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Abstract. In this paper we present a functional Bayesian method for

detecting genes which are temporally differentially expressed between

several conditions. We identify the nature of differential expression (e.g.,

gene is differentially expressed between the first and the second sample

but is not differentially expressed between the second and the third)

and subsequently we estimate gene expression temporal profiles. The

proposed procedure deals successfully with various technical difficulties

which arise in microarray time-course experiments such as a small

number of observations, non-uniform sampling intervals and presence

of missing data or repeated measurements. The procedure allows to

account for various types of errors, thus, offering a good compromise

between nonparametric and normality assumption based techniques. In

addition, all evaluations are carried out using analytic expressions,

hence, the entire procedure requires very small computational effort. The

performance of the procedure is studied using simulated data.
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1 Introduction

Gene expression levels in a given cell can be influenced by various factors,
namely, a pharmacological or a medical treatment, or a specific pathological or
environmental state, or a specific experimental set-up. For the sake of brevity,
we will simply use the term condition to describe any of such circumstances. One
of the goals of modern molecular biology is the high-throughput identification
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of genes associated with a particular condition of interest. The widely used
technology of microarrays allows one to simultaneously monitor the expression
levels of thousands of genes and time-course microarray experiments [2–4, 6, 9,
12, 14, 17] are an increasingly popular approach for understanding the dynamical
behavior of a wide range of biological systems.

In this paper we shall consider microarray experiments made over the course
of time which involve comparison between several biological conditions. In
particular, we consider data consisting of measurements of the expression levels
of N genes collected over time [0,T] under H ≥ 3 different conditions. The
objective is first to identify the genes that are differentially expressed between
some of the H conditions and then to estimate the response.

In general, the problem can be formulated as follows. For condition ℵ,
ℵ = 1, · · · ,H, data consists of the records on N genes which are taken at time

points t
(j)
ℵ ∈ [0, T ], j = 1, .., nℵ, and, for gene i at a time point t

(j)
ℵ , there are

k
(j)
ℵi records available, making the total number of records for gene i in condition

ℵ to be Mℵi =
∑nℵ

j=1 k
(j)
ℵi . Note that the number of time points is relatively

small (nℵ ≈ 10) and very few replications are available at each time point

(k
(j)
ℵi = 0, 1, . . . Kℵi, where Kℵi = 1, 2, 3 or 4) while the number of genes is

very large (N ≈ 50, 000). Note that this is a much more general set up than the
one which is usually considered since we require neither that the observations
for the H conditions are made at the same time points nor that the number of
observations for different samples is the same. The only requirement is that the
samples are observed over the same period of time.

Each record can be modeled as a noisy measurement of a function sℵi(t)

evaluated at a time point t
(j)
ℵ , where sℵi(t

(j)
ℵ ) represents the expression level

of gene i measured on condition ℵ at a time point t
(j)
ℵ , ℵ = 1, 2, · · ·H.

The objective of the analysis is to identify differentially expressed genes (i.e.
genes such that s1i(t) = . . . = sHi(t) is not verified) and to estimate the
expression profiles of the genes. Note that in the case of H = 2, this problem
translates into selecting the curves s1i(t) and s2i(t), i = 1, · · · , N , such that
the difference si(t) = s2i(t) − s1i(t) is not identical to zero (see [3]). However,
in the case when H ≥ 3 there are many more possibilities. For example,
a particular gene i can be differentially expressed between all H conditions:
s1i(t) ̸= s2i(t) ̸= · · · ≠ sHi(t), or it can be not differentially expressed for
the first H − 1 conditions and differentially expressed for the H-th condition:
s1 i(t) = s2 i(t) = sH−1 i(t) ̸= sHi(t), and so on. In general, in the case of H
conditions, one has BH different possibilities, where BH is the Bell exponential
number, i.e the number of nonempty subsets of the set with H elements. The
problem is to identify for each gene which of these BH situations actually takes
place.

The problem of identification of time-course differentially expressed genes
under several biological conditions was considered in the recent papers by [17,
13, 3]. The last two papers do not examine every possible situation reducing the
problem of finding differentially expressed genes between only two conditions.
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In comparison, the paper by [17] studies all possible situations. However, the
weakness of the approach is that it tests whether a gene is differentially
expressed at a particular time point not overall, thus, ignoring the temporal
dependence between the expression levels at different time points. Therefore, the
objective of the present paper is to overcome this shortcoming by generalizing the
functional approach of [2, 3] to the case of the H-conditions (H ≥ 3) microarray
experiments.

The paper is organized as follows. Section 2 introduces the hierarchical
Bayesian model. Sections 2.2 and 2.3, respectively, describe modeling the gene
expression profiles and the errors. Section 3 explains how to estimate the gene-
dependent parameters. Section 4 describes the inference, while Section 5 outlines
the procedures for estimating the gene expression profiles. Section 6 provides the
techniques for estimating global parameters. Section 7 summarizes the algorithm.
Finally, Section 8 provides an extensive simulation study. Section 8, Appendix,
contains the derivation of the formulae in the previous sections.

2 Statistical modeling, estimation and classification of

gene expression profiles

2.1 The data structure

The data are assumed to be already pre-processed to remove systematic sources
of variation. Normalization procedures depend on the type of platforms used
for performing the experiments. For a detailed discussion of the normalization
procedures for microarray data we refer the reader to e.g. [7, 10, 15, 16].

The measurements are taken at nℵ, ℵ = 1, · · · ,H, different time points in

[0, T ] where the sampling grid t
(1)
ℵ , t

(2)
ℵ , . . . , t

(nℵ)
ℵ is not necessarily uniformly

spaced and may be different for ℵ = 1, · · · ,H. For each array, the data consist of
N measurements zj,kℵi , where ℵ is the sample number, i = 1, . . . , N, is the gene

number, index j corresponds to the time point t
(j)
ℵ and k = 1, . . . , k

(j)
ℵi , k

(j)
ℵi ≥ 0,

accommodates for possible technical replicates at time t
(j)
ℵ . By the structure of

the experimental design, k
(j)
ℵi are the same for each gene i; however, since some

observations may be missing, we let k
(j)
ℵi to depend on i.

For each gene i in the sample ℵ, we assume that evolution in time of its
relative expression is governed by a function sℵi(t) and each of the measurements
involves some measurement error, i.e.

zj,kℵi = sℵi(t
(j)
ℵ ) + ζj,kℵi , i = 1, . . . , N, j = 1, . . . , nℵ, k = 1, . . . , k

(j)
ℵi . (1)

The measurement errors ζj,kℵi are assumed to be i.i.d. with zero mean and finite
variance. The function sℵi(t), ℵ = 1, · · · ,H, represents the temporal expression
level of gene i in the sample ℵ over the interval [0, T ].
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2.2 Modeling the gene expression profiles

Each function sℵi(t) is globally estimated, since the measurements are available
only at a few time points. Specifically, we expand each function over some
standard orthonormal basis on the interval [0, T ]

sℵi(t) =

Li∑
l=0

c
(l)
ℵiϕl(t) (2)

and characterize each of them by the vector of its coefficients cℵi. In the present
paper we use Legendre polynomials suitably rescaled and normalized in [0, T ],
but other choices are possible. We emphasize that the degree of the polynomial
varies from gene to gene but is common for all H conditions. The values of the

coefficients c
(l)
ℵi and the degrees of the polynomials Li are estimated from the

observations via a Bayesian approach.
We assume that the genes are conditionally independent, so that combination

of (1) and (2) yields
zℵi = Dℵicℵi + ζℵi (3)

where zℵi = (z1,1ℵi . . . z
1,k

(1)
ℵi

ℵi , · · · , znℵ,1
ℵi , . . . z

nℵ,k
(nℵ)

ℵi

ℵi )T ∈ RMℵi is the column

vector of all measurements for gene i in condition ℵ, cℵi = (c0ℵi, . . . , c
Li

ℵi )
T ∈

RLi+1 is the column vector of the coefficients of sℵi(t) in the chosen basis,

ζℵi = (ζ1,1ℵi , . . . , ζ
1,k

(1)
ℵi

ℵi , · · · , ζnℵ,1
ℵi , . . . , ζ

nℵ,k
(nℵ)

ℵi

ℵi )T ∈ RMℵi is the column vector of
random errors and Dℵi is the Mℵi × (Li + 1) block design matrix, the j-row of

which is the block vector [ϕ0(t
(j)
ℵ ) ϕ1(t

(j)
ℵ ) . . . ϕLi

(t
(j)
ℵ )] replicated k

(j)
ℵi times.

The proposed model is fully Bayesian, since we treat all parameters either
as random variables or as nuisance parameters, thus recovered from data.
We assume that given σ2, the vectors of errors ζℵi are normally distributed
ζℵi | σ2 ∼ N (0, σ2IMℵi

), hence

zℵi | Li, cℵi, σ
2 ∼ N (Dℵicℵi, σ

2IMℵi
). (4)

We also assume that Li a-priori has the truncated Poisson distribution
Pois∗(λ,Lmax) with parameter λ truncated at Lmax, and we denote its pdf
by gλ(Li):

gλ(Li) =

[
Lmax∑
l=0

(l!)−1λle−λ

]−1

(Li!)
−1λLie−λ, Li = 0, . . . , Lmax. (5)

Parameter λ is proportional to the average degree of the polynomial and Lmax

refers to the maximal possible degree. The values of both parameters are treated
as known constants. In general, λ and Lmax should be chosen by considering the
number of available time points and the nature of the problem.

Denote
Ci = {c1i, · · · , cHi} , Zi = {z1i, · · · , zHi} (6)
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the set of the vector coefficients and the set of the vector of data. The question of
interest now is for every gene i = 1, · · · , N, to identify whether it is differentially
expressed and, if yes, then between which conditions. For this purpose, we
introduce BH classes ω0, ω1, · · · , ωBH−1 that represents all possible combination
of the H conditions. We observe that BH is the Bell exponential number and it
can be evaluated recursively as Bn =

∑n−1
k=0

(
n−1
k

)
Bk, with B0 = B1 = 1. The

formula gives B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203. Clearly, it will
be hard to analyse more than 4 or 5 samples simultaneously. For example, for
H = 3 we have B3 = 5 possible classes which can be described as follows:

ω0 : c1i = c2i = c3i ω1 : c2i = c3i ̸= c1i ω2 : c1i = c3i ̸= c2i
ω3 : c1i = c2i ̸= c3i ω4 : c1i ̸= c2i ̸= c3i

(7)

It is reasonable to assume that a-priori vectors cℵi, ℵ = 1, 2, · · · ,H, are either
equal to each other or are independent and have identical distributions: the total
of BH different combinations. For example, in the case of H = 3 we elicit the
following priors on the vectors Ci = {c1i, c2i, c3i} :

Ci | Li, σ
2, ω0 ∼ N (c1i | 0, σ2τ20iQ

−1
i )δ(c1i = c2i = c3i)

Ci | Li, σ
2, ω1 ∼ N (c1i | 0, σ2τ21iQ

−1
i )N (c2i | 0, σ2τ21iQ

−1
i )δ(c2i = c3i)

Ci | Li, σ
2, ω2 ∼ N (c2i | 0, σ2τ22iQ

−1
i )N (c1i | 0, σ2τ22iQ

−1
i )δ(c1i = c3i)

Ci | Li, σ
2, ω3 ∼ N (c3i | 0, σ2τ23iQ

−1
i )N (c1i | 0, σ2τ23iQ

−1
i )δ(c1i = c2i)

Ci | Li, σ
2, ω4 ∼ N (c1i | 0, σ2τ24iQ

−1
i )N (c2i | 0, σ2τ24iQ

−1
i )N (c3i | 0, σ2τ24iQ

−1
i ).
(8)

where 0 = (0, · · · , 0)T . We assume that a-priori P (ωl) = πl, l = 0, · · · , BH − 1,

with
∑BH−1

l=0 πl = 1, so that

p(Ci | Li, σ
2) =

BH−1∑
l=0

πl p(Ci | Li, σ
2, ωl). (9)

In formula (8), matrix Qi is a diagonal matrix that can account for the
decay of the coefficients in the chosen basis. Note that if no assumptions about
smoothness of the gene expression profiles are made, we can assume Qi = I.
Parameters τ2li, l = 0, · · · , BH − 1, are gene and class specific and represent
the strength of the signal with respect to the noise for a gene i in class l. We
treat τ2li as unknown nuisance parameters and estimate them from the data by
maximizing the marginal likelihood for each gene independently (see Section 3).

2.3 Modeling the errors

We assume that parameter σ2 is a random variable

σ2 ∼ ρ(σ2). (10)

The latter choice allows one to account for possibly non-Gaussian errors (quite
common in microarray experiments), without sacrificing closed form expressions
for estimators and test statistics. In particular, among the possible choices, we
consider three types of priors ρ(·):
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case 1: ρ(σ2) = δ(σ2 − σ2
0), the point mass at σ2

0 . The marginal distribution
of the error is normal.

case 2: ρ(σ2) = IG(γ, b), the Inverse Gamma distribution. The marginal
distribution of the error is Student T .

case 3: ρ(σ2) = cµσ
(M−1)e−σ2µ/2, where M is the total number of arrays

available in the experimental design set-up. If the gene has no missing
data, i.e. all replications at each time point are available, then the marginal
distribution of the error is double exponential.

The global hyperparameters, π0, π1, . . . , πBH−1 and the ρ(σ2)-specific
parameters (σ2

0 for case 1, γ and b for case 2 and µ for case 3), are estimated from
the data. Possible strategies for doing this are discussed in Section 6. Once the
hyperparameters are estimated, Bayesian analysis is carried out by combining
the prior information and the data into the posterior distribution.

3 Estimation of gene-dependent parameters

If the global parameters of the model were known, one could proceed to a gene-
by-gene analysis of vectors of coefficients cℵi, ℵ = 1, · · · , H, i = 1, · · · , N . In this
section, we only provide the final formulae, referring the reader to the Appendix
for the details of the calculations. To deal with different choices of ρ(σ2), we
introduce a function

F (A,B) =

∫ ∞

0

σ−2Ae−B/2σ2

ρ(σ2)dσ2 (11)

that can be explicitly calculated in the three cases discussed above as:

F (A,B) =


σ−2A
0 e−B/2σ2

0 in case 1,
Γ (A+γ)
Γ (γ) b−A(1 + B

2b )
−(A+γ) in case 2,

B(M+1−2A)/4µ(M+1+2A)/4

2(M−1)/2 Γ ((M+1)/2)
K((M+1−2A)/2)(

√
Bµ) in case 3.

(12)

Here M denotes the number of available observations and Kh(·) is the Bessel
function of degree h (see [8], Sections 8.4–8.5 for the definition). Note that
in the sequel function F will appear with the argument A = Mi/2, where

Mi =
∑H

ℵ=1 Mℵi, denotes the total number of records for gene i.
Then, if the i-th gene has no missing data (i.e. Mi = M), expression for case

3 in formula (12) simplifies to

F (M/2, B) =
√
π [Γ ((M + 1)/2)]−1(µ/2)M/2 exp(−

√
Bµ).

Combining (4), (5), (9) and (10) in a joint pdf and integrating out Ci and
σ2, obtain

p(Zi|Li) = (2π)−Mi/2|Qi|1/2
BH−1∑
l=0

πlAli(Zi|Li, τli) (13)
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where Zi is defined in (6) and

Ali(Zi|Li, τli) = (2π)Mi/2 |Qi|−1/2 p(Zi|ωl, Li). (14)

In the case of H = 3, the expressions for p(Zi|ωl, Li) are given by formulae (22)
and (23) below. Hence, the joint pdf of Zi is

p(Zi) =

Lmax∑
Li=0

p(Zi|Li) gλ(Li), (15)

and gene-dependent parameters τ2li, for l = 0, . . . , BH − 1, can be estimated as

(τ̂20i, . . . , τ̂
2
BH−1 i) = arg max

τ2
0i,...,τ

2
BH−1 i

p(Zi). (16)

However, since the joint pdf of Zi is a sum of BH positive terms (see
formula (13)), each depending on a single τ2li, instead of one BH -dimensional
optimization, one can carry out BH independent one-dimensional maximization
procedures with respect to τ2li for l = 0, . . . , BH − 1:

τ̂2li = argmax
τ2
li

Lmax∑
Li=0

Ali(Zi, Li|τli) gλ(Li), l = 0, · · · , BH − 1. (17)

Maximization (17) represents the most computationally demanding step of the
overall algorithm. However, since it is carried out independently for each gene,
computations can be accelerated by using parallel computing.

The posterior pdf of the degree Li given data Z is calculated as

p(Li|Zi) = p(Zi|Li)gλ(Li)
/
p(Zi). (18)

For each gene i, we estimate Li by maximizing the posterior pdf (18) (MAP
principle). After τ2li, l = 0, . . . , BH − 1, and Li are estimated, we replace them

with τ̂2li and L̂i in all the subsequent calculations.

4 Identification and classification of genes

4.1 Evaluation of class probabilities

Our main goal now is to carry out classification of genes to classes ωl, l =
0, · · · , BH − 1. We evaluate probability that gene i belongs to class ωl as

p(ωl|Zi) =
πl p(Zi|ωl)

p(Zi)
= πl

∑Lmax

Li=0 gλ(Li) p(Zi|ωl, Li)

p(Zi)
(19)

with

p(Zi|ωl, Li) =

∫ ∫
p(Zi|Ci, σ

2) p(Ci|ωl, σ
2, Li) dCidσ

2 (20)
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and

p(Zi) =

Lmax∑
Li=0

BH−1∑
k=0

πl p(Zi|ωl, Li) gλ(Li) (21)

For example, in the case of H = 3, evaluation of p(Zi|ωl, Li), l = 0, · · · , BH−
1, yield

p(Zi|ω0, Li) =
|Qi|1/2 F (Mi/2,Si − vT

i V
−1
i vi)

(2π)Mi/2 |Vi|1/2 τ (Li+1)
0i

,

p(Zi|ωl, Li) =
|Qi|1/2 F (Mi/2,Si − vT

−liV
−1
−liv−li − vT

liV
−1
li vli)

(2π)Mi/2 |V−li|1/2 |Vli|1/2 τ2(Li+1)
li

, l = 1, · · · ,H,

p(Zi|ω4, Li) =
|Qi|1/2 F (Mi/2,Si −

∑H
l=1 v

T
liW

−1
li vli)

(2π)Mi/2
∏H

l=1[|Wli|1/2] τH(Li+1)
4i

, (22)

where
Si =

∑H
k=1 z

T
kizki, Di =

∑H
k=1 D

T
kiDki,

Vi = Di + τ−2
0i Qi, vi =

∑H
k=1 D

T
kizki,

V−li =
∑H

k=1

k ̸=l
DT

kiDki + τ−2
li Qi, v−li =

∑H
k=1

k ̸=l
DT

kizki,

Vli = DT
liDli + τ−2

li Qi, vli = DT
lizli,

Wli = DT
liDli + τ−2

4i Qi, l = 1, · · · , H.

(23)

Remark 1. Formulae (22) for the class l = 1, 2, 3 are analytically
interchangeable, i.e. the H class are equivalent under label permutations.

4.2 Identification and classification of differentially expressed genes

In a standard Bayesian classification framework (BC), each gene is classified
according to the highest posterior probability (20). However, with this approach,
one has absolutely no control over the number of genes which are identified as
differentially expressed. For this reason, we also propose a two-stage bayesian
approach (TSB) as follows. At the first stage, we identify the genes which are
differentially expressed among at least two of H conditions. At the second stage,
we determine between which of the BH cases occurs.

In order to proceed, we note that p(ω0|Zi) can be presented as

p(ω0|Zi) = π0

(
π0 +

1− π0

BFi(Zi)

)−1

where BFi(Zi) is the Bayes factors, the quotient between the posterior odds ratio
and the prior odds ratio, for testing hypotheses H0i : i ∈ ω0 versus H1i : i ̸∈ ω0

(see e.g. [5]):
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BFi(Zi) = (1− π0)

∑Lmax

Li=0 gλ(Li)p(Zi|ω0, Li)∑BH

l=1 πl

∑Lmax

Li=0 gλ(Li)p(Zi|ωl, Li)
. (24)

Note that, although Bayes factors BFi can be used for independent testing of
the null hypotheses H0i, i = 1, . . . , N , the classical Bayesian approach [5] does
not account for the multiplicity of comparisons. However, since in microarray
experiments N is large, the problem of multiplicity cannot be ignored, therefore
we apply the Bayesian multiple testing procedure of [1].

5 Estimation of gene expression profiles

There are at last two approaches for estimating the gene expression profiles:
the model-selection based estimator or the model-average based estimator. The
model-selection based estimator is constructed under the assumption that gene
i belongs to class ωl, i.e. cℵi is estimated by

ĉℵi(ωl) = E (cℵi|ωl,Zi, L̂i).

Here, L̂i is estimated degree of the polynomial for expression profiles for gene i.
Hence, ĉℵi(ωl) can be evaluated as

ĉℵi(ωl) =

∫
cℵi p(Ci,Zi|ωl, σ

2, L̂i) ρ(σ
2) dCidσ

2

p(Zi|ωl, L̂i)
. (25)

In the case of H = 3 we derive the following expressions for ĉℵi(ωl), ℵ = 1, 2, 3,
l = 0, · · · , 5:

ĉℵi(ω0) = V−1
i vi, ℵ = 1, 2, 3,

ĉ1i(ω1) = V−1
1i v1i, ĉ2i(ω1) = ĉ3i(ω1) = V−1

−1iv−1i,
ĉ2i(ω2) = V−1

2i v2i, ĉ1i(ω1) = ĉ3i(ω1) = V−1
−2iv−2i,

ĉ3i(ω3) = V−1
3i v3i, ĉ1i(ω1) = ĉ2i(ω1) = V−1

−3iv−3i,
ĉℵi(ω4) = W−1

ℵi vℵi, ℵ = 1, 2, 3,

(26)

In alternative one can use the model average estimator:

ĉℵi = E(cℵi|Zi, L̂i)

which can be evaluated as

ĉℵi =

∑BH−1
l=0 πl

∫
cℵi p(Ci,Zi|ωl, σ

2, L̂i) ρ(σ
2) dCidσ

2∑BH−1
l=0 πlp(Zi|ωl, L̂i)

. (27)

Since it follows from (26) that the integrals in the numerator of formula (27) are
equal to ĉℵi(ωl)p(Zi|ωl, L̂i), one can easily evaluate the estimators ĉℵi as

ĉℵi =

∑BH−1
l=0 πl ĉℵi(ωl) p(Zi|ωl, L̂i)∑BH−1

l=0 πl p(Zi|ωl, L̂i)
(28)

where ĉℵi(ωl) and p(Zi|ωl, L̂i) are defined in (26) and (20), respectively.
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6 Estimation of global parameters and prior

hyperparameters

In this section we consider some possible strategies for estimation of the global
parameters σ2, πl, l = 0, · · · ,H, and the ρ(σ2)-specific parameters σ2

0 (case 1),
γ and b (case 2), and µ (case 3).

Estimation of σ2 . If replications are available (i.e. , k
(j)
ℵi > 1 for some j,ℵ and

i), one can form statistics

β
(j)
ℵi =

k
(j)
ℵi∑

k=1

(zj,kℵi − z̄jℵi)
2 where z̄jℵi = (k

(j)
ℵi )

−1

k
(j)
ℵi∑

k=1

zj,kℵi .

It is easy to notice that β
(j)
ℵi /σ

2 has chi-squared distribution with k
(j)
ℵi −1 degrees

of freedom χ(k
(j)
ℵi − 1) if k

(j)
ℵi > 1 and is identical zero otherwise. Hence,

β =
H∑

ℵ=1

N∑
i=1

nℵ∑
j=1

βj
ℵi ∼ σ2 χ(υ) with υ =

H∑
ℵ=1

N∑
i=1

nℵ∑
j=1

(k
(j)
ℵi −1)I(k

(j)
ℵi > 1), (29)

so that σ̂2 = β/υ is an unbiased estimator of σ2.

In a general situation, when replications are not available or they are available
only at few time points, one can apply the U-statistics version of the Rice
estimator derived in [11] with the kernel K(x) = 3(1 − x2)+/4 gene by gene,
After that, the global estimator of the variance σ2 is obtained by pooling the
estimators of the variance for single genes, see also [3] for details.

Estimation of π = (π0, · · · ,πBH−1) . Recall that parameters τli, l =
0, · · · , BH − 1, can be estimated without any knowledge of the values of πl,
l = 1, · · · , BH − 1. Hence, in principle, πl, l = 1, · · · , BH − 1, can be obtained as
a solution of a (BH − 1)-dimensional optimization problem

π̂ = argmax
π

log p(Z) = argmax
π

N∑
i=1

log p(Zi) (30)

where p(Zi) is given by formulae (13) and (15). However, solution of this
optimization problem is highly unstable and computationally demanding.
Therefore we used equally likely prior probability.

Estimation of case-specific parameters . In case 1, the natural estimator of
σ2
0 is σ̂2. In case 2, one can either fix one of the two parameters, γ or b, and then

estimate another one by matching the mean of the distribution IG(γ, b) with
σ̂2, or use the MLE estimate of both parameters as proposed in [2]. Similarly,
in case 3, µ is estimated by µ̂ = (M − 1)/σ̂2, so that the mean of the prior
distribution ρ(σ2) is centered at σ̂2. Other alternative strategies can also be
used for estimating parameters without changing the general algorithm.
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7 Algorithm

The algorithm can be carried out as follows:

1. Fix prior parameters λ, Lmax and ν.
2. Estimate global parameters: σ2 and case-specific hyper-parameters σ2

0 (for
case 1), γ and b (for case 2) or µ (for case 3), see Section 6.

3. For each gene i, estimate the gene specific parameters τ2ℵi for ℵ = 0, . . . , BH−
1, by maximizing the marginal pdf of the data p(Zi).

4. Apply BC classification procedure by placing gene i into a class with the
highest posterior probability (20). Alternatively, apply TSB classification
procedure, i.e., for each gene i, compute Bayes Factor BFi using formula
(24). See Section 4.2

5. For each differentially expressed gene i, estimate the most appropriate degree
Li as the mean or the mode of the posterior pdf (18).

6. Estimate the gene expression profiles sℵi(t) for differentially expressed genes
using formulae (2) and (26) or (27).

Since all evaluations are based on explicit expressions, the algorithm is very
computationally efficient.

8 Simulations results and discussion

In order to evaluate the performance of the proposed method under different
possible scenarios, we carried out a simulation study over various kinds of
synthetic data-sets. For simplicity, we dealt only with the case H = 3. We
considered N = 10000 genes and analyze four different structure of data-sets:
DATASET1, DATSET2, DATASET3 and DATSET4.

DATASET1 has the same time grid, t
(·)
ℵ = [1, 2, 3, 4, 6, 8, 10, 11, 12] with 2

replicates at each time point except k
(3,5,7)
ℵi = 1 for all three conditions ℵ = 1, 2, 3,

and equal cardinalities of all classes |ωl| = 2000, for l = 0, ..., 4. In DATASET2,

the time grids are t
(·)
1 = [1, 2, 4, 6, 8, 10, 11, 12], t

(·)
2 = [1, 2, 3, 4, 6, 8, 10, 12] and

t
(·)
3 = [1, 2, 3, 4, 6, 8, 11, 12], respectively, with 2 replicates at each time point

except k
(4,6)
1i = 1, k

(5,7)
2i = 1 and k

(3,5)
3i = 1, and equal classes’ cardinalities.

DATASET3 has time grids as in DATSET1, while classes’ cardinalities are
|ω0| = 5000, |ω1| = 2500, |ω2| = 1000, |ω3| = 500 and |ω4| = 1000. DATASET4
has time grids as in DATASET2 while classes’ cardinalities as DATASET3.

The data were generated according to model (1) with the noise ζj,kℵi following
the Student distribution with 5 degrees of freedom and scaled so that its standard

deviation is σ = 0.2. The gene expression profiles sℵi(t
(j)
ℵ ) were generated

according to model (2). In particular, for each gene, we first sampled the degree
of the polynomial Li from the discrete uniform distribution U [0, 6]. Then, we
sampled one, two or three different vectors of coefficients cℵi from a normal
distribution N (0, σ2τ2i Q

−1
i ) according to the class participation of the current
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gene. For example, if the gene belongs to the first class (ω0), then only one vector
of coefficient is generated since all the three samples ℵ = 1, 2, 3 are the same. If
the gene belongs to class 1,2, or 3, then two different vectors of coefficients were
generated with one of the vectors used for the sample which differentiates from
the other two. Finally, if the gene belongs to class ω4, then three different vectors
of coefficients were generated, each used for one sample. Matrix Qi is set equal to
diag(12νi , 22νi , ..., Li2νi ) with νi sampled from the uniform distribution U([0, 1]).
For each gene, the values of τ2i were independently and uniformly sampled in
order to produce the signal-to-noise ratio (SNR) in the interval [2, 6].

For each data-set the simulations were repeated using 100 randomly
generated sets of profiles s1i, s2i and s3i and noise realizations, with the choice
Lmax = 6, λ = 9 and ν = 0. The data were processed using the BC and TBS
approaches described in Section 4.2. Results are summarized in Tables 1 and
2, where means and standard deviations (in parenthesis) of, respectively, the
sensitivity and the specificity for the 5 classes are reported. Sensitivity measures
the proportion of actual members of the class which are correctly identified
as such (i.e., for each class, the sensitivity is the percentage of genes correctly
classified into the current class). Specificity measures the proportion of samples
which do not belong to the class and are correctly identified (i.e., for each class,
specificity is the percentage of genes which are correctly classified into a class
different from the current). Tables 1 and 2 confirm that the two approaches, BC
and TSB, are similar. However TSB is slightly more sensitive in the first class,
being proposed for controlling the FDR on ω0; while is less sensitive on classes ωl,
l = 1, 2, 3. On the contrary TSB is slightly less specific on ω0 and more specific
on classes ωl l = 1, 2, 3. The two procedure have the same performance on class
ω4. Moreover, the techniques are invariant under permutation of class labels (if
the class labels are permuted, then the results permute accordingly, result not
showed here). The unbalanced scenarios, both in terms of time grids and of class
cardinality, do not affect the classification precision since the procedures yield
very similar results on all four data sets.

In order to be fair in the evaluation of the proposed procedures, we carried
out an additional set of simulations which was not model-based. Specifically,
in the same four scenarios for time grids and class cardinalities as in data
sets DATSET1–4, we generated data according to smooth functions which are
not directly represented as linear combinations of Legendre polynomials. For
each class, we randomly drawn one or more functions from a set of predefined
shapes: linear, quadratic, sine, cosine and exponential then we randomly pick its
coefficients.

Results of these simulations are presented in Tables 3 and 4.
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Table 1. Sensitivities of BC and TSB procedures for model-based data sets.

class ω0 class ω1 class ω2 class ω3 class ω4

DATASET1 BC .9318 .9716 .9720 .9713 .9942

(00030) (.0020) (.0017) (.0018) (.0009)

TSB .9488 .9684 .9689 .9681 .9942

(.0024) (.0021) (.0018) (.0019) (.0009)

DATASET2 BC .9254 .9685 .9695 .9684 .9935

(.0027) (.0018) (.0019) (.0020) (.0010)

TSB .9456 .9647 .9657 .9648 .9935

(.0024) (.0019) (.0020) (.0021) (.0010)

DATASET3 BC .9281 .9844 .9857 .9861 .9965

(.0037) (.0012) (.0012) (.0010) (.0006)

TSB .9463 .9816 .9829 .9832 .9965

(.0033) (.0014) (.0013) (.0011) (.0006)

DATASET4 BC .9219 .9827 .9843 .9843 .9961

(.0037) (.0014) (.0015) (.0010) (.0006)

TSB .9427 .9797 .9807 .9811 .9961

(.0032) (.0016) (.0017) (.0011) (.0006)

Table 2. Specificities of BC and TSB procedures for model-based data sets.

class ω0 class ω1 class ω2 class ω3 class ω4

DATASET1 BC .9935 .8945 .8939 .8940 .6872

(.0018) (.0071) (.0074) (.0069) (.0118)

TSB .9864 .9066 .9065 .9067 .6873

(.0026) (.0066) (.0069) (.0066) (.0118)

DATASET2 BC .9922 .8841 .8819 .8834 .6593

(.0018) (.0066) (.0074) (.0074) (.0107)

TSB .9840 .8991 .8970 .8979 .6594

(.0026) (.0062) (.0073) (.0069) (.0107)

DATASET3 BC .9935 .8942 .8930 .8948 .6883

(.0010) (.0064) (.0093) (.0136) (.0143)

TSB .9864 .9074 .9058 .9082 .6883

(.0015) (.0062) (.0091) (.0126) (.0143)

DATASET4 BC .9923 .8833 .8830 .8849 .6590

(.0013) (.0059) (.0102) (.0148) (.0144)

TSB .9843 .8981 .8979 .8996 .6590

(.0017) (.0057) (.0096) (.0142) (.0144)

Table 3. Sensitivities of BC and TSB procedures for model-free data sets.

class ω0 class ω1 class ω2 class ω3 class ω4

DATASET1 BC .9945 .9599 .9599 .9596 .9937

(.0009) (.0022) (.0020) (.0019) (.0008)

TSB .9970 .9562 .9562 .9560 .9937

(.0006) (.0023) (.0022) (.0020) (.0008)

DATASET2 BC .9937 .9000 .9565 .9585 .8924

(.0008) (.0034) (.0022) (.0019) (.0032)

TSB .9967 .8952 .9520 .9548 .8924

(.0006) (.0034) (.0023) (.0020) (.0032)

DATASET3 BC .9942 .9725 .9769 .9782 .9954

(.0011) (.0017) (.0013) (.0013) (.0008)

TSB .9968 .9636 .9694 .9710 .9954

(.0007) (.0019) (.0017) (.0015) (.0008)

DATASET4 BC .9934 .8187 .9696 .9771 .9476

(.0013) (.0039) (.0017) (.0014) (.0023)

TSB .9964 .8069 .9604 .9700 .9476

(.0009) (.0038) (.0019) (.0017) (.0023)
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Table 4. Specificities of BC and TSB procedures for model-free data sets.

class ω0 class ω1 class ω2 class ω3 class ω4

DATASET1 BC .9635 .9822 .9821 .9822 .5604

(.0047) (.0029) (.0029) (.0028) (.0114)

TSB .9239 .9840 .9838 .9839 .5604

(.0064) (.0027) (.0028) (.0028) (.0114)

DATASET2 BC .7012 .9493 .8092 .7891 .5554

(.0105) (.0047) (.0082) (.0092) (.0109)

TSB .6549 .9510 .8116 .7912 .5554

(.0109) (.0047) (.0081) (.0090) (.0109)

DATASET3 BC .9638 .9824 .9822 .9828 .5605

(.0027) (.0026) (.0046) (.0055) (.0149)

TSB .9243 .9841 .9838 .9844 .5605

(.0039) (.0025) (.0044) (.0053) (.0149)

DATASET4 BC .7016 .9499 .8088 .7900 .5581

(.0058) (.0041) (.0120) (.0189) (.0150)

TSB .6552 .9518 .8109 .7922 .5581

(.0059) (.0039) (.0119) (.0188) (.0150)
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Appendix

Without loss of generality, let us consider derivation for H = 3, BH = 5,
Ci = {c1i, c2i, c3i} and Zi = {z1i, z2i, z3i}. Combine (4), (8) and (10) in a
joint pdf

p(Ci,Zi, σ
2|Li) =

ρ(σ2)

(2πσ2)Mi/2
exp

{
−

3∑
ℵ=1

(zℵi −Dℵicℵi)
T (zℵi −Dℵicℵi)

2σ2

}

×
[

π0|Qi|1/2

(2πσ2τ20i)
(Li+1)/2

exp

(
−cT1iQic1i

2σ2τ20i

)
δ(c1i = c2i = c3i)

+
π1|Qi|

(2πσ2τ21i)
(Li+1)

exp

(
−cT1iQic1i

2σ2τ21i

)
exp

(
−cT2iQic2i

2σ2τ21i

)
δ(c2i = c3i)

+
π2|Qi|

(2πσ2τ22i)
(Li+1)

exp

(
−cT1iQic1i

2σ2τ22i

)
exp

(
−cT2iQic2i

2σ2τ22i

)
δ(c1i = c3i)

+
π3|Qi|

(2πσ2τ23i)
(Li+1)

exp

(
−cT1iQic1i

2σ2τ23i

)
exp

(
−cT3iQic3i

2σ2τ23i

)
δ(c1i = c2i)

+
π4|Qi|3/2

(2πσ2τ24i)
3(Li+1)/2

exp

(
−

3∑
ℵ=1

cTℵiQicℵi
2σ2τ24i

)]
.

Completing the squares with respect to c1i, c2i, c3i for each of the terms
separately and integrating out c1i, c2i, c3i and then σ2, we arrive at p(Zi|ωl, Li),
l = 0, · · · , BH − 1, given by (22).


