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Bayesian Models and Methods in Public
Policy and Government Settings1

Stephen E. Fienberg

Abstract. Starting with the neo-Bayesian revival of the 1950s, many sta-
tisticians argued that it was inappropriate to use Bayesian methods, and in
particular subjective Bayesian methods in governmental and public policy
settings because of their reliance upon prior distributions. But the Bayesian
framework often provides the primary way to respond to questions raised in
these settings and the numbers and diversity of Bayesian applications have
grown dramatically in recent years. Through a series of examples, both his-
torical and recent, we argue that Bayesian approaches with formal and infor-
mal assessments of priors AND likelihood functions are well accepted and
should become the norm in public settings. Our examples include census-
taking and small area estimation, US election night forecasting, studies re-
ported to the US Food and Drug Administration, assessing global climate
change, and measuring potential declines in disability among the elderly.
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1. INTRODUCTION AND HISTORY

Beginning with the posthumous publication in 1763
of the essay attributed to the Rev. Thomas Bayes,
and continuing well into the twentieth century, virtu-
ally the only approach to statistical inference was the
method of inverse probability based on applications of
Bayes’s theorem (see, e.g., Fienberg, 2006a). Nonethe-
less, most applications of statistical methods in gov-
ernmental settings were based primarily on descriptive
statistics and there was little debate regarding the rel-
evance of Bayesian approaches in public life despite
efforts at implementation, for example, Laplace’s de-
velopment of ratio estimation to estimate the size of
the population of France.
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1Discussed in 10.1214/11-STS331A, 10.1214/11-STS331B and
10.1214/11-STS331C; rejoinder at 10.1214/11-STS331REJ.

Criticism of the method of inverse probability, as
Bayesian methodology was known for almost
200 years, began in the mid-19th century with the rise
of a philosophical school advocating objective prob-
ability. The fundamental concern of the objectivists
was the requirement for a prior distribution and they
argued for a frequentist view of probability. Unfortu-
nately they failed to present a methodology for infer-
ence to counter that of inverse probability and it was
not until the work of R. A. Fisher and Jerzy Neyman
and Egon Pearson in the 1920s that serious alternative
statistical procedures were in place. Neyman’s (1934)
critique of Gini’s version of the representative method
for survey taking not only ushered the frequentist re-
peated sampling perspective into the realm of official
statistics, but it also introduced the frequentist tool of
confidence intervals and its long-run repeated sampling
interpretation (see Fienberg and Tanur, 1996).

Bayesian tools played an important role in a num-
ber of statistical efforts during World War II, includ-
ing Alan Turing’s work at Bletchley Park, England, to
crack the Enigma code, but with the creation of such
frequentist methods as sequential analysis by Barnard
in England and Wald in the United States and the elab-
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oration of design-based analyses in sample surveys, as
statistics passed the mid-century mark, frequentist ap-
proaches were in the ascendancy in the public arena.
This was especially true in statistical agencies where
the ideas of random selection of samples and repeated
sampling as the basis of inference were synonymous,
and statistical models and likelihood-based methods
frowned upon at best.

With the introduction of computers for statistical cal-
culations in the 1960s, however, Bayesian methods be-
gan a slow but prolonged comeback that accelerated
substantially with the introduction of Markov chain
Monte Carlo (MCMC) methods in the early 1990s. To-
day Bayesian methods are challenging the supremacy
of the frequentist approaches in a wide array of areas
of application.

How do the approaches differ? In frequentist infer-
ence, tests of significance are performed by suppos-
ing that a hypothesis is true (the null hypothesis) and
then computing the probability of observing a statis-
tic at least as extreme as the one actually observed
during hypothetical future repeated trials conditional
on the parameters, that is, a p-value. Bayesian infer-
ence relies upon direct inferences about parameters or
predictions conditional on the observations. In other
words, frequentist statistics examines the probability
of the data given a model (hypothesis) and looks at
repeated sampling properties of a procedure, whereas
Bayesian statistics examines the probability of a model
given the observed data. Bayesian methodology relies
largely upon Bayes’s theorem for computing posterior
probabilities and provides an internally consistent and
coherent normative methodology; frequentist method-
ology has no such consistent normative framework.
Freedman (1995) gave an overview of these philosoph-
ical positions, but largely from a frequentist perspec-
tive that is critical of the Bayesian normative approach.

The remainder of the article has the following struc-
ture. In the next section I give a summary of some
of the most common and cogent criticisms of the
Bayesian method, especially with regard to its use in
a public context. Then in Section 3, through a series
of examples, both historical and recent, I argue that
Bayesian approaches with formal and informal assess-
ments of priors and likelihood functions are well ac-
cepted and should become the norm in public settings.
My examples include US election night forecasting,
census-taking and small area estimation, studies re-
ported to the US Food and Drug Administration, as-
sessing global climate change, and measuring declines
in disability among the elderly. We conclude with a

brief summary of challenges facing broader implemen-
tation of Bayesian methods in public contexts.

I do not claim to be providing a comprehensive ac-
count of Bayesian applications but have merely at-
tempted to illustrate their breadth. One area where
Bayesian ideas have made serious inroads, both in the-
ory and in actual practice, but which we do not discuss
here is the law (e.g., see Fienberg and Kadane, 1983;
Donnelly, 2005; Taroni et al., 2006; Kadane, 2008).
The present article includes a purposeful selection of
references to guide the reader to some of the relevant
recent Bayesian literature on applications in the do-
mains mentioned, but the list is far from comprehen-
sive and tends to emphasize work closest to my own.

2. THE ARGUMENTS FOR AND AGAINST THE USE
OF BAYESIAN METHODS

Bayesian and frequentist inference in a nutshell: It is
especially convenient for the present purposes to think
about Bayes’s theorem in terms of density functions.
Let h(y|θ) denote the conditional density of the ran-
dom variable Y given a parameter value θ in the para-
meter space �. Then we can go from the prior distribu-
tion for θ , g(θ), to that associated with θ given Y = y,
g(θ |y), by

g(θ |y) = h(y|θ)g(θ)
/ ∑

θ∈�

h(y|θ)g(θ)(1)

if θ has a discrete distribution,

g(θ |y) = h(y|θ)g(θ)
/∫

�
h(y|θ)g(θ) dθ(2)

if θ has a continuous distribution.

Bayesians make inferences about the parameters by
looking directly at the posterior distribution g(θ |y)

given the data y. Frequentists make inferences about θ

indirectly by considering the repeated sampling prop-
erties of the distribution of the data y given the para-
meter θ , that is, through h(y|θ). Bayesians integrate
out quantities not of direct substantive interest and then
are able to make probabilistic inferences from marginal
distributions. Most frequentists use some form of con-
ditioning argument for inference purposes while oth-
ers maximize likelihood functions. Frequentists distin-
guish between random variables and parameters which
they take to be fixed and this leads to linear mixed mod-
els where some of the effects are fixed, that is, are para-
meters, and some are random variables. For a Bayesian
all linear models are in essence random effects models
since parameters are themselves considered as random
variables. Thus it is natural for a Bayesian to consider



214 S. E. FIENBERG

them to be independent draws from a common distrib-
ution, g(θ), that is, treating them as exchangeable fol-
lowing the original argument of de Finetti (1937). This
approach leads naturally to putting distributions on the
parameters of prior distributions and to what we now
call the hierarchical Bayesian model. It is the normal-
izing constants [the denominators of (1) and (2)] that
are notoriously difficult to compute and this fact has
led, in large part, to the use of MCMC methods such as
Gibbs sampling that involve sampling from the poste-
rior distribution.

A reviewer of an earlier version of this article sug-
gested that hierarchical models are really not Bayesian,
unless one puts a prior at the top level of the hierarchy.
This ignores history. As Good (1965) noted, his own
use of such ideas draws on work dating back at least to
the 1920s and the work of W. E. Johnson whose “suf-
ficientness” postulate implicitly used finite exchange-
able sequences. And while non-Bayesians came to
recognize the power of such structures many decades
later they did attempt to emulate the Bayesian ap-
proach, but of course without the clean Bayesian prob-
abilistic interpretation.

Critique of the Bayesian perspective: The most com-
mon criticism of Bayesian methods is that, since there
is no single correct prior distribution, g(θ), all conclu-
sions drawn from the posterior distribution are suspect.
One counter to this argument is that published analy-
ses using Bayesian methods should consider and re-
port the results associated with a variety of prior dis-
tributions, thus allowing the reader to see the effects
of different prior beliefs on the posterior distribution
of a parameter. Others argue that one should choose
as a prior distribution one that in some sense elimi-
nates personal subjectivity. Examples of such “objec-
tive” priors are those that are uniform or diffuse across
all possible values of the parameter, or those that are
“informationless.” Berger (2006) and Goldstein (2006)
presented arguments in favor of the objective and sub-
jective Bayesian approaches in a forum followed by ex-
tensive discussion. For a discussion of the fruitlessness
of the search for an objective and informationless prior,
see the article by Fienberg (2006b).

There are a number of other features associated with
the subjective approach including the elicitation of in-
formation for the formulation of prior distributions and
the use of exchangeability in the development of suc-
cessive layers of hierarchical models. A number of the
examples described in the sections that follow utilize
subjective Bayesian features although not always with
full elicitation.

One characteristic of Bayesian inference that weak-
ens this criticism of the reliance on the prior distribu-
tion is that the more data we collect, the less influence
the prior distribution has on the posterior distribution
relative to that of the data. There are situations, how-
ever, where even an infinite amount of data may not
bring two people into agreement (see, e.g., Diaconis
and Freedman, 1986).

Another aspect of the Bayesian methodology that
arises in many applications is the manner in which
it “borrows strength” when we are estimating many
parameters simultaneously, especially through the use
of hierarchical models. This feature, which is usually
viewed as a virtue, has also been the focal point of
criticism by frequentists. For example, see the com-
mentary by Freedman and Navidi (1986) in the con-
text of census adjustment, in which they critiqued a
Bayesian methodology at least in part because it re-
sulted in the use of data from one state to adjust the
census-based population figures in other ones. Today,
borrowing strength via cross-area regression models
is common in frequentist circles, and the Freedman–
Navidi argument thus takes on a nonstatistical legal is-
sue rather than a statistical one.

For an interesting dialog on different frequentist per-
spectives related to statistical inference, see the dis-
cussion paper by a group of frequentist statisticians
at Groningen University in The Netherlands, Kardaun
et al. (2003), which was a response to a series of
questions posed by David Cox following a lecture at
Groningen. As someone else has noted, it is a rare oc-
casion where frequentists seriously entertain ideas such
as those extolled by de Finetti (1937) and attempt to re-
ject them. A number of the questions discussed in this
article arise in the context of the examples that follow.

3. SMALL AREA ESTIMATION AND CENSUS
ADJUSTMENT

Small area estimation: As we have already inti-
mated, small area estimation has been a ripe area for
Bayesian methods although because so much of the
literature has been oriented toward national statistical
agency problems, the area is dominated by frequentist
techniques and assessments. Surveys conducted by na-
tional statistical agencies typically generate “reliable”
information either at national or regional levels. But the
demand for information at lower levels of disaggrega-
tion is sufficiently great and resources tend to be rel-
atively scarce, so that techniques that bolster the spar-
sity of data at the lower level of disaggregation with
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data from other sources or from other areas or domains
are essential to getting estimates with relatively small
standard errors.

The big question is with respect to what distribution
are the standard errors computed. There are three dif-
ferent answers depending on one’s perspective. Sam-
pling statisticians most often wish to take expectations
with respect to the random structure in the sampling de-
sign. At the other extreme are Bayesians for whom the
variability is an inherent part of the stochastic model
structure for the phenomenon of interest, for exam-
ple, unemployment or crime. And in the middle are
model-based likelihood statisticians. My argument is
that in the context of small area estimation the design-
based statisticians were singularly unsuccessful until
they emulated Bayesian ideas of smoothing and bor-
rowing strength, but even then they have insisted on
averaging with respect to the sampling design, with ar-
guments about robustness of results.

Jiang and Lahiri (2006) suggested that the problem
goes back almost a millennium to the eleventh century,
but interest in formal statistical estimation for small
areas is a relatively recent phenomenon and much of
the recent literature can be traced to a seminal arti-
cle by Fay and Herriot (1979) who used the James–
Stein “shrinkage” estimation ideas to carry out small
area estimation in a frequentist manner. Given the close
relationship between such techniques and empirical
Bayesian estimation (e.g., see Efron and Morris, 1973)
and mixed linear models, it is a relatively small leap
to the use of fully Bayesian methodology. But the evo-
lution toward such methodology documented by Jiang
and Lahiri has been relatively slow and marked by a
general resistance in statistical agencies to use mod-
els to begin with, let alone Bayesian formulations; for
example, see the descriptions of small area estimation
methodology in the book by Rao (2003), and contrast
it with the Bayesian hierarchical formulations in the
work of Ballin, Scanu and Vicard (2005) and Trevisani
and Torelli (2004).

Census adjustment: What is remarkable about the as-
cendency of the small area estimation methodology in
the United States is that many of those who argued for
its use opposed the use of essentially the same ideas
for census adjustment for differential undercount in the
1980s and 1990s. The basic component of census ad-
justment in these debates was the use of the now stan-
dard capture-recapture methodology for population es-
timation (e.g., see Bishop, Fienberg and Holland, 1975,
Chapter 6), methodology that has its roots in Laplace’s
method of ratio estimation. Because a second count

(the recapture) in a census context cannot reasonably
be done for the nation as a whole, methods that utilize
a sample of individuals were introduced in 1950 and
to get small area estimates of population, that is, for
every block in the nation, Ericksen and Kadane (1985)
proposed the use of a Bayesian regression model for
smoothing. Being fully Bayesian was especially impor-
tant because of the sparseness of the data at their dis-
posal for adjustment, based on a sample from the Cur-
rent Population Survey. As we noted above, Freedman
and Navidi (1986) opposed the use of this methodology
as did Fay and Herriot’s colleagues at the US Census
Bureau, at least in part on its use of models with unver-
ifiable assumptions, and precisely because the shrink-
age approach embedded in the methodology borrowed
strength across state boundaries to get sufficiently tight
estimates of error.

Ericksen, Kadane and Tukey (1989) presented a
more refined version of the technical arguments look-
ing back to the 1980 census, as well as ahead to the
1990 census. For the 1990 census, the US Census Bu-
reau essentially proposed the use of a frequentist ap-
proach that had similar structure, at least in spirit, to
that proposed for 1980, and this was possible only by
increasing the size of the sample used for adjustment
purposes by an order of magnitude. This plan was op-
posed largely on political grounds as well as by Freed-
man and colleagues who continued to object to the
role of statistical models in the estimation procedure.
A similar controversy ensued as planning for the 2000
census progressed with components for adjustment as
well as sampling for nonresponse followup, and ulti-
mately the Supreme Court stepped in and interpreted
the Census Act as banning the use of sampling for
this purpose. Anderson and Fienberg (1999) and An-
derson et al. (2000) provided extensive details on the
1990 and 2000 adjustment controversies. While Amer-
ican politicians have eschewed the use of Bayesian and
non-Bayesian adjustment techniques, statistical agen-
cies in several other countries, such as Argentina, Aus-
tralia and the United Kingdom, have implemented sim-
ilar methodology, although with little emphasis on its
Bayesian motivation.

4. ELECTION NIGHT FORECASTING

In the United States the use of statistical forecast-
ing of election outcomes based on early reported re-
turns began in the early 1950s. The CBS television
network employed one of the early computers, the
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UNIVAC, and the statistician Max Woodbury devel-
oped a regression-style model that was used success-
fully to predict the outcome of the 1952 presidential
election. By 1960, computers had become a major tool
of the US television networks in support of their elec-
tion night coverage. Everything was based in some
form or another on the 150,000+ precincts where votes
were cast across the US, and attention focused on sub-
sets of “key” precincts, chosen in different ways by the
three major networks, and on early access to precinct
results. The following description draws upon that in
the article by Fienberg (2007).

In 1960, the RCA Corporation which owned the
NBC television network, hired CEIR, a statistical con-
sulting firm, to develop a rapid election night projec-
tion procedure. CEIR consultants included Max Wood-
bury, and a number of others including John Tukey.
Computers were still large, expensive and slow, and
much of what Max Woodbury had done for CBS still
had to be done by hand. Data of several types were
available: past history (at various levels, e.g., county),
results of polls preceding the election, political sci-
entists’ predictions, partial county returns flowing in
during the evening, and complete results for selected
precincts. The data of the analyses were, in many cases,
swings from sets of base values derived from past re-
sults and from political scientists’ opinions. It turned
out that the important problem of projecting turnout
was more difficult than that of projecting candidate per-
centage. Starting with the 1962 congressional election,
Tukey assembled a statistical team to develop the re-
quired methodology and to analyze the results as they
flowed in on election night. Early members of the team
included Bob Abelson, David Brillinger, Dick Link,
John Mauchly and David Wallace who joined for the
1964 primaries. From 1962 through 1966, they were
consultants to RCA and they interacted with the po-
litical scientists and one-time Census Bureau official
Richard Scammon who had his own methodology us-
ing a collection of key precinct results.

David Brillinger (2002) recalled: “Tukey sought ‘im-
proved’ estimates. His terminology was that the prob-
lem was one of ‘borrowing strength.” There is a re-
markably close resemblance between this methodol-
ogy and that used for small area estimation. The novel
feature in the election night context comes from the na-
ture of the sparsity—because estimation was based on
early reported returns. The methodology is now recog-
nizable as hierarchical Bayesian with the use of empiri-
cal Bayesian techniques at the top level. Data flowed in
with observations at the precinct (polling place) level

and were aggregated to county level, and then to the
state as a whole. Subjective judgment was used in the
choice of the subsets of “key” precincts and prior dis-
tributions were typically based on the results of prior
state elections with the choice being made subjectively
to capture the political scientists’ best judgment about
which past election most closely resembled the elec-
tion at hand. As early returns arrived at the comput-
ing central command facility, a team of statisticians re-
viewed the actual distribution of early returns across
the state to check for anomalies in light of special cir-
cumstances and political practices.

And estimates that really mattered were those at the
state level since the model was used for statewide elec-
tions for governor and senate positions as well as for
presidential elections where state outcomes play a cru-
cial role. Two models were used: one for projecting
turnout and the other for projecting the actual percent-
age difference (“swing”) between Democratic and Re-
publican candidates. The occasional rise of serious in-
dependent candidates led to model extensions and em-
pirical complications.

Brillinger went on to note: “Jargon was developed;
for example, there were ‘barometric’ and ‘swing-o-
metric’ precinct samples. The procedures developed
can be described as an early example of empirical
Bayes. The uncertainties, developed on a different ba-
sis, were just as important as the point estimates.” The
variance calculations appeared nowhere in the statisti-
cal literature and thus they had to be derived and ver-
ified by members of the team. This was at about the
same time as David Wallace was working with Fred-
erick Mosteller on their landmark Bayesian study of
The Federalist Papers, which was published in 1964.
Tukey’s attitude to release of the techniques developed
is worth commenting on. Brillinger recounted how, on
various occasions, members of his “team” were asked
to give talks and write papers describing the work.
When Tukey’s permission was sought, his remark was
invariably that it was “too soon” and that the techniques
were “proprietary” to RCA and NBC. With Tukey’s
death in 2002, we may well have lost the opportunity
to learn all of the technical details of the work done
40 years earlier.

Tukey’s students and his collaborators began to use
related ideas on “borrowing strength,” for example, in
the National Halothane Study of anesthetics (Bunker et
al., 1969) and for the analysis of contingency table data
(e.g., see Bishop, Fienberg and Holland, 1975). All of
this before the methodology was described in some-
what different form by I. J. Good in his 1965 book
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and christened as “hierarchical Bayes” in the clas-
sic 1972 paper by Dennis Lindley and Adrian Smith.
The specific version of hierarchical Bayes in the elec-
tion night model remained unpublished, although in
an ironic twist, something close to it appeared in a
paper written by one of David Wallace’s former stu-
dents, Alastair Scott, and a colleague, Fred Smith
(1969, 1971), who were unaware of any of the details
of Wallace’s work for NBC and who developed their
approach for different purposes! Several other hierar-
chical Bayesian election night forecasting models have
now been used in other countries, for example, see the
work of Brown, Firth and Payne (1997) and Bernardo
and Girón (1992).

The methods described here were in use at NBC
through the 1980 presidential elections. Other net-
works used different methodology and the statisticians
who worked for the Tukey team were quite proud of
their record of early and more accurate calls of win-
ners than those made by the other networks, especially
in close elections. With Reagan’s landslide presiden-
tial victory in 1980, the results were seemingly bet-
ter captured by exit polls and from 1982 onward NBC
switched to the use of exit polls in competition and then
in collaboration with the other television networks. See
the article by Fienberg (2007) for further details and a
number of the recent controversies regarding exit poll
forecasting and reporting.

5. BAYESIAN METHODOLOGY AND THE US FOOD
AND DRUG ADMINISTRATION

Traditional randomized clinical trials, evaluated with
frequentist methodology, have long been viewed as the
bedrock of the drug and device approval system at
the US Food and Drug Administration (FDA). Over
the past couple of decades the drug companies and
some members of the US Congress have been critical
of the lengthy FDA review processes that have resulted
and the enormous expense associated with bringing
drugs and medical devices to market. The statistical lit-
erature has also produced Bayesian randomized design
alternatives (e.g., see Spiegelhalter, Freedman and Par-
mar 1994; Berry, 1991, 1993, 1997; Berry and Stangl,
1996; Simon, 1999), as well as ethical critiques of
traditional frequentist trials (e.g., see Kadane, 1996).
Aside from the actual interpretation of the outcomes
in a Bayesian framework, these and other authors have
argued that the Bayesian approach can provide faster
and more useful clinical trial information in a wide va-
riety of circumstances in comparison with frequentist
methodology.

Bayesian designs and analyses are part of an increas-
ing number of premarket submissions to FDA’s Cen-
ter for Devices and Radiological Health (CDRH). This
initiative, which began in the late 1990s, takes advan-
tage of good prior information on safety and effective-
ness that is often available for studies of the same or
similar recent generation devices. In 2006, CDRH is-
sued draft guidelines for the use of Bayesian statistics
in clinical trials for medical devices (FDA, 2006) and
these were finalized in 2010 (FDA, 2010). Previous
regulatory guidelines have mentioned Bayesian meth-
ods briefly, but this was the first broadly circulated spe-
cific document focusing on Bayesian methodologies.
The guidelines do, however, place considerable onus
on the drug companies who wish to present Bayesian
studies, largely because of justifiable concerns over se-
lective use of data from within studies and the reporting
of results.

As the guidelines make clear, Bayesian formulations
and methods can improve the assessment of new drugs
and devices by incorporating expert opinion, results
of prior investigations, both experiments and obser-
vational studies, and synthesizing results across con-
current studies. There are sections that emphasize the
importance of hierarchical models and the different
roles for exchangeability, for example, among patients
within trials and among trials. We quote from the final
guidelines on the role of prior information:

We recommend you identify as many
sources of good prior information as pos-
sible. The evaluation of “goodness” of the
prior information is subjective. Because
your trial will be conducted with the goal
of FDA approval of a medical device, you
should present and discuss your choice of
prior information with FDA reviewers (clin-
ical, engineering and statistical) before your
study begins.
Possible sources of prior information in-
clude:

• clinical trials conducted overseas,
• patient registries,
• clinical data on very similar products,
• pilot studies.

The guidelines go on:

Prior distributions based directly on data
from other studies are the easiest to evalu-
ate. While we recognize that two studies are
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never exactly alike, we nonetheless recom-
mend the studies used to construct the prior
be similar to the current study in the follow-
ing aspects:

• protocol (endpoints, target population,
etc.), and

• time frame of the data collection (e.g., to
ensure that the practice of medicine and
the study populations are comparable).

In some circumstances, it may be helpful if
the studies are also similar in investigators
and sites. Include studies that are favorable
and nonfavorable. Including only favorable
studies creates bias. Bias, based on study se-
lection may be evaluated by:

• the representativeness of the studies that
are included, and

• the reasons for including or excluding
each study.

Prior distributions based on expert opin-
ion rather than data can be problematic.
Approval of a device could be delayed or
jeopardized if FDA advisory panel mem-
bers or other clinical evaluators do not agree
with the opinions used to generate the prior
(pages 22–23).

The FDA guidelines include examples of Bayesian
studies that have met agency review standards. Two ex-
amples are:

EXAMPLE 1 (T-Scan).2 T-scan 2000 is a device
to be used as an adjunct to mammography for pa-
tients with equivocal results. The FDA was presented
with an “intended-use” study of 74 consecutive biop-
sies in Italy. The company combined the results with
those from a prospective double blind study at seven
centers compared T-scan to T-scan plus mammogra-
phy for 504 patients, and the results from a “targeted”
study of 657 biopsy cases at two centers in Israel us-
ing a Bayesian multinomial logistic model. It was able
to demonstrate effectiveness in intended use context
where there was insufficient information to demon-
strate effectiveness. The prior was chosen to smooth
the zero counts but to be relatively diffuse. The device
was approved for this use as a consequence in 1999.

2http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfTopic/
pma/pma.cfm?num=p970033.

EXAMPLE 2 (Inter Fix).3 Inter Fix is an implant
device for spinal fusion procedure for patients with de-
generative disc disease and back pain. There were data
available for 139 patients in randomized clinical trial,
with 77 treated and 62 controls. There were also 104
nonrandomized subjects treated. An interim analysis
was performed based on a Bayesian predictive model
for the future success rate of the device, although most
of the other analyses reported appear to be frequentist
in nature. The device was approved in 1999 as well.

CDRH statisticians have been exploring and lectur-
ing on important lessons learned in the course of the
Bayesian initiative for the design, conduct and analy-
sis of medical devices studies such as the two outlined
here.

Although the two studies described above made use
of the pooling of evidence, in many ways the key bene-
fit of Bayesian methods is the ability it offers to change
the study’s course when the welfare of subjects is at
stake—using what is known as adaptive randomiza-
tion. As Don Berry has argued:

In a multiyear frequentist study, new pa-
tients will have the same chance of be-
ing enrolled in either group, regardless of
whether the new or old drug is perform-
ing better. This approach can put patients
at a disadvantage. A Bayesian model, on
the other hand, can periodically show re-
searchers that one arm is outperforming the
other and then put more new volunteers into
the better arm. (Don Berry quoted in Beck-
man, 2006)

As is the case in other applications, at the FDA the
main criticism of the Bayesian approach is the diffi-
culty associated with the choice of the prior. Spiegel-
halter, Freedman and Parmar (1994) stressed the use of
different forms of priors such as reference priors, “clin-
ical” priors, “skeptical” priors, and enthusiastic priors.
The FDA guidelines clearly argue against “subjective”
expert opinion, but as we know from other settings the
likelihood function is often at least as subjective as is
the prior and hierarchical Bayesian structures impose
substantial constraints on the prior and thus the poste-
rior even when one uses “diffuse” distributions on the
parameters at the highest levels of the hierarchy! More-
over, when one is drawing upon previous studies, there

3http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfTopic/
pma/pma.cfm?num=p970015.

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfTopic/pma/pma.cfm?num=p970033
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfTopic/pma/pma.cfm?num=p970015
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfTopic/pma/pma.cfm?num=p970033
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfTopic/pma/pma.cfm?num=p970015
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is always an issue of how much “weight” these should
receive in the prior, especially if the previous studies
did not involve randomization as in Example 2.

Unfortunately, as these ideas move to other parts of
the FDA they are not without controversy. While we
were completing this article, a new controversy over
a specific drug made news. Vasogen Inc. announced
that on Friday, March 14, 2008 it had an initial tele-
conference with the FDA to discuss and clarify the re-
cent FDA comments regarding the use of a Bayesian
approach for ACCLAIM II, a clinical trial which is be-
ing planned to support an application for US market
approval of the Celacade™ System for the treatment
of patients with New York Heart Association Class
II heart failure.4 Oversight of the drug approval had
shifted from CDRH—which had issued the guidelines
for use of Bayesian methods—to the FDA Center for
Biologics Evaluation and Research (CBER), which has
adopted a far more cautious approach. How such issues
will work themselves out remains to be seen.

Another place at the FDA where Bayesian method-
ology has recently come into vogue is in the post-
approval surveillance of drugs and devices, especially
with regard to side effects. DuMouchel (1999) dis-
cussed hierarchical Bayesian models for analyzing a
very large frequency table that cross-classifies adverse
events by type of drug used. Madigan et al. (2010) de-
scribed a more elaborate, large-scale approach to the
analysis of adverse event data gathered via sponta-
neous reporting systems linked to claims databases.

It is worth noting that Bayesian methods have been
used in innovative ways to study the combination of
evidence across studies on matters directly before the
FDA. On the advice of an expert panel, the FDA in
2004 put a “black-box” warning—its highest warn-
ing level—on antidepressants for pediatric use espe-
cially among teenagers. The panel’s advice was based
not on actual suicides, but on indications that suici-
dal thoughts and behaviors increased in some chil-
dren and teens taking newer selective serotonin reup-
take inhibitor (SSRI)-type antidepressants. Kaizar et al.
(2006) later addressed the combination of evidence us-
ing a hierarchical Bayesian meta-analytical approach.
They concluded that the evidence supporting a causal
link between SSRI-type antidepressant use and suici-
dality in children is weak. This will clearly be evidence
that the FDA will need to consider when it next re-
views this issue, as it surely will, because of subse-
quent observational studies that suggest teen suicides

4FDA deals blow to Vasogen’s heart treatment, Reuters, March 3,
2008.

have increased considerably despite a substantial de-
crease in the use of antidepressants (e.g., see Gibbons
et al., 2007).

Finally we note the extensive applications of a range
of Bayesian methods in the related matters of health
technology assessment as described by Spiegelhalter et
al. (2000) and Spiegelhalter (2004).

6. CONFIDENTIALITY AND THE RISK–UTILITY
TRADE-OFF

Protecting the confidentiality of data provided by in-
dividuals and establishments has been and continues to
be a major preoccupation of statistical agencies around
the world. Over the past 30 years, statisticians within
and outside a number of major agencies have worked
to cast the confidentiality problem as a statistical one,
and over the past decade this effort has taken on sub-
stantial Bayesian overtones as the focus has shifted to
the trade-off between risk associated with protection of
confidentiality and the utility of databases for different
kinds of statistical analyses. See the articles in the book
by Doyle, Theeuwes and Zayatz (2001) for a broad re-
view of the literature as it stood about a decade ago.

Some of the earlier confidentiality literature focused
on the protection of data against intruders or “data
snoopers” and Fienberg, Makov and Sanil (1997) pro-
posed modeling intruder behavior (and thus protec-
tion against it) using a subjective Bayesian “match-
ing” model; cf. the discussion of Bayesian “matching”
methods in the book by D’Orazio, Di Zio and Scanu
(2006). In 2001, Duncan et al. suggested a Bayesian
approach to the risk–utility trade-off problem, which
was later generalized in the context of a formal statis-
tical decision theory model by Trottini and Fienberg
(2002) and implemented in illustrative form by Dobra,
Fienberg and Trottini (2003) in the context of protect-
ing categorical databases.

More recently, Ting, Fienberg and Trottini (2008)
contrasted their method of random orthogonal matrix
masking with other microdata perturbation methods,
such as additive noise, from the Bayesian perspec-
tive of the trade-off between disclosure risk and data
utility. This work has yet to be adopted by statistical
agencies, but related Bayesian modeling in the same
spirit by Franconi and Stander (2002), Polettini and
Stander (2004), Rinott and Shlomo (2007) and Forster
and Webb (2007) has been done in close collaboration
with those in agencies in Israel, Italy and the United
Kingdom.

One other Bayesian approach to confidentiality pro-
tection which has already seen successful penetration
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into US statistical agencies is based on the method of
multiple imputation approach due originally to Don-
ald Rubin and proposed by him for application in the
context of protecting confidentiality in 1993. See the
article by Fienberg, Makov and Steele (1998) for a re-
lated proposal. The basic idea is simple although the
details of the implementation can be complex. We want
to replace the actual confidential data by simulated data
drawn from the posterior distribution of a model that
captures the relationships among the variables to be re-
leased. Since these “sampled units” are synthetic and
do not actually correspond to original sample mem-
bers, proponents claim that the resulting data protect
confidentiality by definition—others point out that syn-
thetic people may be close enough to “real” sample
members for there still to be problems of possible re-
identification. The method of multiple imputation al-
lows one to generate multiple synthetic (imputed) sam-
ples from the posterior and to use these samples to
produce estimates of variability that have a frequentist
interpretation. Raghunathan, Reiter and Rubin (2003)
and authors of a number of subsequent articles de-
scribed the formalisms of the methodology as well as
extensions involving only partially imputed data. Be-
cause statistical agencies in the US were already exper-
imenting with multiple imputation to deal with missing
value problems, a number of them have recently exper-
imented with this technology for confidentiality pro-
tection as well. Since the methodology works for fairly
general classes of prior distributions it could utilize,
at least in principle, prior information from multiple
sources as well as expert judgment.

7. CLIMATE CHANGE AND ITS ABATEMENT

By now there is hardly a literate person who has not
heard about global warming and the dire consequences
predicted if we do not change our behavior regarding
the emission of greenhouse gases and aerosols. The fol-
lowing statements are typical and come from a report to
the US Senate by Thomas Karl (2001), a senior official
in the National Oceanic and Atmospheric Administra-
tion:

• The natural “greenhouse” effect is real, and is an es-
sential component of the planet’s climate process.

• Some greenhouse gases are increasing in the at-
mosphere because of human activities and increas-
ingly trapping more heat.

• The increase in heat-trapping greenhouse gases due
to human activities are projected to be amplified by
feedback effects, such as changes in water vapor,
snow cover, and sea ice.

• Particles (or aerosols) in the atmosphere resulting
from human activities can also affect climate.

• There is a growing set of observations that yields a
collective picture of a warming world over the past
century.

• It is likely that the frequency of heavy and extreme
precipitation events has increased as global temper-
atures have risen.

• Scenarios of future human activities indicate contin-
ued changes in atmospheric composition throughout
the 21st century.

These and similar conclusions have been shared with
the public by the Intergovernmental Panel on Cli-
mate Change (IPCC) and the US National Academy
of Sciences–National Research Council through a se-
ries of committee reports. Many of the statements
are backed up by elaborate statistical assessments and
modeling and over the past decade this work has taken
on an increasingly Bayesian flavor. There have also
been challenges to many of these statements, despite
what the “global warming” proponents describe as in-
creasingly strong empirical support. See, for example,
the report by Wegman, Scott and Said (2006) for a sta-
tistical critique of some recent modeling efforts.

In Figure 1 we reproduce an example of the temper-
ature reconstruction for the past 2000 years based on
multiple sources prepared by a panel from the National
Research Council (2006); see also National Academy
of Sciences (2008). One thing that is obvious from this
figure is the convergence of the data sources for the
past 150 years, from the start of the industrial revo-
lution, showing temperatures increasing substantially
throughout recent times—this is global warming! What
is also clear is the uncertainty associated with these re-
constructions going back further in time—this is indi-
cated by the shading in the background of the figure,
with darkness associated with greater uncertainty; cf.
the article by Chu (2005).

The precise trajectory of the recent increases in tem-
perature clearly has substantial uncertainty across the
data sources and models and it would surprise few of
us to learn that projections from these data can vary
dramatically. This has recently been the focus of inten-
sive Bayesian analysis by a number of authors around
the world; see, for example, the articles by Min and
Hense (2006, 2007), and especially work in the United
States by Berliner, Levine and Shea (2000), Tebaldi et
al. (2005) and Sanso, Forest and Zantedeschi (2008).

Tebaldi, Smith and Sansó (2010) described a way to
combine an ensemble of computer simulation model
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Borehole temperatures (Huang et al., 2000) Glacier lengths (Oerlemans, 2005b)
Multiproxy (Mann and Jones, 2003a) Multiproxy (Moberg et al., 2005a)
Multiproxy (Hegerl et al., 2006) Tree rings (Esper et al., 2002a)
Instrumental record (Jones et al., 2001)

FIG. 1. Smoothed reconstructions of large-scale (Northern Hemisphere mean or global mean) surface temperature variations from six
different research teams are shown along with the instrumental record of global mean surface temperature. Source: Figure S-1, National
Research Council (2006), page 2. Reproduced with permission.

results and projections and actual observations via hi-
erarchical modeling in order to derive posterior proba-
bilities of temperature and precipitation change at re-
gional scale. They considered the ensemble of com-
puter models as being drawn from a superpopulation
of such models, and used hierarchical Bayesian models
to combine results and compute the posterior predic-
tive distribution for a new climate model’s projections
along with the uncertainty to be associated with them.
For a related discussion about assessing the uncertain-
ties of projections, see the article by Chandler, Rougier
and Collins (2010).

Whether in the context of this work, or in many other
efforts to forecast future temperatures, Bayesian and
non-Bayesian, almost all modeling efforts agree that
temperatures will continue to rise. Where the principal
disagreements come in is “by how much” and “what
would be the impact by various strategies for abate-
ment.”

It is worth noting that subjective Bayesian methods
were proposed for use in climate modeling as early as
1997 by Hobbs and the prominence of Bayesian argu-
ments is due not only to statisticians working in this
area but also to climate modeling specialists such as
Schneider (2002), who has noted:

For three decades, I have been debating al-
ternative solutions for sustainable develop-

ment with thousands of fellow scientists and
policy analysts—exchanges carried out in
myriad articles and formal meetings. De-
spite all that, I readily confess a lingering
frustration: uncertainties so infuse the issue
of climate change that it is still impossible
to rule out either mild or catastrophic out-
comes, let alone provide confident proba-
bilities for all the claims and counterclaims
made about environmental problems.
Even the most credible international assess-
ment body, the Intergovernmental Panel on
Climate Change (IPCC), has refused to at-
tempt subjective probabilistic estimates of
future temperatures. This has forced politi-
cians to make their own guesses about
the likelihood of various degrees of global
warming. Will temperatures in 2100 in-
crease by 1.4 degrees Celsius or by 5.8?
The difference means relatively adaptable
changes or very damaging ones. . .
So what then is “the real state of the world”?
Clearly, it isn’t knowable in traditional sta-
tistical terms, even though subjective es-
timates can be responsibly offered. The
ranges presented by the IPCC in its peer-
reviewed reports give the best snapshot of
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the real state of climate change: we could
be lucky and see a mild effect or unlucky
and get the catastrophic outcomes.

The IPCC assessment builds on formal and informal
use of subjective assessments of the evidence. There is
in fact now a tradition in this field of expert elicitation
of expert judgments; for example, see the articles by
Morgan and Keith (1995), Keith (1996) and Zickfeld
et al. (2007).

8. DISABILITY AMONG THE ELDERLY

In the United States, there are no official govern-
ment surveys of disability and how it is changing over
time, but the National Institute on Aging (NIA) has
funded, with support of other government agencies,
two major longitudinal surveys that capture informa-
tion on disability and link it to other data—the Health
and Retirement Survey (HRS) and the National Long
Term Care Survey (NLTCS). The original cohort for
the NLTCS was surveyed in 1982 and there have been
subsequent waves in 1984, 1989, 1994, 1999 and 2004.
The NLTCS has been managed by a university-based
organization since the late 1980s, but actual data col-
lection has been carried out by the US Census Bu-
reau. Considerable interest in the NLTCS has focused
on a series of measures of disability know as “Activ-
ities of Daily Living” (ADLs) and “Instrumental Ac-
tivities of Daily Living” (IADLs), especially for those
in the sample exhibiting some dimension of disability
on a screener question. Erosheva, Fienberg and Joutard
(2007) studied a cross-sectional version of 16 binary
ADLs and IADLs, represented in the form of a 216 con-
tingency table using a Bayesian latent variable model
that was developed to be an analogue to the frequen-
tist Grade of Membership (GoM) model of Manton,
Woodbury and Tolley (1994), the likelihood function
for which is notoriously problematic.

The Bayesian version of the GoM model utilizes hi-
erarchical modeling ideas through a layered latent vari-
able structure. Let x = (x1, x2, . . . , xJ ) be a vector of
binary manifest variables. The GoM model is struc-
tured around K mixture components (extreme pro-
files), and it assigns to each individual a latent par-
tial membership vector of K nonnegative random vari-
ables, g = (g1, g2, . . . , gK), whose components sum
to 1. By assigning a distribution D(g) to the vec-
tor g and integrating, we obtain the marginal distri-
bution for individual response patterns in the form
of individual-level mixtures. Erosheva, Fienberg and
Joutard explained how to fit this Bayesian GoM model

using MCMC techniques and apply it to the data in
the 216 contingency table displaying outcomes on the
16 ADLs and IADLs, treating these different measures
of disability as exchangeable, and thus as if they were
independent and drawn from another common distri-
bution. Airoldi et al. (2007, 2010) explored related as-
pects of model specification and model choice. As with
a number of the earlier examples, the hierarchical la-
tent structure embedded in this modeling approach is
a mechanism for gaining control over what might oth-
erwise be an unmanageable number of parameters and
essential to the success of the related methods.

This work on disability opens the door to a num-
ber of challenging problems for the Bayesian modeling
community. For example:

• How should a Bayesian working with hierarchical
models such as the Bayesian GoM model incorpo-
rate the survey weights that arise from the sampling
scheme of the survey and adjustments for nonre-
sponse? There is now an extensive literature that
provides conflicting advice on the use of survey
weights in the Bayesian framework, but the hier-
archical model complexities bring these issues into
somewhat sharper focus in this setting; for example,
see the contrasting arguments of Fienberg (2009)
and Little (2009).

• Manrique-Vallier and Fienberg (2010) extended
these ideas to longitudinal latent profiles applied to
the six ADLs measured across all six waves of the
survey, and Manrique-Vallier (2010) added in sur-
vival and generational effects to address the question
of whether disability is increasing or decreasing over
time. He appeared to be able to capture characteris-
tics that others have addressed using comparisons
across cross-sections for each wave of the survey
(see, e.g., Manton and Gu, 2001; Manton, Gu and
Lamb, 2006). Scaling these methods up to the full
array of ADLs and IADLs with key covariates re-
mains a major challenge. This is a matter of consid-
erable interest to policy planners who are interested
in forecasting future demands on the health-care in-
frastructure as a result of changes in long-term dis-
ability over time.

The Bayesian GoM model is a special case of a much
larger class of mixed membership models that can be
used to analyze a diverse array of data types ranging
from text in documents to images, to linkages in net-
works, and longitudinal versions may prove applicable
in other settings beyond the study of disability.
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9. CONCLUSION

For much of the twentieth century, approaches to
the design and analysis of statistical studies in gov-
ernment settings and public policy were almost exclu-
sively descriptive or dominated by the frequentist ap-
proach that followed from the work of Fisher and from
Neyman and Pearson. With the neo-Bayesian revival
of the 1950s, Bayesian methods and techniques slowly
began to appear in the public arena, and their use has
accelerated dramatically during the past two decades,
especially with the rise of MCMC methods that have
allowed for the sampling from posterior distributions
in settings involving very large datasets.

In this article, we have attempted to give some ex-
amples, both old and new, of Bayesian methods in sta-
tistical practice in government and public policy set-
tings and to suggest why in most of the cases there was
ultimately little or no resistance to the Bayesian ap-
proach. Our examples have included census-taking and
small area estimation, US election night forecasting,
studies reported to the US Food and Drug Adminis-
tration, assessing global climate change and measuring
declines in disability among the elderly. Their diversity
suggests that there is growing recognition of the value
of Bayesian results, and a realization that the approach
deals directly with questions of substantive interest.

Where there has been controversy, it has largely fo-
cused on the role of the choice of prior distributions
and the appropriateness of “borrowing strength” across
geographic boundaries. Arguments in favor of the use
of “objective” priors have done little to stem the fre-
quentist criticism of Bayesian methods, and typically
ignore the highly subjective aspects of elements on hi-
erarchical structures and likelihood functions. Through
the examples discussed here, we have tried to convey
the fact that a pragmatic Bayesian approach inevitably
includes many subjective elements, although prior dis-
tributions may well draw on data from related settings
and have an empirical flavor to them. Nonetheless, the
principal challenge to Bayesian methods that remains
is the need to constantly rebut the notion that frequen-
tist methods are “objective” and thus more appropriate
for use in the public domain.

In other areas of statistical application Bayesian
methodology has also seen a major resurgence and this
is especially true in connection with machine learn-
ing approaches to very large datasets, where the use of
hierarchically structured latent variable models is es-
sential to generating high-quality estimates and predic-
tions.
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