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1. Introduction

High-throughput technology currently generates measurements of the ac-
tivity of the nervous system from the level of single neurons (Van Pelt et al.
[2004], Morin et al. [2005]) up to the whole brain (Woolrich et al. [2004]). In
this context, stochastic modeling provides a formal framework to evaluate
the scientific hypotheses explaining specific aspects of the neuronal dynam-
ics. This paper presents a novel dynamic Bayesian network (DBN) model
for the statistical analysis of the functional connectivity of stochastic neu-
ronal networks based on measurements of the action potential of each cell
over time. Seminal papers in the area of Bayesian networks and DBNs are
Spirtes [1995], Heckerman [1996], Ghahramani [1998], Friedman et al. [1998]
and Murphy [2001]. In particular, Murphy and Mian [1999] and Friedman
[2004] employed DBNs to model genetic and cellular networks. Moreover,
while static Bayesian networks are represented by directed acyclic graphs
(DAGs), DBNs can be represented by directed cyclic graphs (DCGs). The
latter feature of DBNs is in fact relevant in the present context because
stochastic neuronal networks can be thought of as DCGs where the directed
edges identify pairwise functional connections and the cycles represent each
neuron’s self dependence over time. The network model described in this
work incorporates a Markov dependence of varying order over a discrete
time frame and a regression term, both of which are not standard features of
DBNs. Furthermore, we adopt a Bayesian hierarchical perspective to jointly
estimate from the data all the model parameters, namely the membrane po-
larization parameters, the functional connectivities, their baseline standard
deviation, the unknown network structure and the covariate effects. By let-
ting the network relationships be unknown parameters, we face a problem
of model uncertainty (Gelfand and Dey [1994], Draper [2002], Spiegelhalter
et al. [2002], Clyde and George [2004]). Dellaportas et al. [2000] and George
and McCulloch [1997] provide extensive reviews of several Bayesian model
selection methods based on the Gibbs sampler. Godsill [2001] compares
these methods with the reversible jump Markov chain Monte Carlo (Green
[1995]). In order to incorporate in our model the unknown network struc-
ture, we employ a prior mixture along the lines of George and McCulloch
[1993]. In this framework, inference can be carried out within a parame-
ter space of fixed dimension using the standard Gibbs sampler. We also
show that, in the context of multiple spike trains analysis, adopting such a
mixture prior yields robust inferences with respect to random spike sorting
errors which, if not properly accounted for, might lead to the identification
of spurious network relationships.
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The remainder of this paper is organized as follows. Section 2 reviews
the statistical literature relevant for our work. Section 3 presents our model
for the joint distribution of the network spiking activity and the hierarchical
prior. Section 4 reports the posterior distributions of the model parameters
and the predictive probabilities of future spike states. Section 5 describes
the assessment of the model’s goodness of fit and of its predictive power.
Sections 6 and 7 report the analyses of simulated data and of in vitro spike
data. Section 8 discusses some of the main implications of our modelling
approach and it describes some directions for future developments.

2. A review of the statistical modeling of spike trains

Neurons are complex input-output systems whose dynamics have been
investigated by experimental neurophysiologists during the last sixty years.
For a comprehensive review of the literature in this area, the reader might
be referred to Dayan and Abbott [2001] or Gerstner and Kistler [2002] and
to the fundamental works by Hodgkin and Huxley [1952], FitzHugh [1961],
Nagumo et al. [1962] and Izhikevitch [2001]. Fienberg [1974] describes the
essential physiology behind the neuronal spike process and the early litera-
ture on the statistical analysis of single neuron spike trains. Brillinger and
coauthors (Brillinger [1975, 1976, 1988a, 1988b, 1992, 1996, 2003], Brillinger
et al. [1976], Brillinger and Segundo [1979]) developed several point process
models characterizing the spiking activity of single neurons and the inter-
actions among small numbers of neurons over time. Doss [1989] proposed
a nonparametric method based on point processes to study the pair-wise
dependence of the neuronal rates of activity in the time domain. West and
Turner [1992], Turner and West [1993] and West [1997] employed a Dirichlet
process mixture of Gaussian densities (Ferguson [1983], Escobar and West
[1995]) to model the distribution of the response to excitatory post synaptic
potentials of single neurons. In the context of single spike trains analy-
sis Kass and Ventura [2001] introduced the inhomogeneous Markov interval
point process, which varying memory structure is determined by the inter-
arrival times of successive spikes. Kass et al. [2003] used the BARS method
(Di Matteo et al. [2001]) as a model based smoother of the instantaneous
firing rate function. As emphasized in Iyengar [2001], the focus of these
models is the behaviour of either single neurons or of small numbers of neu-
rons. Brown et al. [2004] and Kass et al. [2005] offer two perspectives on the
state of the art of multiple spike trains analysis, which is concerned with the
development of statistical models for the joint firing activity of many neu-
rons over time. These papers indicate some open challenges in this area that
current statistical methods do not adequately address yet, namely modelling
the noise induced by the occurrence of false positive and false negative spik-
ing events (i.e. the spike sorting problem) and the estimation of high order
interactions among neurons. Along these lines, Okatan et al. [2005] intro-
duced a maximum likelihood method to estimate the functional connectivity
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of stochastic neuronal networks based on a discretization of the approach
of Chornoboy et al. [1988], whereas Rao [2005] proposed a Bayesian hier-
archical model for integrate-and-fire networks in continuous time based on
measurements of the membrane potential.

The model presented in this work differs from the previous literature in
three essential aspects. First, we distinguish the set of parameters defining
the observed spiking process from those identifying the unknown network
relationships. Second, we explain the network connectivity through a re-
gression term at the top of the model hierarchy. Third, we assess model
adequacy from two perspectives, evaluating the goodness of the model fit
for a training sample and its predictive power for an independent validation
sample of spike states.

3. A binary stochastic neuronal network

At any time point t a neuron is spiking if its membrane potential exhibits
a characteristic large fluctuation called an action potential. Because action
potentials are all-or-nothing events, the spiking state of a neuron at time t
has only two values, spiking and not-spiking. We assume that experimental
measurements of the spiking states of a fixed set of i = 1, ...,K neurons are
available over a fixed discrete time grid t ∈ (1, ..., T ). In what follows, the
time grid is chosen so that the time points t are equally spaced and we do
not observe spikes within and of the intervals (t − 1, t).

Let Y with elements Yit, dimensions K ×T and columns Yt be the binary
matrix of random spiking states with Yit = 1 if neuron i is firing at time t
and Yit = 0 otherwise, so that Si(t) =

∑t
w=1

Yiw represents the cumulative
spike process for neuron i at time t. Let P denote the joint distribution of
the data Y , indexed by the parameter vector θ with length K, the parameter
matrix β with dimensions K ×K and a fixed initial state Y0 = y0. Here the
parameters θi represent neuron specific effects whereas each coefficient βij

represents the pair-wise functional connectivity with j as the transmitting
neuron and i as the receiving neuron. Conditionally on (θ, β, y0) the joint
data sampling distribution can always be factored as

P (Y | θ, β, y0) = P (Y1, ..., YT | θ, β, y0)

=
T

∏

t=1

Pt(Yt | θ, β, y0, ..., Yt−1),(1)

where Pt is the conditional distribution of the K dimensional vector Yt.
Moreover, let the distribution of the firing state Yit depend only on (θ, β)
and on the past network history between neuron i’s last firing time, τit, and
time (t − 1). Formally τit is defined as

τit =

{

0 if
∑t

τ=0
Yiτ = 0,

max{0 ≤ τ < t : Yiτ = 1} otherwise.
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Under the latter assumption, the distribution P can be factored as

P (Y | θ, β, y0) =
T

∏

t=1

K
∏

i=1

Pit(Yit | θi, βi1, ..., βiK , {Yw}
t−1
w=τit

),(2)

being Pit the conditional distribution of Yit. The spiking pattern of each
neuron is modeled in equation (2) as a discrete time renewal process which
renewals take place after each firing. This assumption reflects an essential
feature of the underlying biological process, namely that at each point in
time the action potential of a neuron can be thought of as a function of the
post synaptic potentials taking place between its successive firings (Dayan
and Abbott [2001], Brillinger [1988b], Kass and Ventura [2001]). More-
over, equation (2) states that at each point in time t, conditionally on their
parameters (θi, βi1, ...βiK) and on the relevant history of the network, the
spiking states (Y1t, ..., YKt) are independent random variables. We also note
that the factorization (2) of the joint distribution P would not hold if the
random spiking states would be allowed to simultaneously depend on each
other. In such a case, to define consistently the joint distribution of the K
spike trains we would face the issues illustrated for instance in Lauritzen
and Spiegelhalter [1988] and Lauritzen [1996].

In order to give an explicit form to the likelihood function (2), at any time
t let {Yit}

K
i=1

be conditionally independent Bernoulli random variables given
their success probabilities {πit(θi, βi1, ..., βiK , {Yw}

t−1
w=τit

)}K
i=1

. For notational
convenience, in what follows we will drop the dependence of πit on the array
of parameters and network history. Under this assumption equation (2) can
be rewritten as

P (Y | θ, β, y0) =
T

∏

t=1

K
∏

i=1

(πit)
Yit(1 − πit)

1−Yit .(3)

We note that Brillinger [1988a] proposed a Bernoulli specification of the
conditional spike probabilities similar to equation (3) in the context of a
random threshold spike train model. However, in our formulation we do
not assume that a spike occurs at time t when the membrane potential of
neuron i exceeds an unknown threshold, but we define the firing probability
πit as the expectation of the random spiking state Yit. In order to define the
firing probabilities, we assume a linear integration of the input signal and a
logistic link and we write πit as

πit =






1 + e

−θi−
PK

j=1
βij

 

Pt−1
w=τit

Yjw

t−τit

!







−1

.(4)

Each parameter βii in equation (4) measures the slope of the linear rela-

tionship between the time lag (t − τit) and the firing log odds log
(

πit

1−πit

)

.

These parameters represent the overall refractory effect of each neuron,
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i.e. the propensity of the firing probability to decrease after a spike as a
consequence of the underlying ion channel dynamics. Each extra diagonal
term βij represents the constant contribution of neuron j’s firing proportions
Pt−1

w=τit
Yjw

t−τit
to the spiking probability πit. Positive values of βij represent exci-

tatory functional relationships, whereas negative values represent inhibitory
functional relationships. These parameters in fact do not correspond to indi-
vidual synapses between pairs of interconnected neurons but they represent
the average effect of the activity of neuron j on the firing rate of neuron i
under the input integration process assumed in equation (4). The neuron-
specific frailty parameters θi are unknown baseline membrane polarization.
In absence of external inputs and when the neuron’s own refractoriness be-
comes negligible, equation (4) implies that neuron i’s firing probability is
1/(1 + e−θi), constant over time.

Although the exponent of equation (4) is linear in the model parameters
(θ, β), the logit link is a nonlinear mapping of the integrated input onto the
interval (0, 1). In other terms, the logit link defines a symmetric saturation
of the spiking probability with respect to the input process. Since the de-
rivative of the logistic function is a symmetric bell-shaped curve, under (4)
the fluctuations of the network firing activity produce small changes of a
neuron’s firing probability when its integrated input is either very large or
very small and larger changes when the integrated input is closer to zero.

Under (3) and (4) the joint probability of the data Y conditionally on the
membrane potential parameters θ, the functional connectivities β and the
fixed initial condition y0 can be written explicitly as

P (Y | θ, β, y0) =
∏

t,i
e

Yit

0

@θi+
P

j βij

0

@

Pt−1
w=τit

Y
j
w

t−τit

1

A

1

A

1+e

θi+
P

j βij

0

@

Pt−1
w=τit

Y
j
w

t−τit

1

A

.(5)

Finally, let X with elements xij be a K × K matrix of predictors fixed
over time, representing the available neuron specific characteristics which
may influence the probability that a neuron develops network functional
connections. Potential covariates of interest are the neuron types (e.g. pyra-
midal, interneuron, sensory, motor), the spatial coordinates of the somas,
the location of a neuron within a particular brain section, past exposure of
the neurons to chemicals and genetic covariates such as indicator variables
for knock-out genes and so forth. The predictors’influese on the network
connectivity is modeled in this work via a regression term at the top of the
model hierarchy, as illustrated in the next subsection.

3.1. Prior distributions. The frailty coefficients θ are assigned a K di-
mensional Gaussian prior density with zero mean and covariance matrix
IKs2

θ, where the scalar s2
θ is the fixed common prior variance and IK is the

K × K identity matrix.
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In order to introduce the unknown network structure, for any couple (i, j)
let the connectivities βij be a priori Gaussian with zero mean, zero prior
correlation with the other connectivity parameters and standard deviations

σij = σ(υij + ǫ(1 − υij)).(6)

In equation (6), the coefficient σ represent the unknown common baseline
prior standard deviation, ǫ ∈ (0, 1) is a fixed common shrinkage factor and
υij = 1 indicates the existence of a statistically significant functional rela-
tionship with direction j → i. Moreover, let υ be the K × K binary matrix
which (i, j)th element υij is one with probability (1 + e−αxij )−1 and zero
otherwise. The parameters υij are assumed a priori conditionally indepen-
dent, so that the prior probability of the matrix υ is a product of Bernoulli
random variables with probability mass function

P (υ | α,X) =
∏

ij

eαxijυij (1 + eαxij )−1.(7)

The prior hierarchy (6)-(7) implies that, conditionally on α and σ, when
the shrinkage factor ǫ is close to zero with probability (1 + e−αxij )−1 the
parameter βij is a priori very small, although it is not constrained to be ex-
actly zero. Thus, the value of ǫ defines the size of a negligible network effect
relative to the prior spread of the connectivities β. The prior mixture (6)
has been successfully employed in the context of covariate selection for the
linear regression model by George and McCulloch [1993] and by George and
Foster [1997], who label their method stochastic search variable selection.
Equations (6) and (7) extend their shrinkage prior in two directions. First,
in (7) we introduced a second level logistic model explaining the probability
that the size of each coefficient βij is not negligible as a function of the co-
variates X and of the regression coefficient α. In what follows, the elements
xij represent the log Euclidean distance between the somas of neurons (i, j).
Therefore, the scalar α represents the spatial dependence of the network
structure so that α < 0 implies that the further apart are the neurons, the
lower is the prior expectation of a direct functional connection being estab-
lished between them and vice versa. The parameter α is assigned a Gaussian
prior with mean zero and with fixed standard deviation sα. Second, we place
a conjugate inverse gamma prior IG(a, b) on the variance σ2 of the connec-
tivity parameters. Moreover, when both a and b tend to zero the inverse
gamma density approaches 1/σ2, which is the Jeffrey’s prior for the variance
of the Gaussian distribution. Given a fixed value of the shrinkage factor ǫ,
we estimate σ to fit the shrinkage mechanism to the data, thus avoiding the
fine tuning issues encountered when both ǫ and σ are fixed, as in George
and McCulloch [1993]. Given the above prior structure and the data joint
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probability function, the full model can be written as

α ∼ Norm(0, s2
α),(8)

θ ∼ Norm(0, IKs2
θ),

σ2 ∼ IG(a, b),

υij | α, xij
ind
∼ Bernoulli

(

1

1 + e−αxij

)

,

βij | υij, σ, ǫ
ind
∼ Norm(0, σ2

ij),

Y | θ, β, y0 ∼ equation (5).

4. Posterior distributions and inference

Estimates of the parameters (α, υ, σ, θ, β) of model (8) can be computed
by posterior simulation via the Gibbs sampler (Gelfand and Smith [1990],
Smith and Roberts [1993] Tierney [1994]). The latter proceeds by itera-
tively sampling realizations of all the parameters from their respective full
conditional posterior densities (FCPD), which can be obtained up to a mul-
tiplicative constant by dropping from the joint posterior f(α, υ, σ, θ, β | Y )
all terms which do not depend on the parameter of interest.

The FCPD of each frailty parameter θi, up to a multiplicative constant,
can be written as

f(θi | Y, β, θ−i, sθ) ∝ φ(θi | sθ)
∏

t,i

eYitθi

1 + e
θi+

P

j βij

 

Pt−1
w=τit

Y
j
w

t−τit

! ,(9)

where φ(. | sθ) is the Gaussian density with zero mean and standard de-
viation sθ and θ−i stands for the vector of all the membrane polarization
parameters but its ith term. These conditional posterior densities do not
have a closed form so that updating of each θi within the Gibbs sampler
will be carried out via the Metropolis-Hastings algorithm (Metropolis et al.
[1953], Hastings [1970]).

For the FCPD of each parameter βij we have

f(βij | Y, υij, βi,−j , σ, ǫ, θi) ∝ φ(βij | σij)
∏

t

e
Yitβij

 

Pt−1
w=τit

Y
j
w

t−τit

!

×

×






1 + e

θi+
P

k βik

 

Pt−1
w=τit

Y k
w

t−τit

!







−1

,(10)

where σij is given in equation (6) and βi,−j represents the array of coefficients
(βi,1, ..., βi,j−1, βi,j+1, ..., βi,K). Updating of the parameters β will be carried
out via a Metropolis within Gibbs step as for the membrane potentials θ.

Conditionally on (ǫ, β, υ) and under the inverse gamma prior adopted in
model (8), the FCPD of σ2 is inverse gamma with parameters (a∗, b∗) defined
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by

a∗ = a +
K2

2
,(11)

b∗ = b + 0.5
∑

ij

β2
ij

υij + ǫ2(1 − υij)
,(12)

so that updating for σ will be carried out in closed form.
Conditionally on (sα,X, υ), the spatial dependence coefficient α is a pos-

teriori independent of (θ, β, Y, σ). Up to a multiplicative constant its FCPD
is

f(α | sα,X, υ) ∝ φ(α | sα)
∏

ij

eαxijυij (1 + eαxij )−1,(13)

which is not available for exact sampling, so that the Metropolis-Hastings
algorithm will be employed to produce approximate posterior inferences also
for α.

Conditionally on (βij , α, xij , σ, ǫ) each υij is a Bernoulli random variable
independent of the remaining parameters. Its conditional posterior success
probability is given by

P (υij = 1 | βij , α, xij , σ, ǫ) =
eαxijφ(βij | σ)

eαxijφ(βij | σ) + φ(βij | σǫ)
.(14)

4.1. Parameter estimation. In this work we adopt the sample means and
the sample 95% equal tails intervals computed from the Gibbs sampler out-
put as approximate estimates of the marginal posterior means and marginal
posterior probability intervals of the model parameters. The posterior mean

network υ̂ = {υ̂ij}
K
i,j=1

can be obtained by letting υ̂ij = 1 if
PM

m=B+1 υm
ij

M−B
≥ 0.5

and zero otherwise, where {υm
ij } represents the sequence of the Gibbs sam-

pler draws for the parameter υij , B is a fixed burn-in period and M is the
total number of draws. An alternative point estimate of the network struc-
ture υ̂ is the posterior modal network, which is the configuration of υ most
visited during the posterior sampling. From a decision theoretical perspec-
tive, the mean is the posterior summary which minimizes the posterior risk
under a quadratic loss function whereas the mode minimizes the posterior
risk under an absolute value loss function (Berger [1985]). In the examples
of sections 6 and 7 the mean estimate is preferred to the mode because the
latter might not be unique. In order to visualize the network point estimate,
if υ̂ij = 1, an arrow will be drawn from neuron j to neuron i. The DCG
of the posterior mean network will be constructed by matching the set of
arrows between all pairs of neurons together with their spatial coordinates.

4.2. Spike prediction. In what follows, the data Y will be divided in two
parts: a training sample with all the spike states recorded over [0, ..., t] with
t < T and a validation sample including the spikes recorded after time t. The
former will be used to estimate the posterior distribution of the parameters
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(α, υ, σ, θ, β). Such estimates will be then used to sequentially predict the
spiking states over the validation sample. Within the Bayesian framework,
predicting the spiking state of neuron i at time t + 1 conditionally on the
past data up to time t can be carried out by computing the neuron’s one step
ahead marginal posterior predictive spiking probability, which for model (8)
is

pi,t+1 = P (Yi,t+1 = 1 | {Yw}
t
w=1),

=

∫

P (Yi,t+1 = 1, θi, βi1, ..., βiK | {Yw}
t
w=1)d(θi, βi1, ..., βiK ),

=

∫

P (Yi,t+1 = 1 | θi, βi1, ..., βiK , {Yw}
t
w=τi,t+1

) ×

× f(θi, βi1, ..., βiK | {Yw}
t
w=1)d(θi, βi1, ..., βiK ).(15)

The right hand side of equation (15) is the expectation of the spiking prob-
ability for neuron i at time t+1 with respect to the joint posterior density of
the parameters (θi, βi1, ..., βiK). The one step ahead predictive probabilities
for model (8) cannot be computed analytically. However, the left hand side
of equation (15) can be approximated by Monte Carlo integration:

pi,t+1 ≈

∑M
m=B+1

πi,t+1(θ
m
i , βm

i1 , ..., βm
iK , {Yw}

t
w=τi t+1

)

M − B
,(16)

where the summands on the right hand side of equation (16) are defined by
(4) and the sequence {θm

i , βm
i1 , ..., βm

iK}M
m=1 includes the Gibbs sampler draws

of the parameters (θi, βi1, ..., βiK). Given the approximation (16), we let the

predicted spiking status be Ŷi t+1 = 1 if pi t+1 ≥ 0.5 and zero otherwise.

The motivation for using (16) to estimate Ŷi,t+1 is that the marginal pos-
terior predictive probabilities incorporate the posterior uncertainty of the
parameters (θi, βi1, ..., βiK) as reflected by their posterior samples, whereas

the fitted spiking probabilities πi,t+1(θ̂, β̂i1, ..., β̂iK , {Yw}
t
w=τi,t+1

) take into
account only their point estimates irrespectively of their uncertainty. There-
fore, if the 95% posterior intervals of the parameters (θ, β) are wide, the
fitted spike probabilities can be misleadingly close to either 0 or 1 whereas
the marginal predictive spike probabilities will be more conservative.

5. Model assessment

Evaluating statistically the goodness of fit of model (8) is not a straight-
forward task because, conditionally on the training data, for any t∗ ∈ [0, t]
the sampling distribution of the raw fitting residuals

rf
it∗ = yit∗ − πit∗(17)

is not known exactly. As illustrated by Pregibon [1981], Landwehr et al.
[1984] and Albert and Chib [1996], similar difficulties are encountered in
the evaluation of the goodness of fit for generalized linear regression models
for binary outcomes. Following Albert and Chib we note that, given the
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spike data, the distribution of the fitting residuals rf
it∗ only depends on

the unknown parameters (θ, β) through equation (4). Therefore, the Gibbs

sampler draws for (θ, β) provide also an estimate of the distribution of rf
it∗

which can be used to evaluate the goodness of the model fit. If Yit = 1,

then rf
it∗ ∈ [0, 1] and the closer the residuals are to 1, the more the fit is at

odds with the observed data. If Yit = 0, then rf
it∗ ∈ [−1, 0] and lack of fit is

reflected by residuals close to −1. In the following examples we will display
the estimated mean and 95% probability intervals for the fitting residuals.
Moreover, as a summary indicator of the goodness of fit we will compute
for each neuron the proportion of raw residuals significantly crossing the
thresholds 0.5 or −0.5. In the former case, we do not observe a spike but
the upper endpoint of the estimated 95% probability interval of the fitting
residual exceeds one half whereas in the latter case we do observe a spike
but the lower endpoint of the 95% interval crosses the value minus one half.

After observing the spike data up to time T , we can also assess the model’s
predictive power through the prediction residuals

rp

it
′ = yit

′ − pit
′(18)

where t
′

belongs to the validation period [t + 1, ..., T ]. Unlike the fitting

residuals rf
it∗ , the prediction residuals rp

it
′ are fixed values because the ran-

domness induced by the parameters (θ, β) has been eliminated in equation
(16) through Monte Carlo integration. Therefore, the only indicator of the
model’s predictive accuracy is the number of prediction residuals exceeding
a given threshold. As for the fitting residuals, we will report the proportions
of prediction residuals crossing the threshold 0.5 in absolute value.

6. Example 1: analysis of a simulated dataset

In this section, first we illustrate the analysis of a set of simulated data
which was performed by employing our implementation of model (8). Sec-
ond, we use the same set of simulated data to evaluate the robustness of the
Bayesian estimates with respect to moderate random spike sorting errors.

The simulated network includes nine neurons, so that the number of pos-

sible distinct matrices υ is 292

= 2.4179e + 024. The true value of the
connectivity matrix υ, of the network parameters β and of the membrane
polarization coefficients θ were sampled from the hierarchical prior intro-
duced in section 3, having fixed sθ = 3.00, α = −1.50, the prior standard
deviation σ = 3.00 and the shrinkage factor ǫ = 0.01. Figure 1 shows the
true network structure within its spatial layout. Table 1 reports the true
values of the parameters β. Bold figures in this table are associated with
existing pairwise functional connections, thus with the nonzero elements of
the connectivity matrix υ and with an edge in figure 1. The second column
in table 2 shows the true value of the membrane polarization coefficients θ.

Four thousand data points were generated for each neuron by implement-
ing equations (3) and (4). The sample was then divided in a training batch
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including the first two thousand time points and a validation batch com-
posed of the last two thousand points. Figure 2 shows the spike intensity
functions (SIF) for the nine simulated neurons. The SIFs were obtained by
computing the proportion of spikes over windows of constant width 50 time
points. In order to produce a smoother curve, successive windows overlap
by 45 time points. The firing rates displayed by the nine neurons reproduce
a wide range of possible biological conditions, from the extremely frequent
firings of neuron 5 to the low activity of neuron 2. The high firing rates of
neuron 5 arise from the combination of a strong excitatory input from neu-
ron 9 and a high membrane polarization parameter (3.48). Neurons (1, 4, 7)
display rather low firing rates whereas neurons (3, 6, 8, 9) have intermediate
firing rates over time. Although neuron 2 receives a strong excitatory input
from 7, the combination of its own refractoriness (−1.24) with its low mem-
brane coefficient (−4.43) decreases its SIF level to an average of 5% over the
whole period.

In order to analyze the simulated data through model (8), the prior stan-
dard deviation of the spatial dependence parameter was set at sα = 3.00
whereas that of the membrane polarization coefficients was set at sθ = 5.00.
We used the Jeffrey’s prior for the synaptic variance σ2, letting the inverse
Gamma parameters be a = 0 and b = 0. The starting configuration for
the posterior sampling of the network structure was the fully connected net-
work whereas the starting value for the other coefficients is zero. Simulation
studies showed that posterior estimation is not significantly affected by the
starting values of the model parameters υ. The posterior estimates were
computed using a posterior simulation of twenty thousand iterations using a
burn-in period of five thousand iterations. Posterior sampling for (θ, β) was
accomplished via a component-wise random scan random walk Metropolis
within Gibbs step with independent Gaussian proposals having standard
deviation 0.30, yielding acceptance ratios between 20 and 60 percent.

Table 2 shows the inferences for the frailty parameters θ and table 3
displays the posterior inferences for the parameters β associated to the sta-
tistically significant pair-wise connections. The tables show that the true
values of the parameters (θ, β) lie well within their 95% posterior intervals
and that the posterior means are remarkably close to their respective true
values. Figure 3 shows the sample frequencies of the distinct configurations
of the matrix υ visited along the posterior sampling. The number of edges
of the sampled networks ranged from 81 to 22 and the acceptance ratio for
the matrix υ stabilized at 11.40 percent. Figure 3 reveals one global mode
in the space of visited network configurations and a large number of net-
work structures scarcely supported by the data. The estimated posterior
modal network coincides with the true configuration of the matrix. Table
4 reports the estimated posterior mean inclusion probabilities for all the
neuronal pairwise interactions. The bold figures in the table correspond to
the estimates exceeding 0.5, which define the posterior mean network. By
comparing tables 1 and 4 it can be noted that also the latter point estimate
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(i, j) 1 2 3 4 5 6 7 8 9
1 −2.97 0.04 −0.02 0.04 0.00 −0.02 0.02 0.05 0.02
2 0.00 −1.24 0.05 −0.02 0.00 0.02 5.76 −0.03 0.02
3 −0.04 0.01 −1.94 −0.03 0.00 −1.20 2.71 −0.01 2.01
4 0.00 −0.03 0.04 −1.24 −0.05 0.04 −0.03 1.52 −3.81
5 0.04 0.00 0.02 0.00 −1.67 0.00 0.00 0.02 2.14
6 0.02 −0.03 −3.46 −0.05 −0.02 −1.90 0.00 0.06 −0.04
7 0.00 −0.05 −1.42 −0.01 −0.03 0.00 −1.52 0.00 −0.03
8 0.02 0.02 7.03 0.01 0.02 2.29 0.03 −1.75 0.02
9 0.03 5.29 −0.02 −0.07 0.03 0.03 −0.04 4.00 −2.43

Table 1. true values of the functional connectivity param-
eters β for the simulated data. Bold figures in the table
correspond to the edges in figure 1 and with nonzero entries
in the corresponding matrix υ.

coincides with the true configuration of υ. Since the data was generated
from model (8), these results are not unexpected. Figures 4 and 5 show the
Gibbs sampler output for the standard deviation σ and for the spatial de-
pendence parameter α. After discarding the burn-in period, their estimated
posterior means are respectively 3.45 and −2.09, and their estimated 95%
posterior interval are (2.48, 4.92) and (−3.29,−1.31). As for the likelihood
parameters, the posterior estimation of (σ, α) for this set of simulated data
is remarkably close to their underlying true values.

Table 5 shows the proportions of fitting residuals rf
it∗ which estimated

95% posterior intervals cross the thresholds 0.5 or −0.5 and the proportions
of prediction residuals rp

it
′ crossing the same threshold values. Figure 6

displays the fitting residuals for neurons 2 and 3, which are respectively
associated to the best and to the worst proportions in table 5. Figure 6
and tables 2, 3 and 5 emphasize that although the precision of the posterior
estimates for all the model parameters is comparable, the goodness of fit for
different neurons is remarkably different. In particular, table 5 suggests that
the proportions of large fitting residuals for neurons with either very high or
a very low firing rates are lower than those of the neurons with intermediate
firing rates. Moreover, figure 7 suggests that the relationship between the
number of spikes produced by the nine neurons during the validation sample
and the proportions of large prediction residuals is roughly quadratic, being
worse for neurons displaying intermediate firing activity and best for extreme
neurons with either very low or very high firing rates. This is due to the fact
that, as pointed out in section 3, under the logit link adopted in equation
(4) the variability of the spiking patterns of neurons with intermediate firing
probabilities is higher than that of the neurons with either large or small
probabilities.
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Parameter True value Post. mean 95% post.interval
θ1 −0.29 −0.24 (−0.47,−0.01)
θ2 −4.43 −4.11 (−4.50,−3.72)
θ3 0.90 0.84 (0.53, 1.19)
θ4 0.29 0.30 (−0.40, 0.41)
θ5 3.48 3.76 (2.65, 4.97)
θ6 3.68 3.68 (3.34, 4.02)
θ7 0.25 0.36 (0.01, 0.78)
θ8 −3.70 −3.58 (−4.10,−2.88)
θ9 0.45 0.39 (0.12, 0.67)

Table 2. true values and posterior inferences for the mem-
brane polarization parameters θ of the simulated data.

Parameter True value Post. mean 95% post.interval
β1,1 −2.97 −3.68 (−4.93,−3.11)
β2,2 −1.24 −1.16 (−2.50, 0.08)
β2,7 5.76 5.67 (4.26, 7.15)
β3,3 −1.94 −1.87 (−2.21,−1.54)
β3,6 −1.20 −1.12 (−1.50,−0.93)
β3,7 2.71 2.69 (2.32, 3.05)
β3,9 2.00 2.13 (1.86, 2.39)
β4,4 −1.24 −0.76 (−1.29,−0.26)
β4,8 1.52 1.39 (0.94, 1.86)
β4,9 −3.81 −3.67 (−4.30,−3.10)
β5,5 −1.67 −1.97 (−3.18,−0.83)
β5,9 2.14 2.45 (1.95, 3.05)
β6,3 −3.46 −3.47 (−3.77,−3.18)
β6,6 −1.90 −1.97 (−2.34,−1.62)
β7,3 −1.42 −1.46 (−1.90,−1.05)
β7,7 −1.52 −1.88 (−2.37,−1.47)
β8,3 7.03 6.58 (5.88, 7.27)
β8,6 2.29 2.10 (1.64, 2.56)
β8,8 −1.76 −1.31 (−1.89,−0.77)
β9,2 5.30 6.45 (4.83, 8.40)
β9,8 4.00 4.00 (3.67, 4.34)
β9,9 −2.43 −2.39 (−2.78,−2.03)

Table 3. true values, estimated posterior means and 95%
posterior probability intervals of the functional connectivity
parameters β for the simulated data.
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(i, j) 1 2 3 4 5 6 7 8 9
1 1.00 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01
2 0.01 1.00 0.01 0.01 0.01 0.02 1.00 0.01 0.03
3 0.01 0.02 1.00 0.02 0.02 1.00 1.00 0.06 1.00
4 0.01 0.01 0.01 1.00 0.02 0.04 0.01 1.00 1.00
5 0.01 0.01 0.01 0.01 1.00 0.01 0.05 0.01 1.00
6 0.01 0.01 1.00 0.01 0.01 1.00 0.03 0.02 0.02
7 0.05 0.02 1.00 0.01 0.03 0.04 1.00 0.03 0.06
8 0.01 0.01 1.00 0.02 0.11 1.00 0.09 1.00 0.03
9 0.01 1.00 0.06 0.01 0.02 0.01 0.03 1.00 1.00
Table 4. estimated posterior mean inclusion probabilities
of each pairwise network connection υij for the simulated
data.

Neuron Prop. large rf
it∗ Prop. large rp

it
′

1 0.19 0.19
2 0.06 0.04
3 0.27 0.26
4 0.18 0.17
5 0.07 0.07
6 0.23 0.24
7 0.23 0.22
8 0.24 0.19
9 0.21 0.19

Table 5. proportions of residuals significantly crossing the
thresholds 0.5 or −0.5 for the nine simulated neurons.

6.1. Spike sorting and robustness. The artificial data generated from
model (8) can also be used to demonstrate that the shrinkage prior (6) can
effectively prevent the posterior inferences from being significantly affected
by random spike sorting errors. In this section we consider the same set of
simulated data analyzed in the previous example, but we reversed the spik-
ing states of 5% of the training data chosen at random across neurons to
reproduce the noise generated by a moderate spike sorting problem. Then
we analyzed the noisy data using the same priors and simulation strategy
as above. The posterior means for the spatial dependence parameter α and
for the prior standard deviation σ are respectively −2.13 and 3.43 with 95%
posterior intervals (−3.12,−1.27) and (2.50, 4.94). Tables 6 and 7 report the
true values and the posterior inferences for the membrane coefficients θ and
for the network connectivities β. The large overlap of all the posterior inter-
vals obtained in the two analyses indicate that the inferences for (α, σ, β, θ)
are robust with respect to the spike sorting noise. Figure 8 represents the
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Parameter True value Post. mean 95% post.interval
θ1 −0.29 −0.25 (−0.51,−0.02)
θ2 −4.43 −4.13 (−4.62,−3.66)
θ3 0.90 0.84 (0.54, 1.16)
θ4 0.29 0.20 (−0.40, 0.47)
θ5 3.48 3.73 (2.20, 5.10)
θ6 3.68 3.67 (3.34, 4.03)
θ7 0.25 0.35 (0.03, 0.74)
θ8 −3.70 −3.57 (−4.11,−2.78)
θ9 0.45 0.40 (0.10, 0.69)

Table 6. true values and posterior inferences of the mem-
brane polarization parameters θ for the simulated data with
spike sorting errors.

differences between the estimates of the marginal posterior probabilities of
each network pair-wise connection P (υij = 1 | Y ) obtained respectively be-
fore and after adding the noise. Their maximum absolute difference is 0.06
and both the estimated modal network and the estimated mean network co-
incide with the true network structure. The latter result implies that, under
model (8), a moderate random spike sorting noise only marginally affects
the posterior estimation of the network structure.

7. Example 2: in vitro spike data

In this section we use model (8) to analyze a dataset of spike trains
originating from a neuronal network cultured in vitro at the Netherlands
Institute for Brain Research (http://www.nih.knaw.nl/). A detailed de-
scription of the material and methods employed to generate the data can be
found in Van Pelt et al. [2004]. The neurons recorded during the experiment
are part of a pool of about 150 thousand dissociated rat cortical cells. Af-
ter extraction from the rat embryo and centrifugation, the cells were plated
as a monolayer in a culture chamber, the bottom of which consisted of a
multielectrode array (MEA), i.e. a glass plate in which 61 conductive lanes
where etched, ending in a hexagonal pattern of electrode tips with diameter
of 12µm, represented in figure 9. The electrode diameters roughly match
those of cell bodies, ensuring that the detected spikes mostly originate from
single cells. Since the Euclidean distance between neighboring electrodes is
70µm, the space between electrodes is filled with many cells from which no
activity is recorded. The data consist of the spiking times of the 61 elec-
trodes during a period of more than 40 days in vitro (DIV). For the whole
recording period, no external stimulation was given so that the resulting
firing patterns and network dynamics are entirely spontaneous. We will an-
alyze in this section the spikes recorded during the first four minutes of the
twelfth hour of day 14 of the experiment for electrodes (7, 11, 22, 29, 52, 53).
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Parameter True value Post. mean 95% post.interval
β1,1 −2.97 −3.66 (−4.31,−3.03)
β2,2 −1.24 −1.29 (−2.90,−0.03)
β2,7 5.76 5.76 (4.16, 0.07)
β3,3 −1.94 −1.87 (−2.24,−1.51)
β3,6 −1.20 −1.20 (−1.47,−0.94)
β3,7 2.71 2.66 (2.29, 3.06)
β3,9 2.00 2.12 (1.85, 2.39)
β4,4 −1.24 −0.78 (−1.23,−0.32)
β4,8 1.52 1.40 (0.91, 1.87)
β4,9 −3.81 −3.70 (−4.33,−3.11)
β5,5 −1.67 −1.94 (−3.32,−0.37)
β5,9 2.14 2.47 (1.94, 3.03)
β6,3 −3.46 −3.47 (−3.79,−3.19)
β6,6 −1.90 −1.96 (−2.32,−1.62)
β7,3 −1.42 −1.46 (−1.85,−1.08)
β7,7 −1.52 −1.90 (−2.32,−1.49)
β8,3 7.03 6.57 (5.98, 7.22)
β8,6 2.29 2.09 (1.63, 2.58)
β8,8 −1.76 −1.32 (−1.92,−0.77)
β9,2 5.30 6.37 (4.84, 8.60)
β9,8 4.00 4.01 (3.70, 4.35)
β9,9 −2.43 −2.40 (−2.85,−1.98)

Table 7. true values, estimated posterior means and 95%
posterior probability intervals of the functional connectivity
parameters β for the simulated data with spike sorting errors.

The first three minutes of recordings will be used to estimate the model pa-
rameters and the last minute will be used to compute the prediction residu-
als. We focus the analysis on this subset of neurons because during day 14
the remaining 53 electrodes do not record enough activity to estimate their
parameters with acceptable precision. Since we consider a millisecond-by-
millisecond time scale to obtain biologically meaningful estimates, being able
to estimate the model parameters from a few minutes of recordings is a key
factor to contain the computational burden required by the Gibbs sampler.
Moreover, although the cultured network at 14 DIV is still in a developing
state, the period over which the data is being analyzed is much smaller than
the time scale of neurite outgrowth and synapse formation. Therefore we
may reasonably assume that the functional connectivity within this short
time frame is stable. Figure 10 shows the spike intensity function for the
six neurons. The neurons display very low levels of activity over these four
minutes of recording and, as noted in Van Pelt et al. [2005], they exhibit a
markedly periodical firing pattern consistently over time. Furthermore, the
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figure shows that neuron 29 displays a higher firing intensity with respect
to all the other neurons. Specifically, for each cycle of network activity the
firing rate of 29 increases over time until a burst of all the other neurons is
triggered, which in turn inhibits firing of number 29. Thus, neuron 29 seems
to have a pivotal role in the regulation of the network firing pattern.

In the analysis of this dataset, simulation based inferences for all the
model parameters were obtained by summarizing Gibbs sampler runs of
twenty thousand iterations after discarding a burn-in period of five thousand
iterations. As in section 6, in the Gibbs sampler the parameters (σ, υ) were
updated in closed form, whereas updating for (α, θ, β) was performed by
a component-wise random walk Metropolis Hastings step with independent
Gaussian proposals. The prior standard deviation of the parameter α was
set at s = 5, whereas the parameters of the inverse gamma prior for the
standard deviation σ were set at a = 2 and b = 0.5, resulting in are rather
vague prior densities.

The posterior mean for α is −0.16 and its estimated 95% posterior prob-
ability interval is (−0.26,−0.01). These estimates confirm that the network
in culture developed in such a way that distant neurons are statistically less
likely to establish direct functional connections respect to close pairs of cells.
Figure 11 shows the posterior frequencies of each pair-wise functional con-
nection (left) and the DCG representation of the estimated posterior mean
network. The latter was obtained by thresholding the posterior frequencies
to the value 0.5 and then by mapping the estimated functional connections
on the layout of the MEA used for the experiment. The high probabili-
ties of the connections on the main diagonal of the left plot indicate that
all neurons exhibit a statistically significant time dependent refractoriness.
The most isolated neuron in the network is number 53, which firing activ-
ity depends only on its own refractoriness and on a two-way relationship
with neuron 22. The most connected neuron in the network corresponds
to electrode 22, which provides input to all the other cells in the network
and receives input from all but number 7. The estimated posterior mean
for σ is 13.84 and its estimated 95% posterior interval (10.36, 18.71). Since
σ is the common component in the posterior variance of the parameters
β, these large estimates also drive upwards the posterior variability of the
functional connectivities, as shown in figure 12. Table 8 reports the poste-
rior inferences for the parameters β associated to the statistically significant
pair-wise functional connections and table 9 displays the inferences for the
membrane polarization coefficients. The parameters θ are highly significant
and negative, indicating that the model captures a form of time independent
refractoriness for all neurons. In particular, the frailty parameter for neuron
29 is significantly higher than that of the other cells, explaining the partly
network-independent activity displayed by the neuron. Moreover, the signif-
icant functional connections directed into neuron 29 are excitatory, except
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Parameter Post. mean 95% post.interval
β7,7 −1.96 (−8.55, 6.69)
β7,11 9.60 (−0.08, 18.30)
β7,22 9.32 (−0.08, 17.07)
β7,29 5.61 (−6.06, 15.25)
β11,7 5.28 (−0.20, 17.66)
β11,11 −4.94 (−10.86, 2.43)
β11,22 25.64 (17.76, 33.30)
β11,29 13.30 (2.17, 18.62)
β11,52 11.50 (−0.08, 22.99)
β22,11 11.74 (4.64, 19.64)
β22,22 2.90 (1.54, 3.93)
β22,29 2.61 (−0.22, 8.64)
β22,52 1.89 (−1.68, 7.19)
β22,53 12.35 (8.53, 16.03)
β29,11 13.28 (4.99, 18.77)
β29,22 13.87 (8.70, 17.85)
β29,29 −15.82 (−23.61,−9.17)
β29,52 16.97 (−0.01, 34.19)
β52,11 −8.23 (−20.20, 0.21)
β52,22 −5.20 (−16.27, 0.25)
β52,52 −14.67 (−26.94, 4.88)
β53,22 14.09 (8.74, 19.80)
β53,53 5.32 (2.59, 7.10)

Table 8. estimated posterior means and 95% posterior in-
tervals of the functional connectivity parameters β for the in
vitro spike data.

for its own refractoriness β29,29, and its outgoing connections are all excita-
tory. These results confirm that neuron 29 has a key role in the initiation
and in sustaining the network activity over time.

Table 10 reports the number of large fitting and prediction residuals for
the six neurons over the four minutes of recording considered in this analysis.
The best fit and the most accurate predictions are associated to the relatively
high activity neurons 22 and 29 whereas the worst are obtained for neuron
53, which is the most isolated neuron in the network. Figure 13 shows the
estimated posterior means and the 95% probability intervals of the fitting
residuals for the six analyzed neurons. The figure shows that all the residuals
corresponding to the spikes of neuron 52 are very close to 1, suggesting that
its firing probabilities might be underestimated.
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Parameter Post. mean 95% post.interval
θ7 −9.25 (−9.84,−8.75)
θ11 −8.95 (−9.46,−8.53)
θ22 −6.80 (−6.98,−6.64)
θ29 −5.54 (−5.66,−5.43)
θ52 −9.90 (−10.83,−9.14)
θ53 −8.74 (−9.20,−8.33)

Table 9. posterior inferences of the membrane polarization
parameters θ for the in vitro spike data.

Neuron Num. large rf
it∗ Num. large rp

it
′

7 6 1
11 19 3
22 9 0
29 2 0
52 6 1
53 19 8

Table 10. number of residuals significantly crossing the
thresholds 0.5 or −0.5 for the six analyzed neurons respec-
tively over the training period and over the validation minute.

8. Summary and discussion

Section 3 introduced a Bayesian hierarchical network model explaining
the neuronal dynamics in a coherent probabilistic framework. We adopted a
Markovian dependence structure of varying order over time in order to mimic
the features of the spiking process, along the lines of Kass and Ventura
[2001]. As in Brillinger [1988a] and Okatan et al. [2005], we defined the
spiking probabilities over a discrete time grid . The main reason to adopt a
discrete time model is that the neuronal firing process is characterized by an
absolute refractory period, which is a small time interval following a spike
during which the neuron is not able to fire (Dayan and Abbott [2001]). If the
spike train is modeled as a random process, absolute refractoriness implies
that conditionally on a spike occurring at time t, the firing probability in
the small time interval (t, t + δ) is zero. On the other hand, there are
several analogies between model (8) and a multivariate homogeneous Poisson
process. First, under a homogeneous Poisson process the probability of
observing more than one spike over small time intervals is very low. Second,
simulation studies not reported in this paper showed that the mean spike
intensity implied by model (8), as measured by the average number of spikes
over fixed time windows, is constant as for the homogeneous Poisson process.
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A distinctive feature of model (8) is that the network structure υ is one
of its unknown parameters. Since the number of possible network con-

figurations for any set of K neurons is 2K2

, when the network structure
is unknown exhaustive search is computationally infeasible even for small
scale networks. The Markov chain Monte Carlo (MCMC) estimation for υ
proposed in section 4 is an appealing alternative to exhaustive model search
because rather than systematically scanning the state space, the Gibbs sam-
pler tends to move with higher probability towards network configurations
with higher posterior probability and disregards those which could not have
generated the observed spiking patterns. Furthermore, when the posterior
distribution of υ is characterized by several peaks and pits, MCMC esti-
mation is more informative than mode finding algorithms. In this work we
used the standard Gibbs sampler to produce approximate marginal poste-
rior inferences for all the model parameters. Recently Nott and Green [2004]
proposed a method for Bayesian model uncertainty assessment based on the
Swendsen-Wang algorithm (Swendsen and Wang [1987]). In the context of
model (8), Nott and Green’s method prescribes the introduction of a further
layer of auxiliary variables which would conditionally remove the mutual de-
pendence across clusters of functional connectivity parameters, allowing the
efficient block-updating of the matrix β within the Gibbs sampler. Nott
and Green showed that, in the case of covariates selection for Gaussian lin-
ear regression models, their method increases the efficiency of the stochastic
exploration of the model space with respect to component-wise Metropo-
lis updates. However, the computational cost of Nott and Green’s method
increases proportionally to the complexity of the network structure. Since
the hierarchy (8) is rich and the typical size of the data Y is large, in this
work we did not use Nott and Green’s method because it would significantly
increase the computational burden involved in fitting our model.

As shown by example 2, experimental multiple spike trains typically re-
port the activity of a small fraction of the neurons in culture and can be
affected by several sources of noise. In section 4 we showed that the shrink-
age prior (6) yields robust estimates with respect to a moderate random
spike sorting error. From this perspective, an interesting topic for further
research is the assessment of the robustness of the Bayesian estimates with
respect to missing data. For instance, in section 7 we noticed that the firing
probabilities for neuron 52 appear to be underestimated. Considering that
during the analyzed recording period the firing intensity of the remaining
55 available neurons is lower that that of the six analyzed cells, this bias is
likely due to the existence of significant excitatory functional relationships
between number 52 and one or more neurons not in contact with the MEA
electrodes.

The results of our analysis summarized in tables 8 and 9 suggest that
neuron 29 triggers the response of neurons (7, 11, 22) through its own higher
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propensity to fire, revealing over time a complex pattern of functional net-
work relationships among the six analysed cells. Neurons (11, 22, 52) stim-
ulate in turn the activity of neuron 29 until the neuron’s refractoriness pro-
duces an abrupt shut-down of its firing activity, which in turn deprives the
connected cells of an important source of excitatory inputs, leading to a
temporary silencing of the whole network. We note that these findings are
consistent with the exploratory analysis over longer time periods reported
in section III − E and figures 7 − 8 of Van Pelt et al. [2004].

Further developments of model (8) currently under study aim at better
capturing the complexity of the underlying biological process. In particular,
the issue of synaptic plasticity, which is the propensity of the functional
connectivity to change over time, has not been directly addressed in the
present work. Synaptic efficacy might change, for instance, as the result of
external stimulation through activity-dependent mechanisms or by experi-
mental pharmacological conditions. Modelling synaptic plasticity will thus
enable model (8) to effectively capture the fine scale structural dynamics of
the network arising from the generation of new synapses, from the pruning
of inefficient connections and induced by experimental treatments applied
to the neurons in culture.
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Figure 1. simulated network with 9 neurons. Undirected
edges represent two way connections whereas directed edges
represent one way connections. Vertical bars within neurons
represent their refractory effects.
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Figure 2. firing intensity function for the nine simulated
neurons. Each point in the figure represents the proportion
of spikes for the respective neuron over a time window of fifty
time points; successive windows overlap by 45 time points
in order to provide a smoother representation. A vertical
dashed line separates the training sample (left) from the val-
idation sample (right). The two arrows identify respectively
the highest and the lowest intensity neurons, which are num-
ber 5 and number 2.
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Figure 3. sample frequencies of the unique configurations
of the connectivity matrix υ visited along the posterior sam-
pling. The Gibbs sampler reveals one global mode in the
space of networks, which coincides with the underlying true
network represented in figure 1.
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Figure 4. Gibbs sampler draws and corresponding his-
togram for the standard deviation σ. The true value of σ
is 3; its posterior mean (marked by the central dashed lines
in the two plots) is 3.45 and its equal tails 95% posterior
probability interval (marked by the outer dashed lines) is
(2.48, 4.92).
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Figure 5. Gibbs sampler draws of the spatial dependence
parameter α and posterior histogram. The true value of α is
−1.50; the posterior mean is −2.09. The vertical dashed seg-
ments in the bottom plot represent the endpoints of the 95%
posterior interval, which are (−3.29,−1.31). The horizontal
dashed curve represents the Gaussian prior density for α on
the scale of the histogram.
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Figure 6. estimated posterior means and 95% posterior in-
tervals for the fitting residuals of neurons 2 (left) and 3. In
both figures, dots mark the estimated posterior means of the
residuals when no spike is observed and plus signs mark their
posterior means when a spike takes place. The estimated 95%
posterior intervals are marked in the figure by two triangles.
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Figure 7. the number of spikes observed during the valida-
tion period (horizontal axis) is plotted versus the proportion
of large prediction residuals for the nine simulated neurons.
The predictive performance for the extreme neurons 2 and
5 appears significantly better than that of the neurons with
intermediate firing rates.
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Figure 8. differences between the estimated marginal pos-
terior probabilities of each network pair-wise connection ob-
tained from the simulated data before and after adding the
spike sorting noise. The largest absolute difference is 0.06, in-
dicating that under model (8) the estimation of the network
structure is only marginally affected by the introduction of a
moderate random spike sorting error.
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Figure 9. wiring of the hexagonal MEA used to record 61
spike trains in vitro for over 40 days (left plot); picture of the
MEA plate containing the neurons (central plot); numbering
of the MEA electrodes (right plot).
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Figure 10. SIF of the first four minutes of the twelfth hour
of recording for day 14. Each point of the spike intensities
represents the proportion of spikes for the corresponding neu-
ron over 500 windows of width 4.8 seconds. Successive time
windows overlap by 0.48 seconds. The vertical dashed line
separates the training sample (left) from the validation sam-
ple (right). Neuron 29 exhibits the highest spike intensity,
followed by neuron 22.
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Figure 11. posterior frequencies for each pair-wise network
functional connection (left) and estimated median posterior
network (right) projected on the MEA layout.
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Figure 12. estimated posterior means and 95% intervals
for the functional connectivities β. The posterior intervals of
parameters associated to the statistically significant network
connections are marked by whole vertical segments whereas
those of the insignificant connections are marked by dashed
segments. The vertical dotted lines separate groups of pa-
rameters associated to different transmitting neurons. For
instance, the first six bars from the left indicate that neuron
7 transmits statistically significant input only to itself and to
neuron 11.
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Figure 13. estimated posterior means and 95% posterior
intervals of the fitting residuals for the six analyzed neurons
over the training sample. In the six plots, dots mark the
estimated posterior means of the residuals when no spike is
observed and plus signs mark their posterior means when
a spike takes place. The estimated 95% posterior intervals
are marked by two triangles. The small proportion of large
residuals indicates that the model adequately fits most of the
observed spike patterns. However, the spiking probability for
number 52 appears to be underestimated.


