 

marize the motion estimation algorithm here; a more 

detailed description of the new algorithm is given in 

[Szeliski 1988]. 

In describing our algorithm, we use the notation in- 

troduced in section 7.1 and assume the same prior and 

measurement models. In general, the measurement vec- 

tor d~ and the measurement matrix Hk depend (per- 

haps nonlinearly) on some coordinate transformation 

parameter vector Oh. For now, we assume that dl and 

1-11 are known, and that only the second set of meas- 

urements d2(O) and measurement matrix H2(O) are 

parameterized. 

A simple approach for determining the motion param- 

eters would be to interpolate the first set of data and to 

then measure the distance between the new set of points 

and the interpolated solution. Unfortunately, this ap- 

proach has several problems. The matching of new data 

points to the extrapolated parts of the surface is inaccu- 

rate, since little is known about the surface in these 

areas. This is symptomatic of the more general problem 

with this technique, which is that it does not incorporate 

any knowledge about the uncertainty in the original in- 

terpolated surface. For example, range data will often 

have "shadowed" areas where the extrapolated data can 

be extremely uncertain. To overcome these problems, 

we must use a Bayesian model to derive the optimal 

motion estimator. 

To compute the optimal estimate of the motion, we 

find the value 0 that makes it most likely that the two 

sets of data points p~ and P2 came from the same 

smooth surface. Skipping the details of the derivation 

[Szeliski 1988], we find that the new log likelihood 

E(d2) can be written as 

where 

El(d2) 

E(d2) = El(dz) + E2(d2) (50) 

1 1 
= ~ log 127rR~-ll + ~ log IPlll 

l log Ip~-ll (51) 
2 

and 

1 
E2(d2) = ~ (dE -- H2fil)rRfl(d2 - H2fi2) (52) 

The first component of the energy, El, measures the 

reduction in likelihood due to the sensor noise as traded 

off against the increase in posterior information. In prac- 

tice, this component of the energy varies fairly slowly 

with the transformation parameter O and can usually 

be ignored. The second part of the energy, E2, measures 

the distance between the new data points d2 and the 

surfaces fi~ and fi2, where fil is the surface interpolated 

through the first set of points, and fi2 is the surface inter- 

polated through both sets of points. This term is similar 

to a simple squared distance between the points and 

the old interpolated surface ill, except that one side of 

the quadratic form uses the new surface estimate fi2. 

Points that lie closer to the new surface than to the old 

estimate are thus penalized less by the optimal energy 

measure. In this way, areas where the surface values 

are originally uncertain (because the data is uncertain, 
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the area is shadowed, or the surface is being extrapo- 

lated) contribute less to the matching criterion. 

An additional advantage of the Bayesian model for 

motion estimation is that we can compute the uncer- 

tainty in the motion estimate directly from the shape 

of the error surface E(dz; @) [Szeliski 1988]. This var- 

iance estimate can be used to integrate the motion esti- 

mate provided by the new algorithm with other motion 

estimates, such as those provided by dead reckoning 

or inertial navigation systems. 

8.3 Regularization Parameter Estimation 

One of the recurring problems associated with regulari- 

zation and other energy-based estimation techniques is 

the need to select good values for the global parameters 

that control the algorithm. Some progress has been made 

in this direction [Craven and Wahba 1979], but mostly 

these parameters are still adjusted by hand. The advan- 

tage of using a Bayesian approach to low-level vision 

is that the unknown parameters can often be derived 

from knowledge of the problem domain or from the 

data itself. In particular, the Bayesian interpretation of 

regularization has been used to develop a maximum like- 

lihood estimator for the regularization parameter k 

[Szeliski 1989]. A brief description of this approach 

follows. 

Consider the case where the measurement noise can 

be determined from knowledge about the sensors. In 

this case, we can use the parameterization 

p(u[d) oc exp - [Ed(U, d) + Ep(u)/o-~] (53) 

where X -1 = a~ simply encodes the overall variance 

in the prior model. Intuitively, if ap is very low, then 

typical surfaces are extremely flat or planar, and it is 

unlikely that the given (nonflat) data sample would actu- 

ally occur. Similarly, if typical surfaces are very rough, 

then the probability of a given data sample occurring 

becomes small. There exists some optimal value of % 

that maximizes the probability p(d) of actually having 

observed the given data. 

To compute the maximum likelihood estimate of ap, 

we write 

p(d) = [2a'(HPoH T + R)[ -1/2 

1 d:r(HPoHT" + R ) - l d  1 (54) exp - 

where H, R, and d are defined by the usual measure- 

ment equation (46), and Po I = aff2Ap is the informa- 

tion matrix parametrized by %. The negative logarithm 

of this distribution can be written as 

E(d) = - l o g  p(d) = E~(d) + E2(d) (55) 

where El(d) is the logarithm of the partition function 

and E2(d) is the energy (quadratic form) associated with 

the Gaussian. From [Szeliski 1989], we have 

1 
E,(d) = ~ log 1%2Ap + HTR-1H[ 

1 1 
2 log 12~rR-11- ~ log I%aApl (56) 

and 

1 
E2(d) = ~ d rR- l (d  - Hill) (57) 

= _1 (d - Hf i l )rR-~(d - Hill)  
2 

- 2  

% liTpolul (58) 
+--if- 

The log partition function E~(d) is minimized as 

% --' 0, where its value approaches log 127rR[. Note 

that for a membrane or a thin plate, Ap is singular, so 

we must add a small diagonal element el to this matrix 

when evaluating El(d). The energy function Ez(d), on 

the other hand, decreases as % ~ co, since in this 

case fil '-' d as we approach the interpolated solution. 

Note that this energy can be written in two different 

ways. The first form, which is easier to compute, simply 

measures the weighted dot product of the data points 

and the residuals to the interpolated surface. The second 

form shows how this energy can be partitioned into a 

data-compatibility term and a smoothness term, both 

of which are evaluated with respect to the minimum 

energy solution. 

The maximum likelihood approach described in this 

section is just one possible method for estimating the 

desired degree of smoothing [Cravan and Wahba 1979]. 

A comparison of our algorithm with previously devel- 

oped techniques is presented in [Szeliski 1989]. The 

exact theoretical connection between our new approach 

and these other methods and their relative performance 

remains to be investigated. 

9 Mechanica l  vs. Probabilistic Models .  

In their book Visual Reconstruction, Blake and Zisser- 

man [1987] lay out an elegant approach to the problem 
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of piecewise continuous surface reconstruction. In ex- 

plaining their method, Blake and Zisserman argue that 

a deterministic mechanical (energy-based) approach is 

preferable to a stochastic probabilistic approach. We 

believe that the converse is true, that is, that the Bayesian 

approach has many advantages over the mechanical one. 

One of Blake and Zisserman's main arguments in 

favor of the mechanical viewpoint is that the models 

should be continuous. Using such continuous models 

facilitates variational analysis, allows the implementa- 

tion of viewpoint-invariant interpolators, and matches 

the continuous nature of surfaces and intensity fields 

in the real world. Fortunately, continuous models are 

not incompatible with probabilistic modeling. As we 

have seen in the previous section, regularization-based 

models are equivalent to correlated Gaussian fields. 

Even models such as viewpoint-invariant interpolators 

that do not have quadratic energy functions can be turned 

into probability distributions through the use of the 

Gibbs distribution. 

A continuous field, of course, cannot be simulated 

on a computer without first discretizing the energy or 

probability equations. The best way to perform this dis- 

cretization for mechanical models is to use finite element 

analysis. The same discrete equations that are derived 

from the mechanical model can then be used to define 

a Markov random field. We can thus view the MRF as 

a discretized version of a continuous pseudo-Markovian 

field. The parameters for this field need not be com- 

puted by assigning conditional probabilities. They can 

be derived the same way as they are for mechanical 

models, that is, using parameters with natural interpreta- 

tions or physical correlates [Geiger and Girosi 1989]. 

Because of the equivalence between energy functions 

and probability density functions that can be established 

using the Gibbs distribution, we can design probabilistie 

models that have the exact same performance as that 

obtained with mechanical models. The question is then 

"what possible advantages do probabilistic models 

offer?" One advantage is that we can develop probabil- 

istic sensor models that closely match the characteris- 

tics of real sensors (section 5). Another advantage is 

that we can choose different loss functions to use with 

our posterior estimator (section 6.1), whereas mechani- 

cal models always find the MAP estimate. With a prob- 

abilistic model we can also determine the uncertainty 

in our estimate (section 6.2), which corresponds to 

determining the local stiffness of the mechanical model. 

Additional applications of the probabilistic approach 

were presented in section 8. 

Probabilistic modeling need not be restricted to two- 

dimensional fields. We can apply the same techniques 

for converting energy-based models into Bayesian priors 

to three-dimensional models such as those being investi- 

gated by Terzopoulos et al. [1987]. Figure 11 shows a 

three dimensional elastic net (based on the two- 

dimensional nets developed by Durbin and Willshaw 

[1987, 1989]) that was obtained by tessellating a sphere. 

The energy equation for this net is 

E(pi) : Z Z I p , -  pjl 2 - p~-]  Ip, I 
i j~Nt i 

Applying the Gibbs sampler to this system, we obtain 

the typical sample shown in figure 11. This figure 

resembles the examples of fractal textured spheres 

shown in [Mandelbrot 1982] and [Pentland 1986] that 

were generated by adding fractal texture onto the sur- 

face of a sphere. 

From this example, we see that the difference between 

intrinsic models that describe visible (retinotopic) sur- 

faces and three-dimensional energy-based models that 

describe objects may not be that large. Bayesian model- 

ing may thus serve as a common mathemetical frame- 

work for describing the multiple transformations that 

occur in going from images to three-dimensional 

models. Moreover, the uncertainty computed at an ear- 

lier stage of processing can be used to derive the uncer- 

tainty in later estimates, for example, the uncertainty 

in the object model shape or position parameters can 

be computed from the probabilistic description of the 

Fig. 11. Random sample from a three-dimensional elastic net. 
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surface. We believe that the development of appropriate 

intrinsic models for intermediate-level visual represen- 

tations will prove to be an interesting and important 

research topic. 

In the end, the difference between mechanical and 

probabilistic models may not be that large, since prob- 

abilistic systems based on MRFs have mechanical ana- 

logues and vice versa [Geiger and Girosi 1989]. The 

mechanical approach may be prefereable for developing 

energy equations and specifying model parameters. For 

MAP estimation, specially tailored deterministic algo- 

rithms-such as those developed by Witldn et al. [1987] 

and Blake and Zisserman [1987]--should perform better 

than general stochastic optimiTation. On the other hand, 

the probabilistic approach enables the development of 

more sophisticated estimates, including the use of 

different loss functions and the estimation of model 

parameters. 

I0 Conclusions 

The main focus of this article has been the development 

of a Bayesian framework for modeling dense fields and 

their associated uncertainties. Such fields are used in 

low-level vision to represent visible surfaces and intrin- 

sic images. These retinotopic maps form a useful inter- 

mediate representation for integrating information from 

different low-level vision modules and sensors. Model- 

ing the uncertainty in these maps is an essential com- 

ponent of the integration process and provides a richer 

description for later stages of processing. 

The Bayesian framework we have developed is based 

on three separate pmbabilistic models. The prior model 

describes the a priori knowledge that we have about 

the structure of the visual world. The sensor model 

describes how individual measurements (such as image 

intensities) are obtained from a particular scene. The 

posterior model is derived from the first two models 

using Bayes' rule and describes our current estimate 

of the scene given the measurements. By examining 

each of these models in turn, we have developed new 

algorithms for low-level vision problems and new in- 

sights into existing algorithms. 

In studying the prior model, we have analyzed the 

statistical assumptions of regularization-based smooth- 

ing. The prior model captures the smoothness or coher- 

ence assumptions associated with a visible surface. We 

construct this model using the smoothness constraint 

(stabilizer) from regularization as the energy function 

of a Markov random field. Using Fourier analysis, we 

have shown how the choice of the stabilizer determines 

the power spectrum (and hence the correlation function) 

of the prior model. 

In studying sensor models, we have reviewed the 

equivalence between Gaussian sensor noise and a simple 

spring constraint, and shown how to extend this analysis 

to a mixture of Gaussians model. We have also applied 

sensor modeling to correlation-based optical flow meas- 

urements, where the uncertainty in the estimates is 

derived from the shape of the local error surface, 

thereby accounting for the spatially varying reliability 

of the estimates. 

In studying the posterior model, we have shown how 

to calculate the uncertainty in the posterior estimate 

from the energy function of the system, and we have 

developed two new algorithms to perform this computa- 

tion. The first algorithm uses deterministic relaxation 

to calculate the uncertainty at each point separately. The 

second algorithm generates typical random samples 

from the posterior distribution and calculates statistics 

based on these samples. The uncertainty map obtained 

from these algorithms can be used to set confidence 

limits on our measurements or to suggest where further 

active sensing is required. 

Our Bayesian framework has been extended to tem- 

poral seuqences using a two-dimensional generalization 

of the Kalman filter. By paying careful attention to com- 

putational issues and to alternative representations, we 

obtain simple formulations for the updating equations. 

To demonstrate the usefulness of the Bayesian frame- 

work developed here, we have presented three novel 

computer vision algorithms. The first algorithm esti- 

mates optical flow from successive pairs of images and 

incrementally refines the resulting disparity estimates 

and their associated confidences. This algorithm pro- 

duces a dense on-line estimate of depth that improves 

over time. Experiments with real images have demon- 

strated the improved accuracy that can be obtained with 

this approach and have shown that the reconstructed 

depth maps of the scene are quite realistic. The second 

algorithm determines observer or object motion given 

two or more sets of sparse depth measurements. The 

algorithm determines this motion--without requiring 

any correspondence between the sensed points--by 

maximizing the likelihood that point sets come from 

the same smooth surface. The third algorithm estimates 

the optimal amount of smoothing to be used with regu- 

larization. This estimate is obtained by maximizing the 

likelihood of the data points that were observed given 
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a particular (parameterized) prior model, which results 

in a statistically valid, data-driven method for deter- 

mining this important parameter. 

10.1 Future Research 

The Bayesian framework we have developed has been 

applied to visible surfaces (21/2-D sketches) and to sur- 

face interpolation and depth-from-motion. In future 

work we plan to extend our Bayesian approach to other 

visual representations and to other computer vision 

problems. These include the extension to full three- 

dimensional models and to multiple intrinsic images, 

as well as the development of more general depth-from- 

motion and shape reconstruction algorithms. 

The extension to viewpoint-invariant surface models 

and energy-based three-dimensional models should be 

straightforward. To perform this extension, we use the 

smoothness energy associated with the surfaces to 

define the prior model through a Gibbs distribution. 

While the resulting distributions are no longer corre- 

lated Gaussians (because the energy functions are not 

quadratic), they are still Markov random fields (because 

of the local structure of the energy). Applying the 

Bayesian approach to these representations should pro- 

duce similar benefits to those demonstrated here, includ- 

ing the ability to use better sensor models and the ability 

to characterize the uncertainty in the estimates. We 

could also examine the extension to locally tensioned 

splines and to nonspline models such as the constant 

curvature sign models suggested by Blake and Zisser- 

man [1987]. 

We plan to apply the Bayesian modeling approach 

to multiple intrinsic images, thus providing a unified 

framework for describing many different low-level vision 

algorithms. For example, we can enhance our new 

depth-from-motion algorithm by estimating the reflec- 

tance functions (albedos) of the visual surfaces, and thus 

incorporate shading cues into the reconstruction process. 

We also plan to study the more general idea of intrinsic 

models--probabilistic descriptions of intrinsic images-- 

and how to link these models to higher-level three- 

dimensional models. In particular, we should examine 

how to use the tmcertainty in the intermediate-level esti- 

mates to determine the uncertainty in three-dimensional 

model parameters. For this approach to be viable, how- 

ever, we will first have to solve the problems of group- 

ing, segmentation, and discontinuity detection. 

The extension of our depth-from-motion algorithm 

to general motion is another area of future research. 

Combining this idea with full three-dimensional models, 

we could construct an active vision system that builds 

a three-dimensional description of its environment by 

roaming around. The Bayesian modeling of surfaces 

that we have developed would be an essential compo- 

nent of such a system, allowing information from many 

viewpoints and sensor modalities to be integrated in 

a natural and statistically optimal fashion. These are 

just some of the directions in which we plan to extend 

our Bayesian model, which has already proved to be 

a powerful, practical, and general framework for low- 

level vision. 
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N o t e s  

'We will show later that regularization is a special case of the more 

general Bayesian approach to the formulation of  inverse problems. 

2Once the system has latched-on to a good solution, it can then 

track changes in the scene using only a few iterations to correct its 

estimate. Similar arguments have recently been advanced in support 

of dynamic deformable models by Terzopoulos [1987] and Kass et 

at. [1988]. 

~A Markov random field can sometimes be designed such that it 

has the desired surface (e.g., a plane) in its null space [Leclerc 1989]. 

However, the estimation of the surface using the MRF will be much 

slower than direct least squares fitting. 

4This is because the Jacobian ]aU/~u] is a constant for a linear 

operator. 

5For stereo matching and many other vision problems, the energy 

function being mimmized has many local minima, so some search 

technique must be used. Popular iterative search techniques include 

simulated annealing [Marroquin 1985; Szeliski 1986; Barnard 1989] 

and continuation methods [Terzopoulos 1988; Koch et al. 1986; Blake 

and Zisserman 1987; Witkin el al. 1987, Leclerc 1989] 

6For quadratic energy functions, the MAP, MPM, and MMSE esti- 

mates are identical. 

7The inverse covariance matrix is called the ~nfonnation matrix 

in the statistical literature. In finite element analysis, A is called the 

stiffness matrix and b is the force vector. 


