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Abstract

Recent debates in the psychological literature have raised questions about
the assumptions that underpin Bayesian models of cognition and what
inferences they license about human cognition. In this paper we revisit
this topic, arguing that there are two qualitatively different ways in which
a Bayesian model could be constructed. The most common approach uses
a Bayesian model as a normative standard upon which to license a claim
about optimality. In the alternative approach, a descriptive Bayesian model
need not correspond to any claim that the underlying cognition is optimal
or rational, and is used solely as a tool for instantiating a substantive
psychological theory. We present three case studies in which these two
perspectives lead to different computational models and license different
conclusions about human cognition. We demonstrate how the descriptive
Bayesian approach can be used to answer different sorts of questions than the
optimal approach, especially when combined with principled tools for model
evaluation and model selection. More generally we argue for the importance
of making a clear distinction between the two perspectives. Considerable
confusion results when descriptive models and optimal models are conflated,
and if Bayesians are to avoid contributing to this confusion it is important
to avoid making normative claims when none are intended.
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Introduction

Over the last two decades, Bayesian models have emerged as a powerful tool
for understanding human cognition. Taking inspiration from Marr’s (1982) notion of
computational level models and Anderson’s (1990) outline of a rational analysis, the key
idea is to take a top-down view of model construction. Within this program, human
cognition is viewed in terms of the solution to a computational problem posed by the
environment in which humans operate. This approach to cognitive modeling has been
successfully applied to a wide range of problems in concept learning (Tenenbaum, 1999),
reasoning (Oaksford & Chater, 1994), causal inference (Griffiths & Tenenbaum, 2005),
perception (Knill & Richards, 1996; Shen & Ma, 2016), motor control (Körding & Wolpert,
2004), social cognition (Baker, Saxe, & Tenenbaum, 2009), decision making (Vul, Goodman,
Griffiths, & Tenenbaum, 2014), language acquisition (Perfors, Tenenbaum, & Regier, 2011),
and many more besides. In general, computational-level analyses can take many forms.
The existing literature includes analyses that rely on information theory (e.g., Navarro &
Perfors, 2011), reinforcement learning (e.g., Navarro, Newell, & Schulze, 2016), algorithmic
complexity theory (e.g., Chater & Vitányi, 2003), and statistical decision theory (e.g., Vul
et al., 2014), among others. However, the majority of computational-level analyses are
framed in Bayesian terms.

Bayesian analyses typically approach human learning and reasoning by assuming that
the learner’s task is to infer which hypothesis h among many possibilities best characterizes
the world. The collection of possible hypotheses H is referred to as the hypothesis space,
and the learner’s pre-existing beliefs are captured by a prior distribution P (h). Upon
encountering data x, the learner updates her beliefs to a posterior distribution P (h|x) via
Bayes’ rule:

P (h|x) = P (x|h)P (h)∑
h′∈H P (x|h′)P (h′) (1)

This belief updating rule relies heavily on the likelihood function P (x|h), which describes
the probability that the learner would have observed data x if hypothesis h were true.
The likelihood function is what allows the learner to make inductive leaps, transforming
her prior beliefs P (h) into posterior beliefs P (h|x) that have been informed by data.
One of the distinctive characteristics of the Bayesian framework for cognitive modeling
is the fact that belief revision via Bayes’ rule is often described as a uniquely coherent
way to reason rationally from data (e.g., Jaynes, 2003), a virtue that is reflected in the
growing psychological literature on Bayesian data analysis (e.g., Lee & Wagenmakers, 2014;
Kruschke, 2010; Rouder, Morey, Speckman, & Province, 2012).

Highlighting the success of the framework, there are now a number of tutorial articles
(Perfors, Tenenbaum, Griffiths, & Xu, 2011) and overviews (Tenenbaum, Griffiths, & Kemp,
2006), as well as a number of papers articulating concerns and disagreements with the
Bayesian approach (Jones & Love, 2011a; Bowers & Davis, 2012a; Marcus & Davis, 2013;
Cassey, Hawkins, Donkin, & Brown, in press), defences of the paradigm (Chater et al.,
2011; Griffiths, Chater, Norris, & Pouget, 2012; Goodman et al., 2015), and responses to
those defences (Bowers & Davis, 2012b; Marcus & Davis, 2015; Jones & Love, 2011b). The
scope of this debate is broad, but two concerns in particular stand out in these discussions.
First, critics of the Bayesian approach frequently take issue with substantive claims about
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the optimality of human cognition. Second, a common criticism is that Bayesian models are
too unconstrained, and that virtually any pattern of behavior can be accommodated by a
suitably-formulated Bayesian model. The two criticisms combine to produce the worry that
Bayesian models of cognition make a central claim about optimality that is unfalsifiable:
that it is always possible to “prove” that humans are rational by judicious choice of priors
and likelihoods. If this were true, the result would be a modeling framework that is not
only vacuous, but also does not make an interesting claim about human psychology.

This critique exposes a degree of tension in how Bayesian models are constructed and
the scientific inferences they license about human cognition. Our claim is that there are
two quite different ways of thinking about Bayesian cognitive models: A model might act
as a normative standard against which human cognition is measured, or it might serve as as
a descriptive tool used to instantiate theories about human cognition (see, e.g., McKenzie,
2003). In this paper we argue that the differences between these two perspectives can
lead researchers to construct models with very different characteristics. With this in mind,
we suggest that it would be useful to make a clear distinction between optimal Bayesian
cognitive models that specify normative standards and license claims about the rationality of
human cognition, and descriptive Bayesian cognitive models that may serve other theoretical
goals but do not necessarily have much to say about whether human cognition is rational.

One reason for introducing the distinction between optimal and descriptive models
is that it is not always obvious when a Bayesian model is intended to imply a normative
claim and when it is not: The same terminology is used to describe Bayesian models no
matter what implications those models might have for the optimality of human cognition.
A second reason for doing so is that it motivates an examination of what role a Bayesian
model can play when it is used as a purely descriptive tool, rather than serving as a vehicle
for arguments over whether people are “rational”. By deliberately setting aside any claims
to optimality, a descriptive Bayesian approach shifts the research focus away from questions
about rationality or optimality, and onto more traditional psychological questions. What
biases and beliefs do people bring to a task? (questions about priors) How do people update
their knowledge in light of new data? (questions about likelihoods) What representations
do people have? (questions about hypothesis spaces) Within the descriptive framework it is
possible to learn about these questions by performing inference on those aspects of the model
directly, rather than indirectly and in a more ad hoc way by setting them and examining
model fit. The descriptive approach offers a vision for Bayesian cognitive modeling that
disentangles the formal apparatus of Bayesian models (with their use of priors, likelihoods,
and hypothesis spaces, all of which we want to keep) with the claims about rationality
which—while an important foundation of the optimal Bayesian approach—are not required
in the descriptive approach.

Our goal in this paper is not to argue for the superiority of either kind of Bayesian
model—normative standards and descriptive models are both useful tools for cognitive
scientists—but to try to highlight the importance of maintaining a clear distinction. This
distinction is theoretical more so than methodological: Although the descriptive approach
is much more flexible—and therefore allows for a wider range of methodological approaches
to parameter estimation and model selection—this flexibility is the result of letting go of
optimal interpretations and the constraints that come with them.

With this in mind, we present three illustrative case studies, each chosen to highlight
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different ways in which the descriptive approach can enable modelers to ask different
questions than a Bayesian model that focuses on questions of optimality. Our examples
show that a descriptive approach allows the researcher to use empirical data to robustly
learn the mental representations that underpin human performance. We demonstrate how
it can be used to investigate the biases and mental representations that shape human
judgments as well as the learning rules that people use to change those beliefs. We
examine how individual differences in cognition can be explored within the data-driven,
descriptive Bayesian approach. Finally, our examples show that the insights obtained with
a descriptive approach can be compared and contrasted with the findings of an optimal
model—sometimes lending support and sometimes standing in opposition—or that they
can stand alone without consideration to questions of optimality.

What makes a Bayesian model optimal?

A natural place to begin the discussion is with a consideration of why Bayesian
models are often claimed to represent rational or optimal inference. Critics of the Bayesian
framework have sometimes assumed that Bayesian cognitive models exist to support
normative claims about the optimality or rationality of human cognition (Bowers & Davis,
2012a; Marcus & Davis, 2013), citing as their justification the fact that Bayesians very
frequently do talk in precisely these terms (see Bowers & Davis, 2012b, for examples).
Yet, as defenders of the Bayesian approach have noted in their commentaries, considerable
care is required when making any claim about optimal performance (e.g., Griffiths et al.,
2012). Arguments for the optimality of Bayesian reasoning in general do not imply that
every Bayesian model will make good predictions solely by virtue of being Bayesian: The
optimality of any particular Bayesian model is contingent on it adopting priors, likelihoods
and hypothesis spaces that are appropriate to the inferential problem at hand. A Bayesian
reasoner that relies on badly chosen assumptions might satisfy some abstract desiderata
for rationality, but that will do nothing to prevent the reasoner from making very poor
inferences in practice.

To highlight the importance of this point, consider the manner in which Dutch book
arguments are often used as evidence for Bayesian reasoning. A Dutch book refers to a set
of gambles that should appear reasonable to a gambler (in the sense that all have positive
expected value) but will in fact ensure that the gambler loses money to the bookie no
matter what outcome occurs. Early Dutch book arguments demonstrated that if an agent
holds beliefs that violate the probability axioms, it is always possible to construct a Dutch
book against them—though these arguments did not necessarily require that those beliefs
be revised using Bayes’ rule (De Finetti, 1980). However, later versions of the argument
(Teller, 1973) demonstrated that if the bookie is allowed to offer bets at multiple time points,
a gambler must use Bayes’ rule to govern belief revision if they wish to avoid vulnerability
to a Dutch book.

One of the philosophically appealing features of Dutch book arguments is the fact
that this coherence of Bayesian belief revision is an inherent property of Bayes’ rule, and
not something that is specific to any particular Bayesian model. It is by virtue of this
universality that one might argue that all Bayesian models describe a form of rational
reasoning, and in one sense it is true. However, it is not at all clear that this kind
of rationality is desirable on its own: a Bayesian reasoner whose priors and likelihoods
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Figure 1 . Three Bayesians betting on binary outcomes, where the true success rate θ is
generated randomly from the unit interval. The veridical Bayesian employs priors and
likelihoods that are exactly matched to this task, whereas the misinformed Bayesian uses
the wrong prior and the miscalibrated Bayesian uses the wrong likelihood. The veridical
Bayes outperforms either of the other two models.

are grossly miscalibrated will find that coherence provides very little protection against
losing their money to a better informed agent. In some respects this observation is trite
and uninteresting—Teller (1973, p. 224) argues that “exploitation by dint of such greater
knowledge or keener powers of observation shows nothing derogatory about the agent’s plan
for change of belief.” In real life, however, few of us would take comfort in such assurances
when our incorrect theories about the world lead us to be exploited by others.

As obvious as this point is, we think it ties naturally to the tension that exists in the
cognitive science literature. If a Bayesian reasoner applies priors and likelihoods that are
well-matched to the world, they are not merely immune to sure losses via a Dutch book,
they also enjoy a practical advantage over their less well-calibrated peers in that they are
less likely to be exploited by other agents who happen to have better knowledge. This is
highlighted in Figure 1 which shows the outcomes of a gambling competition between three
Bayesian agents. The competition works as follows: a deck of cards consists of black and
white cards with some unknown proportion of black cards (the base rate), and cards are
turned over one at a time. Each agent offers what they perceive to be fair bets to the others,
and each agent places a $1 stake on any bet they perceive to be favourable. So if an agent
believes that the probability of black to be 0.25 they offer 3:1 odds on black, and place a $1
bet with any agent offering better than 3:1 odds. The true proportion of black cards is chosen
uniformly at random at the beginning of the game, and the cards are perfectly shuffled so
that outcomes of successive trials are essentially independent. The veridical Bayesian agent
adopts a prior and likelihood that match this scenario perfectly. The misinformed Bayesian
agent uses the correct likelihood (independent events) but incorrectly believes that the
scenario has a bias towards black cards. In contrast the miscalibrated Bayesian agent has
the correct prior beliefs about base rates, but incorrectly believes that the deck of cards
has not been properly shuffled and thinks that the cards are likely to show a “hot hand”
effect in which repetitions are much more common than alternation (Gilovich, Vallone, &
Tversky, 1985). This set up is illustrated on the left hand side of Figure 1, and the formal
details are outlined in Appendix A. On the right hand of Figure 1 we plot the results
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of simulating a large number of gambling competitions among these three agents. Not
surprisingly, although all three are Bayesian models – and hence “optimal” in the sense
implied by the diachronic Dutch book argument – they do not perform equally well in
these contests. Early on in the gambling contests, the Bayesian models with the correct
prior (veridical and miscalibrated) both tend to win money from the misinformed model
because it tends to provide overly generous payouts for a bet on white. As the contest
continues, the veridical model starts to win money from the miscalibrated model – because
the miscalibrated model incorrectly believes that a hot hand effect applies it offers and
places bad bets reflecting its belief that streaks will tend to continue. While each of these
three agents represents an optimal solution to some inference problem, only one of them
provides a normative standard for gambling behavior in this specific contest. To our mind,
good performance on the actual inference problem at hand seems a very important element
of what optimality means in the real world, and it is obvious that the mere fact of being
Bayesian is not sufficient to guarantee good performance in any satisfactory sense. To be
rational, one must do more than just be Bayesian—one must be the right kind of Bayesian.

The point of this discussion to argue that an optimal Bayesian model is, in practice and
for very good reasons, assumed to be something more than just a model with Bayes’ rule in
it. At the very least, it refers to a Bayesian model in which the priors and likelihoods are well
suited to the experimental task or to a real world problem that the agent needs to solve. It
suggests that the builders of such models are obligated to constrain their models by making
reference to some external standard that justifies the choice of priors and likelihoods.1 For
example, the learner’s prior might be veridical in the sense of being the correct prior for
the task given to participants (as per the toy example above). Alternatively, a prior might
be ecologically justified in the sense that it is well matched to the tasks that people have
to solve in their everyday lives. These two need not be identical, and if people apply
ecologically justifiable priors in an experimental task for which they are not appropriate,
one might argue that the cognition is optimally tuned to the real world problem but not
the experimental one. The key point is that if one’s Bayesian model is intended to be an
optimal Bayesian model, the researcher is not free to choose priors and likelihoods purely
on the basis of their own intuitions. Indeed, part of the substantive theoretical claim that
Bayesian models are often used to make is about the nature of those priors and likelihoods.

Distinguishing optimality claims from descriptive claims

The idea that human cognition might be optimal or rational is a powerful thought
(Cosmides & Tooby, 1996), and there seems little disagreement with the suggestion that
there would be considerable scientific value to a demonstration that humans closely mimic
the behavior of a genuinely optimal Bayesian model, even if that optimality is defined with
respect to constraints on factors like sensory abilities or attentional or memory limitations.
Much of the excitement about (Griffiths & Tenenbaum, 2006; Anderson & Schooler, 1991;
Körding & Wolpert, 2004; Chater, Tenenbaum, & Yuille, 2006) and criticism of (Bowers
& Davis, 2012a; Mozer, Pashler, & Homaei, 2008) Bayesian theories revolves around the
plausibility of this vision, but few would argue that the idea would be boring if true. The

1Arguably, a Bayesian who wants to make the strongest possible claim about optimality of cognition has
an even stronger obligation, namely to show that human behavior matches the predictions of the optimal
Bayesian model because that behavior is optimal. This issue is discussed by Danks (2008).
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dispute arises simply because many cognitive scientists strongly disagree with any claim of
human optimality (e.g., Bowers & Davis, 2012a, p. 393), noting that in many tasks human
performance appears to be markedly suboptimal (see also Marcus & Davis, 2013, p. 2353)
when compared to a model that makes the best possible inferences given the structure of
the task.

Perhaps suprisingly, some recent defences of the Bayesian framework (e.g., Griffiths
et al., 2012; Goodman et al., 2015) against these criticism have been entirely willing to
concede that point. If prominent Bayesian cognitive scientists are prompted to argue
that “the hypothesis that people are optimal is not something that even the most fervent
Bayesian believes” (Griffiths et al., 2012, p. 421), why is there so much confusion in the
literature surrounding it? A large part of the problem is that the very structure of Bayesian
models—because they require the modeller to stipulate and justify the choice of priors and
likeilhoods—encourages an optimal interpretation, even on the part of modellers who did
not set out with that goal. Indeed, we would suggest that this characteristic that may have
given rise to many of the optimality claims that Bowers and Davis (2012b) highlighted and
found so problematic. In contrast, our descriptive Bayesian models provide a vision that
explicitly, as part of its structure, rejects assumptions or interpretations of optimality.

If a particular Bayesian model is not intended to constitute a normative claim about
what people should do in order to be deemed rational, what purpose does it serve? In
our experience, many researchers who develop Bayesian models are quite uninterested in
making normative claims. Instead, the goal is merely use the Bayesian framework as a
language in which to specify a theory about the learner’s mental representations (hypothesis
spaces), the beliefs defined using these representations (the priors), and the learning rules
that describe how beliefs are revised (the likelihoods). From this perspective Bayesian
cognitive models need not correspond to a strong claim about the optimality or rationality
of human behavior. Rather, they serve a descriptive goal based on the conditional claim
that if a learner adopted this prior and that likelihood, then it would be sensible for them
to produce that behavior. Viewed in this way it is still critical that Bayesian models be
coherent—and Dutch book arguments are still somewhat pertinent—because without such
coherence even this conditional claim becomes untenable. However, a learner’s prior need
not capture the “correct” environmental statistics for some problem nor does it need to
be veridical for a specific task; it need only capture some beliefs that the learner might
bring to the task (e.g., Hemmer, Tauber, & Steyvers, 2014; Huszár, Noppeney, & Lengyel,
2010). Similarly, a likelihood need not describe the “true” model in which observations are
generated and might not even map onto a particularly sensible one; it need only describe
how the learner thinks the observations were generated (e.g., Navarro, Dry, & Lee, 2012).
The hypotheses considered by the learner need not include the best or most appropriate
hypothesis in some objective sense; they need only include some cognitively-plausible set
of options a learner might consider. Such a model makes sense on its own terms and serve
a useful purpose in illustrating psychological principles, but if the priors or likelihoods are
especially mismatched to the task, it is somewhat misleading to refer to such a model as
“rational” and highly inappropriate to refer to it as “optimal.”

We refer to models constructed in this fashion as descriptive Bayesian models.2 Within
2Sometimes the term ‘descriptive’ is used to capture models that seek to more clearly characterize data

(as in, for instance, signal detection or diffusion models) as opposed to models whose aim is to explain the
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the descriptive approach, human cognition need not be perfectly matched to the statistics of
the environment, people’s learning might not make optimal use of the information inherent
in the problem, and individual participants might differ quite substantially in their choice
of priors and likelihoods. If human behavior matches the predictions made by a model
specified in this manner, this is evidence that the model provides a good description of the
behavior—which suggests that the model’s assumptions may be consistent the assumptions
people make in that situation. Critically, good fit of a descriptive model to human behavior
does not imply that the behavior is rational. It is evaluated and interpreted in much the
same way as any other probabilistic model of cognition, on a par with models like signal
detection theory (Macmillan & Creelman, 2004), sequential sampling theory (Ratcliff &
Smith, 2004), multinomial processing trees (Batchelder & Riefer, 1990), and so on.

Put another way, the fundamental difference between descriptive Bayesian models
and optimal Bayesian models is that within the descriptive Bayesian framework, questions
of optimality are simply irrelevant. This distinction is especially clear when comparing
descriptive Bayesian models with models of constrained optimality. The two have sometimes
been confused with one another, but they are fundamentally distinct. Models that
acknowledge that all optimality occurs within constraints (e.g., investigating whether some
behavior is optimal given the existence of certain capacity limitations or filters on the
kind of sensory input available) are still optimal models: they still justify the modelling
choices by reference to some notion of optimality. That is, the choices of priors, likelihoods,
hypotheses, or characteristics are justified by arguing that they are well-matched to the
task or in some other way ecologically valid, given the constraints the organism is operating
within. A descriptive approach, by contrast, simply doesn’t care whether the choices are
justified. The central question of interest is discovering what choices best account for human
performance.

This raises the question: if the descriptive approach liberates Bayesian models from
the requirement that they be “rational” or “optimal”, why should a researcher adopt such
an approach? What are the virtues of Bayesian models if they no longer represent optimal
inference or produce rational behavior? It might appear that we are discarding the core
virtue of Bayesian models. Yet this is far from the case. Much of the appeal of Bayes’
rule lies in the fact that it represents a method for writing down models in a transparent
way. To build a Bayesian model, the researcher is forced to specify what form the mental
representation might take (the hypothesis space), what biases the learner brings to the
problem (the prior), and the rules by which the learner can be influenced by data (the
likelihood). Because the researcher cannot write down a Bayesian model without making
these things clear, the assumptions of the theory are always out in the open. Such a model
tries to explain human behavior in much the same way any other model does: If the learner
possesses these beliefs and reasons in this way, it would be reasonable to expect them to
produce that behavior.

How, then, are descriptive Bayesian models different from modelling more generally?
In one sense they are just one of many options in our toolbox; which approach should be
used depends on the research question. But the particular research questions a descriptive

underlying processes or causal relationships. That is not the distinction we are making here. Rather, we
use the term to make the distinction between models that seek to describe the priors and likelihoods people
actually use, rather than prescribing them a priori and justifying them as being well-suited to the problem.
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approach are well-suited for are exactly the kinds of questions that often arise in cognitive
science. What is the nature of the hypotheses people are evaluating when they learn?
How exactly do people update their beliefs in response to the data they see, and what
assumptions do they make about how that data was generated? What priors do people bring
to a learning situation? These questions are more naturally answered within a descriptive
framework than an optimal one, and the explicitness of the Bayesian machinery means that
for those kinds of questions it can offers advantages of explicitness and precision over other
modelling frameworks as well.

A formal statement of the descriptive Bayesian approach

Relaxing the requirement that Bayesian models describe optimal cognition opens up
the possibilities for investigation considerably. In an optimal Bayesian model, the learner’s
inferences are described via the application of Bayes’ rule:

P (h|x) = P (x|h)P (h|H)∑
h′∈H P (x|h′)P (h′|H) (2)

where x represents the data available to the learner, h is a hypothesis about the origins of
the data, and H represents the set of hypotheses available to the learner. In order to satisfy
some version of the optimality claim, the priors and likelihoods need to be constrained in
an a priori fashion.

The descriptive view rejects the idea that priors and likelihoods should be constrained
by anything beyond the researcher’s theory of the task. The learner’s prior should not be
viewed as fixed by the structure of the environment, nor should it necessarily correspond
to a sensible expectation about the world. Similarly, the likelihoods that govern people’s
learning need not correspond to any realistic model of how observations are generated. As
such, the behavior produced by the model need not be rational or even particularly sensible.
Formally, if there are multiple possible choices of prior (parameterized by φ) and likelihoods
(parameterized by λ), then the learner’s inferences are conditioned on these parameters:

P (h|x, λ, φ) = P (x|h, λ)P (h|φ,H)∑
h′∈H P (x|h′, λ)P (h′|φ,H) (3)

In one sense the difference between these two expressions is purely cosmetic: Equation 2
suppresses the dependence on the parameters φ and λ, whereas Equation 3 makes the
dependence explicit. However, this distinction is central to the manner in which a descriptive
Bayesian model differs from a traditional rational analysis. If the purpose of a Bayesian
model is to make claims about optimality, the parameters φ and λ are nuisance variables
that (ideally) should be fixed by reference to some external standard. However, if the
purpose of a Bayesian model is to help us develop good descriptions of human cognition,
the core goal is now to learn what priors and likelihoods people rely on. Inferring the priors
φ and likelihoods λ from the empirical data is now the aim.3

3It should be noted that this is a slight oversimplification. For instance, in some situations (e.g., our case
study 3) the goal is to infer the hypothesis space H. The notation could be expanded to express this but for
expositional simplicity we suppress this for now.
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W can illustrate the difference between a descriptive and optimal model with a simple
category learning example. If the researcher is operating within an optimal Bayesian
framework, when they specify their model they should consider what kinds of category-
learning priors would be optimal: for instance, they might incorporate a prior that favors
more coherent categories (Rosch, 1978) on the grounds that such a category system is
sensible (Navarro & Perfors, 2011). They should also consider what kinds of likelihood
models an optimal learner should entertain: perhaps one that assumes strong sampling and
follows the size principle on the grounds that it is statistically appropriate if one assumes
that data is drawn directly from the category itself (Tenenbaum & Griffiths, 2001). The
key point is that an optimal Bayesian modeller needs to not only make choices about the
prior and likelihood, but they should be able to justify those choices as optimal for some
reason. By contrast, a descriptive Bayesian modeler need not do this. Instead, they perform
inference over the priors and likelihoods4 of each participant and discover which ones best
account for their performance. Perhaps some people use strong sampling, while others do
not; perhaps everybody, or nobody, or a few people do not have particularly strong a priori
beliefs about the coherence of categories. The descriptive approach allows researchers to
discover this.

The descriptive approach to Bayesian cognitive modeling allows the researcher a lot
of freedom in how the model can be built and parameterized, so it becomes critical to
consider how the model parameters should be estimated and how rival models should be
compared. Fortunately, these are well-studied problems and many principled solutions
exist for model selection (see e.g., Browne, 2000; Pitt, Kim, Navarro, & Myung, 2006;
Pitt, Myung, & Zhang, 2002; I. J. Myung, 2000; J. I. Myung, Navarro, & Pitt, 2006;
Wasserman, 2000; Shiffrin & Chandramouli, 2016; Shiffrin, Chandramouli, & Grunwald,
in press; Chandramouli & Shiffrin, in press), and perhaps the most elegant approach to
parameter estimation is Bayesian data analysis (e.g., Lee & Wagenmakers, 2014; Kruschke,
2010; Gelman, Carlin, Stern, & Rubin, 2014), in which the researcher also acts as a Bayesian
reasoner. Before running any experiment, the researcher themselves has some priors P (λ, φ)
that captures their beliefs about which priors and which likelihoods are plausible. After
running the experiment she obtains a collection of responses r from the participant, from
which she infers a posterior distribution P (λ, φ|r). This distribution captures everything
the researcher has learned about the participant using her model and the data from her
experiment. The inference by the researcher can also be described using Bayes’ rule,

P (λ, φ|r) = P (r|x, λ, φ)P (λ, φ)∫
P (r|x, λ′, φ′)P (λ′, φ′) d(φ′, λ′) (4)

In this expression, we use the notation P (r|x, λ, φ) to indicate that the participant responses
r depend on both the parameters (λ, φ), and on the information x that the experiment
presents to the participant. In order to do so, the researcher needs to specify two things.
Firstly, as noted above, she needs to specify the prior distribution over model parameters,

4As we describe in more detail below, it is of course impossible to perform inference without setting
some hyper-prior on the priors and likelihoods themselves. Yet these hyper-priors can be loose enough to
permit a large range of variation in the actual priors and likelihoods entertained by the model. As such, they
themselves need to be justified on optimality grounds, and they allow the researcher to truly do inference
about which parameters best describe human performance
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P (λ, φ). Secondly, she needs to specify a data analysis model that links the learner’s
posterior distribution over hypotheses P (h|x, λ, φ) to the researcher’s likelihood function
for the data, P (r|x, λ, φ). Specifying the data analysis model requires the researcher to
make substantive choices. For instance, one might assume that people generate their
response by sampling from the posterior (e.g. Vul et al., 2014), but other possibilities
exist. Several simple possibilities are listed by Marcus and Davis (2013), but there is no
reason why a complex theory of the response generation process could not be supplied (see
e.g., the Appendix in Navarro et al., 2012). The important point is that if the researcher
does specify a clear measurement model that links the learner’s posterior P (h|x) to the
observed responses r, then all of the statistical machinery of Bayesian data analysis and
other approaches to model selection now become available.

Summary

The descriptive approach to Bayesian cognitive modeling has many fundamental
differences from a view in which Bayesian models are treated as optimal, normative
standards for human cognition. Firstly, the descriptive approach treats the cognitive model
as a tool to make inferences about participants. When building a model, the researcher is
not obligated to have a theory that precisely states what priors and likelihoods a learner
should use. Instead, they can propose a broad family of possible Bayesian models and
use the experimental data to infer which of those models best matches human behavior.
Secondly, it provides a natural mechanism for expressing individual differences, as it allows
each participant to have different priors φ and likelihoods λ without obligating the researcher
to suppose that each person’s idiosyncratic prior and likelihood is fully justified given
their idiosyncratic experiences. Thirdly, because the descriptive framework emphasizes the
importance of treating the Bayesian cognitive model as a genuine statistical model for the
data (i.e., ideally, it assigns probabilities to people’s responses at a trial to trial level), we can
use a number of model selection approaches, including methods from Bayesian statistics, to
compare between models of different sorts (even if some of those models are non-Bayesian).

The primary goal in this paper is to highlight the importance of making a clear
distinction between an optimal Bayesian model and a descriptive one, and the rest of the
paper is devoted to illustrating why this distinction matters. To that end we present three
case studies. Our first case study presents an example in which an optimal Bayesian model
fails to account for human behavior, whereas a descriptive Bayesian model performs better—
by dropping the presumption of optimality and allowing for individual differences—and
yields novel insights into how people solve a simple inductive problem. The second case
study presents an example in which the comparison between an optimal Bayesian model, a
descriptive Bayesian model, and a non-Bayesian model explores how close people actually
are to optimal in some cases. This case study illustrates that even when people’s behavior is
actually close to optimal, the descriptive framework is still useful. Not only does it provide a
framework for making the comparison, but it also constitutes better evidence for optimality
than an optimal model alone would: the priors and likelihoods that correspond to the
normative solution are rigorously shown to provide the best account of the data, rather
than being simply stipulated by the modeller. Finally, our third case study highlights
the fact that descriptive Bayesian models can still be useful in situations where exploring
whether or not people are optimal is irrelevant to the research question.
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These examples are intended to be illustrative, not exhaustive. We aim to highlight
the potential power of the descriptive approach, not to catalog all possible uses of the
framework. Although there are a number of important technical details to consider when
applying Bayesian data analysis to a Bayesian cognitive model, we have aimed to keep
these technical details to a minimum in the main paper, but more fully elaborated in the
Appendices. Finally, we should note that although our examples are chosen to illustrate
why it can be useful to build descriptive Bayesian models, we believe that there is a place
for both kinds of Bayesian models in the literature. For instance, optimal Bayesian models
are quite appropriate in cases where the modeller has independent substantive justification
for the choice of likelihoods and priors; in such a situation, the extra machinery of the
descriptive approach may be unnecessary.

Case study 1: Focusing on optimality does not always lead to the best
understanding of human behavior

Our first case study revisits the Bayesian theory of coincidences and discoveries
developed by Griffiths and Tenenbaum (2007, henceforth GT1). The central goal in
that paper was to develop a Bayesian account of how people decide whether a pattern
of observations is a mere coincidence (a chance occurrence) and when it represents a
meaningful discovery. The paper uses Bayesian models to make normative claims. For
instance, the abstract of the paper argues “that people can accurately assess the strength
of coincidences, suggesting that irrational conclusions drawn from coincidences are the
consequence of overestimation of the plausibility of novel causal forces”, and on page 218
the authors argue that “human irrationality concerning coincidences [can] be localized in
miscalibrated prior odds” (emphasis ours). The normative claims are clear: To agree with
this model is to be accurate and rational, and disagreements with the model are irrational.
Moreover, to the extent that discussion of the Bayesian theory focuses on such claims, the
purpose of constructing the Bayesian model appears to be that it licenses these normative
claims.

In this case study we focus on two problems that sometimes arise when applying the
optimal Bayesian approach. First, demonstrating that aggregated response curves match
those produced by an optimal model may not provide sufficient evidence that people’s
behavior is optimal if individual responses deviate from the optimal norm. Second, when
behavior cannot reasonably be considered to be optimal, this type of model loses its
explanatory power and provides limited psychological insights. We address these issues
by including a descriptive Bayesian model in our analysis—one that best describes human
behavior and drops any normative claims about the rationality of human cognition—and
show that this leads to additional insights about human psychology, including a more
nuanced understanding of how people’s behavior deviates from optimality.

Of genetics and psychokinetics: Inference from binary data

The original GT1 paper discusses several different inference problems and develops
a Bayesian model for each one, but for our purposes it will be sufficient to consider the
simplest case. In their first experiment, they presented people with descriptions of fictitious
scientific experiments in which the observed outcomes were binary, and the question people
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had to answer was whether the true base rate of the outcomes was 50%. There were two
versions of the task. People in the genetics condition were given the following cover story:

A group of scientists investigating genetic engineering have conducted a series
of experiments testing drugs that influence the development of rat fetuses. All
of these drugs are supposed to affect the sex chromosome: they are intended to
affect whether rats are born male or female. The scientists tested this claim
by producing 100 baby rats from mothers treated with the drugs. Under normal
circumstances, male and female rats are equally likely to be born. The results
of these experiments are shown below: The identities of the drugs are concealed
with numbers, but you are given the number of times male or female rats were
produced by mothers treated with each drug.

After being told that (say) 70 out of the 100 baby rats were male, participants were asked
to assess the probability that the drug was effective. In a classical null hypothesis test,
the inferences that one makes in this scenario depend only on the raw data (i.e., number
of males and number of females). However, GT1 argue that people should treat this as
Bayesian inference problem and use the cover story to impose some prior bias. To that end,
a second group of participants (in the psychokinesis condition) saw this cover story:

A group of scientists investigating paranormal phenomena have conducted a
series of experiments testing people who claim to possess psychic powers. All
of these people say that they have psychokinetic abilities: They believe that they
can influence the outcome of a coin toss. The scientists tested this claim by
flipping a fair coin 100 times in front of each person as they focus their psychic
energies. Under normal circumstances, a fair coin produces heads and tails
with equal probability. The results of these experiments are shown below: The
identities of the people are concealed with subject numbers, but you are given the
number of times the coin came up heads or tails while that person was focusing
their psychic energies.

Participants were then shown the outcomes of a series of these experiments—the
number of male rats or the number of heads out 100 trials—and had to judge the probability
that the drug affected the sex of rats, or that the person had psychic powers. In order
examine how people’s beliefs are the strength of evidence in the data, they asked people
to judge the probability that the drug/psychokinesis was effective in 8 different situations:
when the number of males/heads was 47, 51, 55, 59, 63, 70, 87, 99 and 100.

An optimal Bayesian model

How should an optimal reasoner behave when solving this problem? GT1 present
the following rational analysis of the task. There are two hypotheses that need to be
discriminated: According to the “null” hypothesis h0, the true probability of male/heads
is fixed at 50%, but according to the “alternative” hypothesis h1 the true probability is an
unknown value θ that could be anywhere between 0 and 1. This framing of the problem
seems entirely reasonable and in fact this exact model is sometimes used as a simple data
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analysis tool (e.g., Wagenmakers, 2007). Formally, if n denotes the number of observations
and k denotes the number of successes, then the strength of evidence provided by the data
is provided by the Bayes factor:

P (x | h1)
P (x | h0) = 2n(n

k

)
(n+ 1) (5)

The further that the proportion k/n deviates from 0.5, the stronger the evidence for the
alternative model. However, there are good reasons to think that people would be more
skeptical of a claim about psychic powers than a claim about genetic engineering, and so
GT1 argue that people should employ different priors in the two conditions. This also seems
sensible, and similar claims about the importance of adapting the prior to suite the problem
have been made in the Bayesian data analysis literature (Wagenmakers, Wetzels, Borsboom,
& Van Der Maas, 2011). Multiplying the Bayes factor by the prior odds P (h1)/P (h0) gives
us the posterior odds ratio,

P (h1 | x)
P (h0 | x) = P (x | h1)

P (x | h0) ×
P (h1)
P (h0) (6)

which reflects the relative strength of belief that the learner has in the two hypotheses after
the data have been observed.

The optimal model developed by GT1 is elegant, simple and makes very clear
predictions about how different experimental manipulations should change people’s
judgments. The cover story manipulation should shape people’s priors P (h), the number of
observed cases should affect the likelihood P (x|h), and these two factors should be integrated
via Bayes’ rule. In light of the way in which they constructed their task and presented it
to participants, we would strongly agree with their claim that this model does make sense
as a normative standard for this task.

Successes and failures of the optimal model: A replication of the GT1 study

How plausible is the claim that people are optimal at this task? To evaluate the
optimal Bayesian model as a theory of human behavior, we conducted a replication of
the GT1 experiment using 102 participants recruited through Amazon Mechanical Turk.
Participants were paid $0.40 for completing the study. The only difference between our
study and the original one is that we used a slightly different dependent measure: We
asked people to judge the probability that a real effect was observed. Following GT1,
we excluded participants who appeared to have reversed the response scale (i.e., showed
decreasing confidence in an effect as k increased), leaving 89 participants. The results of
the original study and our replication are shown as the solid lines in in Figure 2. As is
immediately clear from inspection of the figure, the empirical result from GT1 replicates.

In addition to replicating the experiment itself, we replicated the data analysis
reported by GT1. When considering the application of the optimal model to empirical data,
GT1 quite sensibly acknowledge that their Bayesian model allows room for some individual
differences. As they note, it is reasonable to think that different people could read the same
cover story and apply somewhat different priors. To accommodate this, they estimate a
single free parameter (the prior odds) for each participant, and then reported the averaged
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Figure 2 . Aggregated fits of the original Bayesian coincidences model. Panel (a) is a
reproduction of Figure 3 from Griffiths and Tenenbaum (2007), whereas panel (b) shows
the results from our replication of the experiment and model fitting procedure from the
original paper. Error bars in panel (b) are standard errors. While there are some differences
between the two panels, and some disagreements between the Bayesian model and human
performance, the overall qualitative agreement is reasonable.

responses for both model and humans.5 These aggregated curves are plotted in Figure 2 and
it is again clear that our replication of the data analysis is in agreement with the results in
GT1. In both figures it is clear that the averaged model fits are a reasonable approximation
to the averaged data, though clearly there are some fairly noticeable deviations too.

A closer look at the individual differences

Figure 2 presents a single clean picture, one in which there is one pattern of
performance produced by humans, and another single pattern produced by an optimal
Bayesian reasoner. The fact that these two curves are in agreement (at least qualitatively)
does make it look like people are doing optimal inference. Yet one is compelled to wonder:
Do the responses of individual subjects look anything like these aggregated curves? Do
individual subjects rely on a likelihood function based on independent Bernoulli trials?

5A minor point on the model fitting exercise: the GT1 paper does not state what procedure was used
to estimate parameters, though when fitting the data from our replication we found that minimizing sum
squared error worked well. There is also a slight ambiguity in the way in which GT1 describe their procedure,
insofar as the text refers to “fitting the sigmoid function” (their Equation 6), but also state that the
parameters of the relevant sigmoid were fixed to have gain 1 and bias 0. On our reading of the text, it
appears that this is intended to mean that the only free parameter in the model is the prior P (h1), and that
the sigmoid referred to in the relevant passage is intended only to ensure that P (effect|x) = P (h1|x).
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Figure 3 . Systematic failures of the optimal Bayesian model for the coincidences task.
The left panel plots the response curves predicted by the Bayesian model across a range of
possible prior odds. For all choices of priors, the response curves are extremely steep, much
moreso than the averaged curves plotted in Figure 2. In contrast, the right panel shows the
response curves produced by 20 individual subjects, almost all of which are much shallower.

Should we call their reasoning be “irrational” if they do not?
Viewed in this fashion, it is difficult to assess GT1’s proposal that people behave

optimally with respect to their prior: Their analysis acknowledges that individual differences
might exist and estimates model parameters at the individual subject level, yet ultimately
the model performance is assessed only in terms of the aggregated data.6 In light of
these concerns, Figure 3 plots the responses at an individual subject level (right panel),
and contrasts these individual subject curves with the response curves produced by the
optimal Bayesian model under different choices of the prior odds parameter (left panel).
As is immediately obvious from inspection, there is a major mismatch between the two.
The curves produced by the Bayesian model are extremely steep,7 whereas almost all the
empirical curves are quite shallow. Even before attempting to quantify model performance
(see below), it is clear the optimal Bayesian model does not provide a good account of
human behavior at an individual subject level. Absent any evidence that human behavior
matches the model predictions, it is difficult to substantiate any claim about the optimality
of human performance in this task. On the contrary, when measured against the standard
that GT1 proposed—optimal belief revision with respect to a prior that can vary from
person to person—human cognition appears to be decidely suboptimal.

6We do not intend to single out these particular authors on this point. Averaging is a common practice
that has often been criticized in the data analysis literature (e.g., Lee & Webb, 2005; Navarro, Griffiths,
Steyvers, & Lee, 2006), and there are many well-documented examples in which averaging systematically
distorts the structure of the data (e.g., Estes, 1956; Heathcote, Brown, & Mewhort, 2000). It is not a failing
unique to Bayesian cognitive models.

7It is worth noting that the shallower curves produced by the model at an aggregate level (i.e. in Figure 2)
are purely an averaging artifact. The original Bayesian analysis reported by GT1 cannot produce shallow
response curves for individual subjects.
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A descriptive approach to the problem

Given that the normative model proposed by GT1 does not provide a good account of
the data, one might be tempted to conclude that we have exhausted the value of Bayesian
cognitive models of this problem. Having shown that human performance is not optimal,
perhaps we are now obligated to discard the Bayesian approach and turn to non-Bayesian
accounts of human performance? We argue that this need not be true. In this section
we present a descriptive Bayesian account of the same inference problem, and show that
this approach sheds light on human performance even though we cannot use this model to
justify any claim that the behavior it describes is rational, optimal or even appropriate.

To construct our model, we begin by dropping GT1s claim that people integrate prior
knowledge and statistical evidence in an “appropriate” fashion. Instead of requiring that our
model use the Bernoulli likelihood function that a statistician might use to analyze scientific
experiments, we allow specify a broad family of likelihood functions and seek to learn
which ones produce human-like behavior. These likelihood functions may be appropriate
to some real world problem that people have to solve, or they may not. Our initial goal
is exploratory: Instead of using the Bayesian analysis as a tool to make claims about the
optimality or appropriateness of people’s responses, we treat it as a descriptive tool that
helps us interpret the experimental data. From this descriptive perspective, it seems natural
to want to explore the nature of individual differences and give them more prominence in
the data analysis.

With these goals in mind, we extend the model from GT1 in the following ways.
Like GT1, we assume that people might have different priors. Letting φ = logP (h1)/P (h0)
denote the prior log odds, we approach the statistical inference problem as Bayesian data
analysts and place a prior over φ. More importantly, since we are giving up on the claim
that people are necessarily adhering to an easily-definable standard of “optimality”, we can
take line of reasoning one step further. Why should people differ in their priors but not also
their likelihoods? Assuming that everyone has the same likelihood function, as expressed
in Equation 5, makes sense if all people update their beliefs “optimally” (i.e., based on the
assumption that each observation is the result of an independent Bernoulli trial). This is
indeed what statistical models for binary data typically assume, but that does not mean
that people make the same assumption. In many tasks people appear to update their beliefs
conservatively (Phillips & Edwards, 1966), increasing their confidence in a proposition more
slowly than the statistical evidence would warrant.

Incorporating conservatism into the GT1 model is not technically difficult. For
example, a simple way to behave conservatively in this task is for the learner to apply
Equation 5 to a smaller “effective” sample size than the one actually observed. Formally,
we let θ denote the effective value of a single datum (ranging from 0 to 1), where each
value of θ corresponds to a different likelihood function, and we obtain the original model
from GT1 when θ = 1 (see also Navarro et al., 2012; Ransom, Perfors, & Navarro, in
press). Then, in the same way that we assume that people can have different priors φ, we
allow the possibility that each person has their own likelihood function defined by θ. Then,
adopting a Bayesian data analysis perspective, we as researchers specify our priors over the
model parameters φ and θ and allow the empirical data to teach us something about our
participants (see Appendix A for details).
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An important point to recognize is that while our expanded model is clearly Bayesian,
it is difficult to characterize as an optimal model for the task that people were asked to
solve. If participants do turn out to be conservative in their inferences, for intance, it is
not at all obvious whether this conservatism has any normative justification. It is of course
possible to construct post hoc stories about why it might be justified: One might argue that
real world data are messy and autocorrelated, and as such it would be rational to display
some conservatism if people transfer those expectations to the GT1 task. But even if this
explanation were correct how much conservatism would real world messiness justify? It is
not clear that there is a unique solution to this question. If our scientific goal is to judge
whether people are doing the “right thing” or the “wrong thing”, adding conservatism to the
model seems to do nothing but muddy the waters. On the other hand, if we adopt the more
exploratory goal of trying to find the statistical model that best describes human behavior,
the focus shifts to empirical questions. What likelihoods and priors produce human-like
behavior? Do they differ from person to person? Do they differ from context to context?
These are questions we can investigate within the descriptive Bayesian framework, using
the model as a tool, without being obligated to endorse any claim that the behavior that
the model describes is optimal in any interesting sense of the word.

Results

The descriptive Bayesian model captures individual response curves.
Figure 4 plots the raw data for twelve participants. In these plots, the dashed line shows
the best fitting response curves for the original Bayesian model proposed by GT1, and
the solid lines show the curves produced by the descriptive model. As is evident from
inspection, there are some subjects who produce response curves that are in close agreement
with the optimal Bayesian model. However, it is also evident that the optimal model
only captures one possible human-like response pattern. In contrast, our expanded model
provides reasonably good fits to all participants shown in Figure 4. For those participants
who produce steep response curves, our model agrees with the original GT1 model. But the
descriptive model can capture the behavior of people who produce shallower curves. As a
result, by virtue of allowing a wider range of likelihood functions, our model passes a basic
test of descriptive adequacy that the GT1 model fails. This is reflected in the average sum
squared error between the model fits and the human data at the individual subject level:
For the GT1 model it was 0.41 (sd = 0.45), whereas for the descriptive model it was 0.10
(sd = 0.14).

The effect of the cover story manipulation. The merits of the descriptive
approach become more apparent once we revisit the original question that GT1 sought to
answer using their experiment. In the original paper, they concluded that the cover story
influenced people’s priors. In our re-analysis using the descriptive model we replicate this
finding, and in fact are able to extend it slightly by quantifying the magnitude of the effect:
In the genetics condition, the average prior φ used by subjects corresponded to a 4:1 prior
bias in favor of the null hypothesis (i.e, no effect), whereas in the psychokinesis condition
the bias to prefer the null was 51:1 on average. The 95% credible intervals for these are
[2.3, 6.8] and [21, 140] respectively, which do not overlap: This indicates that the effect is
almost certainly genuine. Individual subject distributions over the prior odds are plotted
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Figure 4 . Individual differences in the coincidences task. Each panel plots the responses
from a single participant (dots). The top six panels show participants assigned to the
genetics condition and the bottom six panels show participants in the psychokinesis
condition. Solid lines show the posterior predictive mean for the descriptive Bayesian model.
Dotted lines show the fitted values for the original, optimal Bayesian model. It is clear that
while the original model produces reasonable fits in some cases, in others (e.g., panels 1, 2,
8, 9, and 10) it performs much more poorly than the descriptive model. This is because it
does not allow for any flexibility in the likelihood function, predicting a very steep rise as a
function of the input.
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Figure 5 . The cover story has a strong influence on the prior probability of an effect.
Individual subject distributions over the prior odds vary with condition, with people who
saw the genetics cover story giving much higher prior odds of a real effect. Even within
condition, however, people vary a great deal in their prior beliefs.

Genetics Psychokinesis

0

5

10

15

20

0.0 0.4 0.8 0.0 0.4 0.8
Subjective Value of Data

F
re

qu
en

cy

Figure 6 . The cover story has an influence on the likelihood. Individual subject distributions
over the likelihood also vary with condition, suggesting that people were more distrustful
of the evidence in the psychokinetic condition: The average subjective value of an
observation is 43% in the genetics condition but only 23% in the psychokinetic
condition. In both conditions, people acted far more conservatively than the “optimal”
Bayesian model would predict.
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in Figure 5. In essence, these results replicate the findings reported by GT1, though they
are somewhat more detailed.

However, in addition to being more detailed, our analysis departs from GT1 in a more
fundamental way: The descriptive framework allows us to consider the possibility that
the cover story manipulation also affects the choice of likelihood function. As discussed
previously, there is no reason why the prior is the only way people might change their
behavior in response to a change in cover story. People may simply be more distrustful of
evidence in the psychokinesis condition, leading to a shift in the likelihood as well as the
prior (e.g. Welsh & Navarro, 2012). In fact, when we investigate this with the descriptive
model, it is precisely what we find: In both conditions participants tend to be conservative,
downgrading the evidentiary value of an observation relative to the behavior of the optimal
model. In the genetics condition the average subjective value of an observations is inferred
to be 43% of that assumed by the original Bayesian analysis (i.e., average θ = .43), with a
95% credible interval of [.33, .53]. In the psychokinesis condition this drops to 23% (95%
credible interval: [.16, .33]). As before, the disjoint credible intervals imply strong evidence
for an effect. The individual subject distributions are plotted in Figure 6.

Discussion

The original paper by GT1 develops an elegant Bayesian theory about how people
integrate prior knowledge with statistical evidence in order to discriminate mere coincidences
from meaningful discoveries, one that is not restricted to the particular special case that
we reanalyze here. There is much to like about the theory, not least of which is the
demonstration that people do integrate prior knowledge with statistical evidence when
evaluating data. Even so, the original rational analysis makes theoretical claims that go
beyond the assertion that people integrate background knowledge with statistical evidence:
GT1 claim that the manner in which people do so is “appropriate”, and that the only source
of “irrationality” that people bring to these tasks is via miscalibrated priors. In retrospect it
appears that these claims are not justified when we look at individual subject data. Absent
any compelling justification why people ought to have used likelihoods that no statistician
would ever apply to the results of a genetic engineering study, it is not at all clear that
we should conclude that people integrate prior knowledge with statistical evidence in an
appropriate fashion, much less an optimal one. Normative claims about human cognition
do not seem to be licensed by these data.

Although it turns out that people’s behavior systematically deviates from the
normative standard set by the optimal Bayesian model, those deviations turn out to be
interesting in a way that is naturally captured by the descriptive Bayesian model. In other
words, the successes of the descriptive model go beyond mere data fitting: At the end of
our analysis we arrived at a nuanced psychological understanding of the task that was not
possible with the optimal model alone. As experimenters, we did not know a priori whether
different likelihood functions would be needed to capture individual differences in human
judgments, but we were able to learn the answer from participant responses (they are). We
did not know if individual subjects would be consistent with our model (mostly yes), nor
whether they would be consistent with the original model (sometimes yes). We suspected
that background knowledge would affect people’s prior biases (it did), but we did not know
if it would also shape people’s willingness to have those initial beliefs modified by evidence
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(it did). Overall, the descriptive approach yields a more detailed and nuanced description of
how people evaluate evidence. We can no longer conclude, as did GT1, that people reason
optimally but bring different priors to different situations; it now appears that people not
only have different pre-existing beliefs, but they also update their beliefs conservatively
(and that the extent of this conservatism is sensitive to the situation). This finding opens
up many psychologically interesting questions about why and when people do (or should)
conservatively update their beliefs—questions that are not easily explored with a rational
Bayesian analysis.

As a final point, it is important to clarify that we are not claiming that GT1 simply
failed to look at individual differences. Rather, we argue that focusing on questions about
optimality tends to discourage researchers from reporting or discussing them. When people
differ in substantive ways from one another, it is always possible to imagine that each
person is responding in a fashion that is optimal conditional on the particular experiences
a person has had, but it is very difficult to provide evidence for such a claim.8 Indeed, if
the researcher’s theory supplies only a single notion of optimality, then the mere existence
of individual differences is at odds with the claim that human behavior on the task is
optimal. As a consequence, while it is not impossible to reconcile individual differences
with an optimality claim, in practice it can be awkward to do so. As such Bayesian
optimal modeling imposes a theoretical straightjacket that discourages consideration of
individual differences. By making the theoretical shift to a descriptive Bayesian approach,
the exploration of individual differences becomes possible because the constraints imposed
by claims of optimality are removed. Taking these various considerations together, it is
clear that in this instance a descriptive approach to Bayesian cognitive modelling provides
a better account of human performance than an optimal model, and sheds more light on
how people solve the underlying inference problem.

Case study 2: Using descriptive models to complement optimal ones

The previous case study presented a situation in which an optimal Bayesian model
a descriptive model ended up in conflict: The optimal model was inconsistent with the
empirical data, and it was the descriptive model that shed light on how people approached
the task. This is perhaps to be expected whenever human cognition genuinely departs from
a normative standard. However, the interaction between these two perspectives need not
always be antagonistic, and our second case study illustrates a situation where a descriptive
Bayesian approach is complementary to the optimal Bayesian approach, and ultimately
reinforces the conclusions that an optimal model produces.

8It is also worth noting that one could apply a notion of constrained optimality to look at individual
differences—but only to the extent that those individual differences can be tied to the constraints. For
instance, if researchers were trying to argue that are optimal on some task conditional on their limited
memory, it would be natural to measure people’s memory and determine if differences in performance on
that task were related to their memory capacity. But GT1 were not making any claims like this; they were
investigating the issue of whether people in general were optimal on this task—and with that viewpoint, it
was natural to not even think of investigating individual differences.
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Optimal predictions in everyday cognition

Our second case study focuses on work by Griffiths and Tenenbaum (2006, henceforth
GT2) focusing on the question of whether human predictions in very simple inductive
problems are genuinely optimal. To investigate this question, they gave people problems
similar to the following one:

If you were assessing the prospects of a 60-year-old man, how much longer would
you expect him to live?

This problem can be characterized as form of Bayesian inference in which it is possible to
rely on external sources to specify a veridical prior. For instance, actuarial statistics can
be consulted to estimate P (t), the prior probability that a randomly selected (American)
man will die at age t; all of the problems considered by GT2 (movie grosses, poem lengths
etc) had this property. Moreover, the evidence x specified in the problem (i.e., the fact
that this man has reached age 60) is not especially complicated, and suggests a very simple
likelihood function. If the learner assumes that they have encountered this person at a
randomly chosen moment in their life, then the probability that a person who lives to age
t will be encountered at age x is simply

P (x | t) =
{

1/t if x ≤ t
0 otherwise (7)

To determine the eventual lifespan for someone observed to be alive at age x, we apply
Bayes’ rule. The posterior probability that the person lives to age t is given by P (t | x) ∝
P (x | t)P (t). As noted by GT2, the optimal answer to the prediction problem is to report
the median of the posterior distribution over t, but in light of more recent work arguing
that people can make near-optimal decisions by taking a small number of samples from the
posterior (Vul et al., 2014) we use a probabilistic version of the GT2 model that generates
responses by sampling t from the posterior P (t | x).

The critical theoretical point that GT2 made was that this model can be used as a
genuine normative standard for human cognition, since it uses veridical priors and well-
motivated likelihoods. It therefore involves no free parameters that need to be estimated
from the data. To the extent that human performance matches the predictions of this
model, a strong case can be made that it is genuinely optimal.

A descriptive but non-optimal Bayesian model

The model proposed by GT2 represents one of the best developed examples of a
Bayesian model that genuinely meets the requirements of an optimal model. It is therefore
worth contrasting the GT2 model with a descriptive Bayesian model that explicitly avoids
making any claim that people have veridical prior knowledge and instead aims merely to
describe the empirical data. As with our previous example, we start from a position of
researcher uncertainty: Instead of assuming that people’s priors match the veridical ones,
we treat people’s subjective priors as unknown variables and seek to infer them from the
empirical data.

There are three attractive features to this approach. First, it seems plausible to think
that at least some participants will have little knowledge of the statistics of the environment,
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and when asked to solve a prediction problem they will substitute some other distribution
P (t) in place of the true one. Second, by specifying the model in a less restrictive way, we
can use it as a tool to learn something the prior distributions people use to solve simple
inference problems. Third, it expands the range of prediction problems that we can present
to participants: There are many problems for which people seem to be able to give sensible
sounding answers where no veridical prior distribution exists (e.g., how long will people live
in the year 2100?). By treating the participant prior as a quantity to be learned rather than
pre-specified by the researcher, we can use the Bayesian model as a tool to explore people’s
beliefs about these scenarios.

The model we use is identical to the probabilistic version of the optimal predictions
model described above in all respects except for the prior.9 In the original GT2 model, the
prior was constrained to be veridical. In the descriptive version we adopt an exploratory,
data driven approach and consider a broad family of possible prior distributions that people
might have relied upon when making judgments. There are a number of ways that we could
go about this. For instance, we could adopt a nonparametric Bayesian approach (e.g.,
Griffiths, Sanborn, Canini, & Navarro, 2008) and specify a very broad family of priors.
However, as GT2 noted, for most of the problems of interest the veridical prior could
be captured by a normal, Erlang or Pareto distribution. With that in mind our model
assumes that for any given prediction problem, each participants relies on one of these
three distributions. 10 Unlike GT2, we do not pre-specify which distributions are used to
solve which problems, nor do we make strong assumptions about the parameter values that
describe the priors. The technical details are discussed in Appendix B. What is important
is that (a) our model does not assume that people make optimal predictions because it
does not assume that people rely on veridical priors and (b) our model is more statistically
complex than the one developed by GT2 because there are many possible priors that are
consistent with this model. Because we did not place very strong constraints on what priors
participants might have used, any analyses conducted using it are more exploratory and
data-driven.

A non-Bayesian alternative: the Mink heuristic

So far we have considered two Bayesian models: the optimal predictions model of
GT2 and our descriptive alternative. However there are of course other possibilities. One

9We could also naturally perform inference over people’s likelihoods as we did in case study 1, and a full
descriptive Bayesian model would do so. We choose not to here for expository purposes, since the purpose
of the case study is to focus on comparing models and demonstrating the utility of making inferences about
the priors specifically.

10By limiting the space of priors in our model to normal, Erlang, and Pareto we are bringing in our priors
(as researchers) about the family of distributions that describe people’s priors based on what we previously
learned in GT2. This allows us to do a more constrained learning about people’s priors and serves to
simplify our analysis somewhat. As mentioned in the main text, we could have used a much more flexible
nonparametric prior but this would have reflected a researcher prior suggesting that people’s knowledge
about events was equally likely to take any number of more complex forms. A case could be made for this
more flexible approach — particularly if we had included other phenomena such as GT2’s cake baking times
which are multimodal. For our purposes, however, we chose a more constrained model because it still allowed
us to answer the psychological questions of interest while remaining relatively simple to understand — the
nonparametric approach would introduce a level of technical complexity to our model that would distract
from the important points of the case study.
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such possibility is the Mink heuristic, which was proposed by Mozer et al. (2008) as an
alternative non-Bayesian account of the prediction task. The model assumes that people not
only have limited knowledge (analogous to the subjective priors of our descriptive model).
It also assumes that people apply non-Bayesian decision rules to make their judgments.
Specifically, it proposes that for each phenomenon, people have a small number (k) of
exemplars in memory. The idea is that these exemplars represent a set of recalled events
that are sampled from the prior, but this impoverished representation is the only knowledge
that people have to guide their judgments.

The Mink model also specifies a deterministic response rule for predicting the extent
or duration of an event: respond with the smallest of the k exemplars that is larger than
the probe value x. If the probe is larger than all of the exemplars, then respond with a
value that is larger than t by a constant proportion g. If e denotes the values of the set of
stored examples, then the Mink model predicts that

t =
{
x(1 + g) if x > max e
min {y ∈ e | y > x} otherwise (8)

In our applications, we follow Mozer et al. (2008) and adopt the version of the model in which
the exemplar set e consists of only k = 2 items sampled from the true prior distribution.
However, in order to make the model comparable to the two Bayesian models described
above (both of which assume people respond probabilistically) we developed a variant of
the model that we refer to as the “Noisy Mink ” model that introduces response error and
also assumes that the exemplars e and multiplier g are unknown quantities to be inferred
from data (rather than a value fixed at 3). Again, the technical details are discussed in
Appendix B.

Replicating and extending the GT2 study

To compare the three models we ran a replication and extension of the GT2 study,
in which we asked participants the same questions used in the GT2 study as well as a
counterfactual question for which no true environmental statistics exist. Participants were
25 undergraduates from the University of California, Irvine who were compensated with
partial course credit. Questions were presented to participants through a web-based survey.
There were eight different question types and five variations of each question; each person
saw all 40 questions in a random order. Each variation corresponded to one of five possible
values of x. Only one question was presented on-screen at a time and participants entered
their answer in a text-entry box before moving to the next question.

The survey instructions and seven of the questions were identical to those used by
GT2. For the unabbreviated questions and survey instructions, refer to Griffiths and
Tenenbaum (2006). Below are abbreviated examples of each of the questions with all five
of the possible values included:

Lifespans: Predict the age a man will live to if he is currently (18, 39, 61, 83, 96)
years old.

Movie grosses: Predict what the total box-office intake for a movie that has taken in
($1, $6, $10, $40, $100) million so far.
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Movie runtimes: Predict the length of a movie that has already been playing for (30,
60, 80, 95, 110) minutes.

Poem lengths: Predict the total length of a poem from which you were just quoted line
(2, 5, 12, 32, 67).

Pharaohs’ reigns: Predict the total time a pharaoh will be in power if he had already
reigned for (1, 3, 7,11, 23) years in 4000 BC.

Representatives’ terms: Predict the total years that a (1, 3, 7, 15, 31) year member
of the U.S. House will serve.

Waiting times: Predict how long you will be on hold if you have already been holding
on the phone for (1, 3, 7, 11, 23) minutes.

The counterfactual question that was not part of GT2’s study was:

Future lifespans: Suppose it is the year 2075 and medical science has advanced
significantly. You meet a man that is (18, 39, 61, 83, 96) years old. To what age will
this man live?

Responses from each participant were considered for exclusion based on each question type:
If any of a person’s responses for one of the eight question types were below the value of
x that was presented in the question, then all five of that participant’s responses for that
question type were excluded for analysis. However, their responses for other question types
were still included. The number of participants that were included in the analysis for each
question type were: 24 for life spans; 23 for box office intake; 23 for movie duration; 25 for
poem lengths; 24 for pharaohs’ reigns; 20 for U.S. representatives’ terms; and 25 for future
lifespans.

Results

Descriptive adequacy. When evaluating the models, a common approach is to
plot model predictions against human data and assess whether the model captures the
qualitative pattern of human responses. A model that cannot reproduce the basic patterns
observed in empirical data can be ruled out as a plausible theory of human behavior.
However, as shown in Figure 7, all three models meet this basic criterion of descriptive
adequacy. To determine which model fits best, we follow Mozer et al. (2008) and use the
normalized root mean squared error (NRMSE) between the median predictions of each
model and the median human responses. The model fits are reported in Table 1 and agree
with the visual inspection: The Noisy Mink model fits the data better than either of the
Bayesian models, although all fit reasonably well.

Generalizability to new data. The problem with using descriptive adequacy as
the sole measure of model performance is that it is unable to detect overly elaborate models
(e.g., I. J. Myung, 2000). Attempts to correct for model complexity by counting the number
of free parameters such as AIC or BIC improve on this a little, but not much. The optimal
predictions model produces parameter-free predictions, the Noisy Mink model uses four
parameters, and the descriptive Bayesian model uses five. If model evaluations could be
safely made by looking only at the number of parameters and the goodness of the data
fit, we ought to be able to safely rule out the descriptive Bayesian model: it has more
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Figure 7 . Replication of the optimal predictions study from GT2. Square markers plot the
median empirical response to every question, with error bars plotting bootstrapped 95%
confidence intervals. The dashed lines show the posterior median value of t predicted using
the optimal predictions model, solid lines show the median posterior predictive responses
from the Noisy Mink model, and the dotted lines represent the median posterior predictive
responses by the data-driven Bayesian model. All models show good qualitative predictions,
with the Noisy Mink fitting the data better than the two Bayesian models.

Table 1
Quantitative measures of model fit to the replication of GT2, using
normalized root mean squared error (NRMSE). The Noisy Mink model
consistently has the lowest NRMSE scores: assessed solely in terms
of the ability to mimic the empirical data it outperforms both of the
Bayesian models.

NRMSE
Question optimal Bayes Noisy Mink descriptive Bayes
Movie grosses 0.20 0.15 0.46
Poem lengths 0.55 0.10 0.19
Lifespans 0.20 0.10 0.66
Pharaohs’ reigns 0.47 0.63 0.29
Movie runtimes 0.78 0.61 0.92
Representatives 0.24 0.10 0.08
Note. The scores with the best results for each question are shown in bold.
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parameters than Noisy Mink and yet produces a worse fit. As it turns out, this intuition is
wrong.

To understand why this intuition is incorrect, we consider an alternate method of
quantitative comparison known as cross-validation—a standard technique from the model
selection literature (Browne, 2000)—although other options are available such as Bayes
factors (Wasserman, 2000) or approaches specifically geared towards evaluating optimal
models using information theory (Shen & Ma, 2016). The central goal in model selection is
generally assumed to be to pick the model that will make the best predictions about out-
of-sample data, and cross-validation aims to approximate this by estimating parameters on
one subset of the empirical data and evaluating performance by measuring how well the
model fits capture the held-out data.

To see how all three models generalize to new data, we trained using only a subset
of our empirical data, and then tested the models by assessing how well the inferred priors
allowed the models to generalize to the withheld data. Specifically, we used k-fold cross
validation with k = 25, which involves partitioning the original data set into 25 similarly-
sized sub-samples11 and treating each sample once as the unobserved data and the other
24 as the training data. This provides a robust estimate of how each model generalizes to
unobserved data.

The results are shown in Table 2. The descriptive Bayesian model has the best overall
performance, outperforming the optimal Bayesian model and Noisy Mink in every case.
Moreover, although the qualitative comparison in the previous section suggested that Noisy
Mink provided a reasonable fit to the data, it performed very poorly in cross validation, far
worse than either of the Bayesian models. Despite the apparent simplicity of the Noisy Mink
heuristic, it actually corresponds to an overly flexible statistical model for the data. The
Noisy Mink model overfits the training data and generalizes poorly to new observations. In
contrast, the apparent complexity of the optimal Bayesian model as a psychological theory
hides the fact that when viewed as a statistical model for empirical data it is insufficiently
flexible, and ends up underfitting the data. The descriptive Bayesian model outperforms
them both.

Comparing subjective priors to optimal ones. So far we have seen that,
although the descriptive Bayesian framework led us to specify a flexible, statistically
complex model, this complexity was justified insofar as this model generalizes to new data
better than either the original Bayesian model or the Noisy Mink heuristic. This suggests
that there are sound statistical justifications for preferring the descriptive Bayesian model.

However, from a theoretical and psychological perspective, it is not sufficient merely
to show that a model is statistically superior to its competitors: A good model should also
explain why people behave the way they do. In this respect it is the contrast between the
optimal priors in the GT2 model and the inferred priors extracted by our model that is
especially useful. This comparison is shown in Figure 8, and is instructive both in terms
of the similarities and the differences in reveals. Inspection of this figure suggests that
although people’s subjective priors are similar to the true environmental distributions, there

11For each repetition of the process, between 3 and 5 data points were withheld, with a maximum of one
response from a single individual per repetition. The repetitions were balanced so that each data point was
withheld exactly once in the entire cross-validation procedure.
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Table 2
Cross validation model comparisons. In all domains, the data-driven
Bayesian model generalizes to new data better than either of the other
two models.

Cross validation score
optimal Bayes descriptive Bayes Noisy Mink

Movie grosses -713 -150 -100886
Poem lengths -118 -116 -3762
Lifespans -526 -187 -2327
Pharaohs’ reigns -132 -103 -2380
Movie runtimes -258 -153 -6786
Representatives -174 -97 -511
Future lifespans - -188 -
Waiting times - -91 -
Average -320 -135 -19442
Note. Higher scores (lower absolute values) indicate better generalization.
The best score in each row is shown in bold. The bottom row shows the
average score for each model across question types. In order to be comparable
to the other models, the average score for the data driven Bayesian model is
based on the first six rows only.

are systematic deviations in most cases: People’s prior expectations about movie run times
and representative term lengths both seem to be too long, and their beliefs about lifespan
distributions seem to underestimate infant and child mortality rates.12 The distribution of
future lifespans does not have a veridical value, but the descriptive model infers something
that seems sensible: It has a similar form to the subjective prior for actual life spans, but
is shifted to the right with an average life span of 105. That said, in spite of the minor
differences the overall degree of agreement between the two Bayesian models is remarkable,
especially given that the built in assumptions about participant priors in the descriptive
model were fairly weak.

Discussion

Whereas the take-home point from the first case study was that descriptive Bayesian
models can be psychologically revealing even when optimal Bayesian models are wrong, the
second case study tells a very different story, one in which the exploratory and data-driven
analysis based on descriptive Bayesian models complements the original optimal Bayesian
model. Although the optimal predictions model from GT2 is not the best performing model
either in terms of the data fit (Noisy Mink is best) or generalizability (descriptive Bayes is
best), we found it almost impossible avoid the conclusion that the original rational analysis
was remarkably successful. It is true that the estimated priors plotted in Figure 8 do show
systematic differences from the optimal ones, which explains why the optimal predictions

12Note that the latter may be partly due to the limitations of the experimental design and the model,
given that the model does not make it easy to estimate negatively skewed distributions and the experiment
does not ask questions that tease apart people’s beliefs about infant mortality.
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Figure 8 . Estimates of people’s subjective prior beliefs (histograms) compared with the
environmental distributions collected by GT2 (lines). In most cases the estimates are similar
to the true distributions, although people often underestimate the frequency of events at
lower numbers. There was no environmental data available for future lifespans and waiting
times.

model does not win in the model selection exercise. These deviations, which we would not
have known about without the descriptive Bayesian model, are cognitively interesting; but
even so, the similarities between the estimated priors and the veridical ones are much more
striking than the differences.

In this instance, the descriptive Bayesian approach reinforces the conclusions from
the original rational analysis. Indeed, because of the descriptive Bayesian approach, we feel
far more confident in drawing conclusions about (near-)optimality than we did based on the
optimal model only: The descriptive model was afforded the freedom to choose whatever
prior distribution (from a very broad family) best accommodated the empirical data, but
the end result was a collection priors that are only very slightly different to the veridical
ones used by GT2. In our view this provides much stronger evidence for optimality than
the original analysis, which showed a qualitative agreement between the optimal model and
empiricial data but did not include any formal model comparisons.

When contrasting the descriptive and optimal Bayesian approaches, it is worth noting
that any choices made by researchers are going to incorporate biases of some sort. After all,
we have to make some assumptions about the family of priors people might have, or the type
of likelihood functions, and so forth. For example, the assumptions that we built in to the
descriptive model were shaped by previous research and our own goals as researchers. We
are not arguing that the descriptive approach cannot fall prey to these problems; they are an
inevitable part of doing science within any modeling framework. However, the descriptive
Bayesian approach (a) allows us to build in fewer assumptions—e.g. a family of distributions
allows for many more possibilities than a single one—and (b) more importantly, does not
require that those assumptions be justified on the basis of optimality. GT2 were forced by
the straightjacket of optimal Bayesian modeling to have to claim that the distributions they
chose were justified on the basis that they were well-matched to the real world. We were
forced to make no such claim; we simply chose a family of distributions based on what was
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sensible and then observed which of those best fit the pattern of human performance.
Of course, some cautionary notes should be attached to these results. For instance,

to avoid covering the same ground as the first case study we have not developed a Bayesian
model that accounts for individual differences. Similarly, our discussion of the Noisy Mink
model in this section has been more cursory than the model deserves purely because
our focus is on different kinds of Bayesian models. As an example, our data analysis
automatically produces estimates of the multiplier parameter g as well as specific exemplars
that the Noisy Mink model uses to generate responses. Other variations on Noisy Mink
might perform better, and we do not think strong conclusions about the relative merits of
Bayesian and heuristic models should be drawn from these analyses. Even so, the model
comparisons here highlight the manner in which it is possible to make sensible comparisons
between optimal Bayesian models, non-optimal heuristic models, and descriptive Bayesian
models, so long as good statistical procedures are used to guide the comparison.

Case study 3: A descriptive approach can be relevant even when questions
about optimality are not

The first two case studies differed in several respects and led us to different theoretical
conclusions about the optimality of human reasoning in the two problems considered, but
one attribute they share is the very fact that optimal models and descriptive models are
both applicable to the problem. This is not always the case. In many situations a Bayesian
model serves a useful purpose even when no clear notion of “optimality” seems to apply.
Probabilistic topic models (Steyvers & Griffiths, 2007), for instance, are often used as tools
for exploring human semantic knowledge, but the scientific utility of these models is not
generally taken to justify any claim about human optimality. In such situations it may be
convenient to use a Bayesian model, but the primary intention is to use the model as a tool.
Applying a Bayesian model in this fashion aligns naturally with the descriptive Bayesian
framework, because the researcher merely claims that the Bayesian model produces similar
behavior to humans and does not use a good model fit to justify an optimality claim.

Our third case study presents one such example, using an existing Bayesian model
of inductive generalization as a tool to explore the hypotheses that might guide people’s
intuitions in simple reasoning problems. The goal here is to highlight the fact that very
often researchers can use descriptive Bayesian models productively, even in situations where
questions about the “optimality” of human cognition do not seem especially relevant to the
research question.

Inductive generalization as Bayesian reasoning

The Bayesian theory of generalization developed by Tenenbaum and Griffiths (2001)
(henceforth TG1) formalized the problem of inductive generalization in the following way.
Suppose a learner is told that some set of entities X = {x1, ..., xn} all possess some property
P , and is asked to infer whether a new entity y also shares that property. Suppose also
that the learner is equipped with some hypothesis space H that consists of all hypotheses
h that the learner considers for the extension of the property P , and a prior P (h) over
these hypotheses that describes how plausible the learner considers each hypothesis to be
before any data are observed. When told that the entities X possess property P , the learner
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updates their beliefs via Bayes’ rule:

P (h|X) ∝ P (h)
∏

i

P (xi|h)

where P (xi|h) describes the probability that the entity xi would be observed to have
property P if hypothesis h describes the true extension of that property. Given this posterior
distribution the probability that the property extends to the novel entity y is computed by
summing the posterior probabilities of all hypotheses h that assert that y possesses P :

P (y | X) =
∑

h:y∈h

P (h | X). (9)

The central feature of the Bayesian generalization model developed by TG1 is the choice
of likelihood function, which they referred to as strong sampling, and assumes that the
observed entities are sampled from the set of entities that possess property P . In particular,
if observations are sampled randomly from this set, then the probability of observing any
specific item x given that the true extension of P is described by hypothesis h is given by

P (x | h) =


1
|h|

if x ∈ h,

0 otherwise.
(10)

where |h| is the size of the hypothesis h, and for hypotheses h that consist of only a finite
number of entities the size of the hypothesis corresponds to the number of entities that it
contains.

When introducing the model, TG1 noted that this strong sampling model is the
central feature of the theory. There are other Bayesian induction models that rely on
different sampling models (Heit, 1998; Voorspoels, Navarro, Perfors, Ransom, & Storms,
2015; Navarro et al., 2012) and there are empirical results suggesting that people can change
their sampling assumptions to suit the context (Ransom et al., in press; Voorspoels et al.,
2015; Gweon, Tenenbaum, & Schulz, 2010). Nevertheless, there is considerable evidence
that it works well as a default model for inductive generalization (Sanjana & Tenenbaum,
2003).

The hypothesis space problem

The biggest practical difficulty that arises when applying the Bayesian generalization
model is the fact that—although it provides an unambiguous specification of the likelihood
function P (x|h)—it places few if any constraints on the choice of hypothesis space H
or the prior distribution P (h) defined over that space. The original work by Shepard
(1987) assumed that hypotheses corresponded to connected regions within a suitably
formulated psychological space (and estimated by multidimensional scaling or similar
methods: Torgerson, 1958; Borg & Groenen, 2005). However, TG1 proposed that the
Bayesian generalization model could be applied more widely than this, including in cases
where the stimuli are defined in terms of a set of discrete features (estimated using additive
clustering or similar methods: Shepard & Arabie, 1979; Lee, 2002; Navarro & Griffiths,
2008).
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This extension of the model is one of the more innovative elements to the TG1 work,
but introduces a problem for the researcher. If the goal is to study how people generalize
from stimuli, what hypothesis space should we assume they use to guide their inferences
and what priors over those hypotheses are sensible? The original TG1 paper notes this
issue, but does not propose a solution. In applications of the model researchers have tended
to fall back on the traditional solution of trying to infer mental representations (and by
extension hypothesis spaces) from a set of similarity judgments. For instance, Sanjana and
Tenenbaum (2003) used a hierarchical clustering method to infer a taxonomic tree for a
set of animals, whereas Ransom et al. (in press) used a variation of additive clustering
to infer a set of hypotheses that allowed for cross-cutting categories. In both cases, the
authors relied heavily on the assumption that a set of similarity judgments produced by
different participants in a different experiment can be relied upon to constrain the Bayesian
generalization model.

An alternative approach to the problem is to estimate a hypothesis space H from
the generalization judgments themselves. Multidimensional scaling and additive clustering
are statistical techniques that rely upon psychological theories of similarity judgment (e.g.,
geometric similarity models, feature contrast models) to provide the link between empirical
data and the inferred mental representation. However, if the goal is to learn something
about the hypotheses that constrain people’s generalizations, it seems to make more sense
to use a psychological theory of generalization to do to the work.

Experiment

The data for this case study come from a property induction task (e.g., Osherson,
Smith, Wilkie, Lopez, & Shafir, 1990). In it, participants are presented with one or more
examples that share a novel property and are then asked to rate the probability that
additional exemplars also possess that property. Data were collected from 762 workers
on Amazon Mechanical Turk who were paid $0.50 for completing the 10-minute study.
After a pretest designed to ensure that people understood the task, they were given the
following question:

In the past, scientists discovered that all A have an enzyme called Enzyme-Q.
What is the probability that each of the following animals also have Enzyme-Q?

The known exemplar A was one of the following 20 mammals: bats, beavers, chimps,
cows, dolphins, elephants, gorillas, horses, kangaroos, koalas, mice, pandas,
polar bears, rabbits, rhinos, seals, squirrels, tigers, whales, or wolves. People
were asked to give probability judgments for all 20 the mammals by moving a slider between
0% and 100%. After providing probability judgments for all of the mammals, all of the
sliders were reset to 0% and people were given the following additional information:

Later, scientists discovered that in addition to A, all B also have Enzyme-
Q. Given this new information, what is the probability that each animal has
Enzyme-Q?

The first exemplar A remained unchanged, and the second exemplar B was one of the
remaining mammals other than A. Trials were balanced so that each of the 190 possible
combinations of two mammals occurred approximately four times across all participants.
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Results

We excluded from analysis 175 participants who either failed to follow the instructions
on the pretest, or did not rate mammals as having a property with 100% certainty when
they were told the mammal had that property in the instructions. Results are based on
analysis of the remaining 587 participants.

Human generalization data. Representative generalization patterns from human
participants are shown in Figure 9, and seem very sensible. When told that cows have
Enzyme-Q people are most willing to extend that property to horses (panel a) and vice
versa (panel b). When told that Enzyme-Q is possessed by both cows and horses, people
tended to extend the property far more widely (panel c): In this instance, our participants
showed the premise monotonicity effect in which adding more positive examples causes
people to generalize more widely. However, in other instances people showed the opposite
premise non-monotonicity effect. For instance, compare the generalization gradients from
dolphins (panel d) to those from both dolphins and seals (panel e). The addition of
the second exemplar increases the probability of some items (e.g., whales shows premise
monotonicity in this case) but decreases the probability of others (e.g., bats shows non-
monotonicity).

This pattern, in which some generalizations show monotonicity effects and others non-
monotonicity is generally explained by noting that some pairs of premise items tend to “call
attention” to a specific category. Adding seals to dolphins strongly suggests that the true
extension of the property is marine mammals and so the probability that whales possess
the property increases, and the probability hat bats do so decreases. Moreover, when
“given” the right set of categories upon which to base its inductive inferences, Bayesian
generalization models capture this pattern perfectly well (e.g., Ransom et al., in press).
However, this raises the question: How do we know which categories people people perceive
to be relevant to the inductive generalization problem? It seems obvious that when reasoning
about dolphins and whales, the category of marine mammals is relevant. This would
explain the pattern of generalizations in panels (d)-(f) of Figure 9. Yet one might also have
made the case that farm animals or ungulants might be perceived as especially relevant
when reasoning about cows or horses, but when we compare panel (c) to panels (a) and
(b) there is very little evidence for any non-monotonic inferences.

Inferring a hypothesis space. Given the above, how does the researcher work
out which categories contributed to the learner’s hypothesis space? This seems to be a
natural context to apply probabilistic models: The Bayesian generalization model from TG1
supplies a theory that says, given this hypothesis space H and that prior P (h) defined over
it, then people should be expected to make these generalizations. We can use statistical
methods to invert this: If we assume people produced those generalizations using this
psychological model, what hypothesis space is required to support it? However, although the
Bayesian framework is ideally suited to exactly this kind of work (e.g., Navarro & Griffiths,
2008; Kemp & Tenenbaum, 2008), it is not at all clear how any notion of optimality is
relevant to this sort of problem. If we use the generalization model to infer a hypothesis
space H, does that mean that it is “rational” to use H? Are we committed to a claim that
people were reasoning rationally given those hypotheses? We are not at all convinced that
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Figure 9 . Example generalization gradients produced by human participants (bars)
compared to those estimated with the help of the Bayesian generalization model (solid
lines). In each case, the title of the plot indicates which item(s) were known to possess
Enzyme-Q, and the generalization targets are arranged in order of decreasing (human)
generalization probability.
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either of these are true. Nevertheless, the underlying descriptive goal is an intriguing one:
Can we use the TG1 model as a tool to learn something about the mental representations
and hypotheses that people use to guide their generalizations? Bayesian optimality is quite
irrelevant to this goal, but Bayesian description is very relevant indeed.

Our approach is loosely based on the additive clustering model for extracting discrete
categories from similarity judgments (Shepard & Arabie, 1979) and adapted to the inductive
generalization context using the model from TG1. We assume that the “base” hypothesis
space H consists of a set of categories that can be described by the binary matrix C such
that cik = 1 if the i-th item belongs to the k-th category, and cik = 0 if it does not. Some
of the categories are fixed a priori: We assume that there exists a “singleton” category for
each animal (e.g., one possibility is that the property holds for dolphins only), and we
assume that there exists a “universal” category (i.e., the property is true for all mammals).
We impose no other a priori constraints on the structure of the category matrix C.

In order to construct the generalization probabilities for the Bayesian model, we
follow Navarro et al. (2012) in allowing the model to learn the extent to which people
use strong sampling or weak sampling, indexed using a single parameter θ (where θ = 0
implies weak sampling, and θ = 1 implies strong sampling). Similarly, we follow Sanjana
and Tenenbaum (2003) in allowing composite hypothesis spaces in which the property in
question might be possessed by two of the categories in C.13 The model includes a free
parameter γ corresponding to the relative weight given to simple hypotheses where the
property is assumed to be a characteristic of a single category, versus composite ones in
which it is assumed to be a property of multiple categories. When γ = 0 all generalizations
from multiple items rely on simple hypotheses only, whereas setting γ = 1 produces
generalizations from composite hypotheses. The model is described in detail in Appendix C,
along with details of how we estimate the category assignment matrix C, the prior weights
assigned to the categories, and the free parameters θ and γ.

Applying the model. The hypothesis space and priors that we estimated consists
of the 9 categories listed in Table 3 and visualized in Figure 10 (singleton categories
and the universal category are omitted). The categories are generally sensible ones, and
the generalization gradients that they produce are a reasonable approximation to human
generalizations (e.g., solid lines in Figure 9). Some of the categories have a taxonomic basis
(e.g., primates), others are superficial resemblances (e.g., koala are unrelated to pandas),
and others are based on ecological roles (e.g., large predator). As a consequence, the overall
structure of the categories people used to guide inductive inferences is non-hierarchical and
cross-cutting.

The parameter estimates are also revealing. The best fitting model parameters were
θ = 0.09, which suggests that people tended not to rely on a strong sampling assumption.
This pattern is consistent with earlier results (Navarro et al., 2012; Ransom et al., in press),
and indeed has some resemblances with the “conservative” inferences in our first case study.
The best fitting parameter value of γ = 0.91 indicates that people had a strong tendency
to rely on composite hypotheses when generalizing from multiple exemplars. This pattern

13There is nothing special about the number two. There is no reason why the hypothesis space could not
include a hypothesis that property P is characteristic of three or more categories. However, given that we
never presented people with more than two premise items, the limitation to two seems sensible.
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Table 3
The categories inferred using the Bayesian generalization model. Additionally, the model
included singleton categories (e.g., “just dolphins”) and the universal category (i.e., “all
mammals”).

hypothesis prior interpretation
tigers, wolves 0.089 big predators
chimps, gorillas 0.036 primates
dolphins, seals, whales 0.032 marine mammals
bats, beavers, mice, rabbits, squirrels 0.022 rodents
koalas, pandas, polar bears 0.022 “bears”
cows, elephants, horses, rhinos 0.019 hoofed animals
beavers, chimps, cows, elephants, gorillas,
horses, kangaroos, koalas, mice, pandas,
polar bears, rabbits, rhinos, squirrels,
tigers, wolves

0.012 non-marine, non-
flying mammals

chimps, cows, gorillas, horses, kangaroos,
koalas, pandas, polar bears, tigers, wolves

0.007 medium-sized
land mammals

is consistent with the approach taken by Sanjana and Tenenbaum (2003). Finally, when
evaluating the overall performance of the Bayesian model, it is interesting to compare the
model against human responses separately for those trials in which people were asked to
generalize from a single exemplar versus when they were asked to generalize from multiple
exemplars. As Figure 11 illustrates, the model does a very good job of producing human
like generalizations from a single exemplar (panel a; r = 0.93), but the fits are rather less
impressive for the trials when generalizations from two exemplars are requested (panel b;
r = 0.76), suggesting that there is still something missing from the Bayesian generalization
framework.

Discussion

The central point in our third case study is that using a Bayesian model as a
general purpose, descriptive model can be extremely useful as a tool for exploring mental
representations. Our application in this instance is a relatively simple example, and is a
natural way of extending the framework developed by TG1, but it addresses a fundamental
problem in cognitive science, by exploring the hypothesis spaces that underpin human
inductive inferences. In light of our results, the utility of Bayesian cognitive models seem
obvious. By supplying a probabilistic model for human behavior that links a hypothesis
space to an observable response, we can reverse engineer the process and seek to infer the
hypothesis space itself. Although we admit to a degree of bias ourselves, it is hard not be
interested in results suggesting that people in this task relied more heavily on composite
hypotheses and used a weak sampling model. Having found that the Bayesian model works
better at capturing generalizations from a single exemplar than from two exemplars, we
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Figure 10 . Visualization of the categories estimated from human inductive generalizations
with the assistance of a Bayesian model. As is clear from inspection, the category structure
is non-hierarchical and includes a number of cross-cutting categories.

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●
●

●
●

●
●

●

●

●
●●

●

●
●
●
●●
●

●

●

●

●
●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●
●●
●
●●●
●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

One training item (r = 0.93)

Bayesian model

H
um

an
 r

es
po

ns
es

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●●●

●

●
●●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●●●
●

●
●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●

●

●●●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●
●

●●●

●

●

●●

●
●
●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●

●

●
●
●

●

●
●

●●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●
●

●
●

●

●

●●
●
●

●

●

●

●

●●
●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●●

●●

●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●●

●

●

●

●●
●

●

●
●●
●●●

●
●

●

●

●●

●●

●

●
●

●

●

●
●
●
●

●

●
●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●

●●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●●●

●

●

●

●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●●●●●●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●

●
●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●●
●

●●●●●●●●●●●●

●●

●

●

●

●
●
●
●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●
●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●
●
●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●●●●

●
●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

Two training items, (r = 0.76)

Bayesian model

H
um

an
 r

es
po

ns
es

Figure 11 . Comparing the model predictions against human responses. The left panel
plots all 380 pairs of stimuli for which we obtained generalization judgments, and the
right panel plots all 3760 triads for which we did so. The inferred hypothesis space
produces generalization probabilities that provide a very good account of those trials in
which participants were asked to generalize from a single exemplar (the correlation on the
left panel is r = 0.93), and are adequate (r = 0.76) when predicting generalizations from
multiple items.



BAYESIAN MODELS OF COGNITION REVISITED 38

are motivated to ask why this might be so. We do not know the answer ourselves, but this
analysis opened up many useful questions for further exploration.

This case study highlights another point worth making. The descriptive Bayesian
approach might provide a partial solution to a common problem within cognitive modeling:
the fact that in some situations internal representations, like the hypotheses used by the
learner, might not always be recoverable. This occurs when the parameters of the model
(which for Bayesian models includes choices of prior and likelihood) are underconstrained by
the data (see, e.g., Mamassian & Landy, 2010). The descriptive approach, which performs
inference over possible priors and likelihoods, may help by providing researchers with some
guidance about whether these choices are reliably constrained by the data.

More importantly for the purposes of the current paper, the importance of these
findings seems to be largely unconnected to any notion of human “optimality.” Our analysis
used the TG1 model in an entirely pragmatic fashion, as a tool to help us explore people’s
hypothesis spaces and open up new questions about the inductive biases that guide inductive
reasoning. Similarly, it does not seem entirely on point to be asking whether it would be
rational for our participants to rely on the categories listed in Table 3, and thereby make
the generalizations they did. To the extent that we have any intuitions about this ourselves,
we might be tempted to suggest that people were not making good judgments: If people
really were using a bears category that lumps koalas with polar bears and pandas as
the inductive basis for making generalizations about a biological property (Enzyme-Q), one
would hope there is some deeper reason for it other than superficial resemblances.

However, this is very much besides the point: Our goal with this scenario is to
illustrate that the model serves a scientifically useful purpose when used in a purely
instrumental fashion. In this application at least, the model does not act as a vehicle for us
to justify any claim about the rationality or irrationality of human cognition. It is just a
useful tool that allows us to learn about the mind. Indeed, we suggest that Bayesian models
are often, in practice, used in exactly this fashion: Probabilistic topic models (Steyvers &
Griffiths, 2007), structure learning models (Kemp & Tenenbaum, 2008) and models for
cross-classification (Shafto, Kemp, Mansinghka, & Tenenbaum, 2011), for instance, are all
Bayesian frameworks for exploring mental representations that do not seem especially reliant
on any notion of “optimality” to advance their psychological claims. The general philosophy
of their approach fits better with the descriptive framework than the Procrustean “optimal”
framework within which they had to be forced because optimal Bayesian models were the
only game in town.

General Discussion

“When I use a word,” Humpty Dumpty said in rather a scornful tone, “it means
just what I choose it to mean—neither more nor less.”

— Lewis Carroll, Through the Looking Glass

In the final passages of a recent article, Bowers and Davis (2012b) argued that
“there is a good deal of confusion about what theoretical claims are being advanced
by Bayesian modelers” (p. 426). Although we are frequent advocates of the Bayesian
framework ourselves, we find it difficult to disagree with this aspect to their critique. As
they note, Bayesian researchers sometimes slide back and forth between making claims
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about rationality and claims about descriptive adequacy. We have argued that much
of this confusion is due to the fact that there are two distinct kinds of model that are
subsumed under the term “Bayesian.” Optimal Bayesian models can provide a normative
standard for human behavior; within that framework, researchers are obligated to provide
explicit justifications for their choices of prior and likelihood, showing that the model
solves an appropriate problem. Descriptive Bayesian models impose different obligations
on the researcher. Because the researcher has the freedom to specify whatever priors and
likelihoods they feel best instantiate their psychological theory, the behavior resulting from
the model does not warrant the label “optimal” (at least not in any more than the weak
sense implied by Dutch book arguments) and the scientific merits of the model must be
established on different grounds.

Although our case studies have tended to focus on the value of building descriptive
Bayesian models,14 we do not argue that either approach is inherently better. They simply
represent different kinds of theoretical claims and serve different goals. Each of our three
case studies brings this out in a slightly different way:

• In case study 1, we found that human judgements deviated quite sharply from the
predictions of an optimal Bayesian model, but were able to use a descriptive Bayesian
model to shed light on how people solved an inductive problem.

• In case study 2, an analysis based on a descriptive Bayesian model produce nearly
identical conclusions to one that relied on an optimal Bayesian model. Although we
found minor departures from optimality, the main message that came through is that
human cognition in this task was remarkably well-calibrated.

• Contrasting with both of the previous examples, case study 3 explored a situation
in which Bayesian cognitive models can serve a useful scientific purpose even when
claims about optimality do not seem pertinent, or at least not relevant to the research
question at hand.

These three examples are certainly not exhaustive, but we hope that they make clear that
the scientific utility of a Bayesian analysis need not be tied to any claim about the optimality
of human cognition, and that the success of a Bayesian model does not always imply that
human behaviour is especially rational in a particular task.

Much of what we have argued in this paper closely agrees with earlier work. We are
hardly the first people to suggest that it is unhelpful to equate “Bayesian” with “optimal”
(e.g. see, McKenzie, 2003), and what we have called the “descriptive view” has a good deal
in common with recent defenses of the Bayesian paradigm (Griffiths et al., 2012; Goodman
et al., 2015). Applications of Bayesian models resembling the descriptive approach have
increasingly appeared in the literature on cognition (e.g., Hemmer et al., 2014; Navarro et
al., 2012; Huszár et al., 2010) and perception (e.g., Houlsby et al., 2013; Zhang, Kwon, &
Tadin, 2013; Acerbi, Wolpert, & Vijayakumar, 2012; Battaglia, Kersten, & Schrater, 2011;
Girshick, Landy, & Simoncelli, 2011; Stocker & Simoncelli, 2006; Körding & Wolpert, 2004;
Acerbi, Ma, & Vijayakumar, 2014) with varying levels of clarity about whether or not the

14This was motivated in part by a desire to highlight the value of Bayesian models even when no strong
claim to optimality is possible.
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models were meant to be explicitly non-optimal or in what degree. Indeed, it does not seem
unreasonable to us to suggest that most Bayesian models are not intended to imply strong
claims about optimality of human cognition.

Nevertheless, our view—as Bayesians ourselves—is that if researchers in the field
are unsure as to whether and when Bayesian models are intended to justify claims about
optimality or rationality (and clearly many people are), then something has gone awry in
the way Bayesian models are promoted or designed. In our view considerable confusion
results when descriptive claims and optimality claims are conflated. If Bayesians are to
avoid contributing to this confusion we should avoid making optimality claims when none
are intended, and make sure that we make them only when they are justified.15 It is our
goal with this paper to try to avoid much of this confusion in the future—not only because
of the useful rhetorical distinction between descriptive and optimal, but also because that
rhetorical distinction corresponds to an actual modeling distinction (i.e., whether priors and
likelihoods are inferred or stipulated by the scientist). This will, we hope, lead to far less
uncertainly about what conclusions one is justified in drawing from the model.

How many different kinds of Bayesian explanation are there?

“The question is,” said Alice, “whether you can make words mean so many
different things.”

— Lewis Carroll, Through the Looking Glass

Throughout the paper we have maintained a strong binary distinction: Some Bayesian
analyses make optimality claims; others make purely descriptive claims. This clean
distinction is, of course, fiction. In reality every Bayesian model makes a slightly different
claim, and it is an oversimplificiation to reduce all this variation to a simple “optimal versus
desciptive” distinction. Notwithstanding our suggestion that even a crude binary distinction
would go a long way towards reducing the ambiguity in the literature, we recognize that
nuance is required in practice. For example, in this paper we have described both the
GT1 coincidences model (case study 1) and the GT2 optimal predictions model (case study
2) as optimal models, and we would certainly argue that stronger normative claims are
licensed by both of those models than either of the descriptive models that we built. The
GT1 and GT2 models both use likelihood functions that are justified with reference to a
statistical model for the data that a statistician would find reasonable. In that respect,
they both meet the “external criterion” standard that we have suggested is needed for the
model to count as normative. However, the optimal predictions model in GT2 uses priors
that are very explicitly grounded in the world (using actuarial statistics) whereas the GT1
model treats the prior as an unknown parameter to be estimated from data. With respect
to the likelihood function, the GT1 and GT2 models seem equally plausible as normative
standards, but with respect to the prior only the GT2 model makes an optimality claim.

15We would concede that we have ourselves been guilty of eliding this distinction in some of our own work
and, if anything, this serves to strengthen our argument in the current paper. If it is so easy for researchers
to accidentally slip into using “rational analysis” language when only a descriptive claim is intended, then
the need to have distinct nomenclature and a distinct modeling framework is even stronger than it might
otherwise appear.
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A similar story emerges when we consider the descriptive models that we built for
case studies 1 and 2. The descriptive model for the coincidences study certainly does not
merit the label “optimal” in the sense that we have been using the term. We did not provide
an external justification for why the “conservative inference” likelihood function is the right
thing for a person to use when evaluating the data, nor did we provide a strong reason
to explain why people should revise their beliefs more conservatively in the psychokinesis
scenario than in the genetic engineering context. That being said, there does seem to
be a kind of logic to it: Conservative updating makes sense when people have reasons to
distrust the data they are given (e.g., Welsh & Navarro, 2012), and it seems reasonable to
be more suspicious about a psychokinesis study than about genetics research. Therefore,
although our model development was entirely post hoc, it was not unprincipled, and the
structure of the descriptive model in case study 1 could—given more effort to externally
justify the modeling assumptions and a clearer grounding in a real world inference problem—
potentially be used as a tool to explore the rational basis of conservatism. In contrast, the
descriptive model in case study 2 does not have any comparable grounding to justify why
people’s priors should take on different specific forms. All we did was write down a broad
family of possible priors loosely motivated by the GT2 study in order to find out what prior
best matches people’s inferences.

Blurring the distinction further, there are other factors that need to be considered
when determining the extent to which any particular Bayesian model maps onto a normative
claim about human cognition. For instance, one of the reasons we chose to examine the
optimal predictions model from GT2 is that we consider it to be one of the best examples of
a model that makes a genuinely normative claim, yet even that model has some limitations.
Danks (2008) argues—compellingly, we would suggest—that a completely satisfying rational
analysis needs to do more than “merely” showing that (a) the Bayesian model solves the
correct inference problem and (b) people’s behavior matches the predictions of that model.
Rather, according to Danks (2008), a rational analysis must also show that (c) people
produce that behavior because this is the behavior that solves the correct inference problem.
Arguably, the GT2 optimal predictions model achieves (a) and (b), but not (c); and while
this does not in our view diminish the scientific contribution of the work, it again highlights
the variety of possible claims that a Bayesian analysis might correspond to.

Given these complexities it might seem that there are as many kinds of Bayesian
models as there are Bayesian models, and that any attempt to classify them is doomed to
fail. To some extent this is true, and we would concede that the binary distinction that
motivated our case studies is indeed too simple; but in practice we think that most models
could—at least approximately—be mapped onto one of the following five claims, which
correspond to five different kinds of scientific explanation more broadly:

1. Participants produce the Bayesian solution to the inference problem presented in the
task, and there is a clear causal mechanism linking the behavior to the optimality.

2. Participants produce the Bayesian solution to the inference problem presented in the
task, but a clear causal role linking the two has not been identified.

3. Participants produce the Bayesian solution to a sensible inference problem that may
differ from the one presented in the task, and there is an explanation for why people
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might apply it to this task.

4. Participants produce the Bayesian solution to a sensible inference problem, but it is
not clear why people might apply it to this task.

5. Participant behavior can be captured by a model, but that model does not map onto
any sensible inference problem.

We would argue that levels (1) and (2) both carry very strong implications of optimality
and rationality, and in these cases it seems reasonable to us that researchers would want to
emphasize the normative implications of their findings. At the other end of the spectrum,
results at level (5) clearly do not warrant any normative claim, and would probably also
not be of much scientific merit in most cases.

In the middle of the spectrum, however, a good deal of interesting variation can be
found. The distinction between (3) and (4) is a little difficult to draw cleanly, but it does
seem genuine. For example, there are a number of Bayesian analyses of hypothesis testing
problems such as the Wason selection task (e.g., Oaksford & Chater, 1994) all of which
assume that people are solving an inductive reasoning problem that seems very natural in
real life (ask good questions to learn which rules work) but differs subtly from the one that
experimenters were trying to investigate (attempt to falsify a rule). There seems to be a
clear difference between those studies and studies in which it is very clear that people are
solving the wrong problem: In those studies, the participants might be justified in choosing
to solve the more natural real-life problem, and the experimenters might be justified in
labeling this behavior “rational.”

A contrasting example is the Bayesian analysis by Yu and Cohen (2008), which
explains sequential effects in reaction times with a model that treats a purely random
binary sequence (i.e., independent Bernoulli trials with both outcomes equally likely) as if
the data arose from a time-inhomogeneous Markov chain. The resulting model is—in our
opinion—interesting and useful, but we do not think that the resulting behavior warrants
the term “rational” unless there is a good explanation given for why people should use
a time-inhomogeneous Markov chain to form expectancies about independent Bernoulli
trials. This does not seem to be an explanation on the same level as the Oaksford and
Chater (1994) analysis, and certainly is not the same kind of Bayesian model as the GT2
optimal predictions model. Critically, all of these examples are scientifically useful: they
just provide explanations on different levels.

What counts as the correct problem?

Setting the subtler points from the previous section to one side, one of the reasons
why we tend to prefer making descriptive claims rather than normative ones—while again
noting that we are not opposed to researchers wanting to make optimality claims where it is
appropriate—is that it is so often difficult to work out what the “correct” inference problem
really is. One of the major contributions of the Bayesian framework has been to revisit
many supposedly-irrational behaviors that people engage in and show that these behaviors
emerge naturally as the solution to a sensible problem, albeit not the one that researchers
originally thought they “should” be solving. The Oaksford and Chater (1994) models is one
obvious example of this, but there are many more.
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However, it is one thing to undermine claims of human irrationality, quite another
to provide a positive demonstration of rationality or optimality. Even a model that seems
to be solving the right inference problem can be very wrong in practice. To illustrate
this, consider our original discussion of the Dutch book argument, and the outcomes of the
gambling contest presented in Figure 1. In order to construct our gambling contest, we
followed much the same line of reasoning used by De Finetti (1980) and Teller (1973) to
suggest that a rational gambler should buy and sell bets based on their Bayesian beliefs. The
purpose of our original analysis was simply to highlight the limitations of the Dutch book
argument by pointing out that a Bayesian whose beliefs more closely match the true state
of the world (the veridical Bayesian) will perform better on this task than other Bayesians
who lack the same calibration. However, a deeper point can be made by adding a fourth
gambler to the problem, a non-Bayesian reasoner who brings a very different perspective
to the problem. Based on the Dutch book argument, one might think that is impossible
for such a reasoner to consistently defeat the veridical Bayesian model on this gambling
problem, since this model is not merely Bayesian but is also that Bayesian whose beliefs
are perfectly matched to the world. This need not be so.

To understand why this is the case, it is important to recognize that the veridical
Bayesian model is optimal only for the purpose of predicting the outcomes upon which the
bets are to be made. It is not optimal for making those bets in a world that has other agents.
In the framework introduced by De Finetti (1980), the “rational gambling” framework acts
as a device to map the subjective and unobservable epistemic (Bayesian) probability onto an
objective event—betting. It is useful for that purpose because people can place bets on one-
off events that do not have a frequentist interpretation, highlighting the differences between
epistemic and aleatory probabilities. However, once we start considering the real world
implications of this Bayesian-as-gambler construction, the nature of the inference problem
to be solved changes. One can be a successful gambler by predicting what outcomes will
occur in the world (e.g., which horse will win the race), or by predicting the bets that
other agents will make (e.g., perhaps too many people bet on the favorite). In other words,
gambling is as much a social inference problem as it is a prediction problem.

With that in mind, we add the following—extraordinarily lazy—non-Bayesian agent
to our simulation. This agent initially assumes both outcomes are equally likely, and offers
bets accordingly. After each round of betting, the agent inspects his or her bank balance.
If it has gone up, the agent assumes they have successfully exploited the other agents and
leaves the odds unchanged, but if it has gone down the agent moves their odds halfway
from the current value to the outcome of the last trial. This lazy tracking model does no
complicated calculations (it employs a simple win-stay lose-shift heuristic), but because the
agent pays attention to the bank balance, it is implicitly considering a social environment
as well as addressing the objective prediction problem. The results are shown in Figure 12.
The striking result is that this model is very effective at exploiting the two miscalibrated
Bayesian models, and performs at a level that is comparable (if not superior) to the veridical
Bayesian model. The veridical Bayesian model does not catch up with our lazy tracking
model until 500 bets have been made. In real life one is rarely afforded the chance to make
500 successive bets on the same outcome, and as a consequence a real world bookie might
do rather better than the supposedly veridical Bayesian.

The conclusions from the simulations in Figure 12 mirror those from the original
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Figure 12 . The gambling game from Figure 1 revisited, with a fourth non-Bayesian agent
added to the mix. Despite its reliance on a simple win-stay lose-shift heuristic, the non-
Bayesian agent is arguably the best gambler of the four.

analysis—a Bayesian learner who solves the wrong problem has precious little guarantee
of success in real life, and Dutch book arguments are a cold comfort to the exploited
Bayesian—but extends it to highlight the fact that it is not at all easy to work out what the
right problem should be. The correct solution to a prediction problem need not be the same
as the solution to the corresponding gambling problem because the social environment is
different. When making predictions one is not necessarily in competition with other agents,
but gambling typically does put one in conflict with other people, and as a consequence
the relative importance of social reasoning shifts quite dramatically. Labeling the veridical
Bayesian model as “optimal” seems reasonable for a prediction task, but the same model is
decidedly non-optimal at gambling. Of course, there is probably a Bayesian model that is
ideal for the gambling problem—one that integrates social reasoning with objective learning
in a natural fashion—and we expect that this model would outperform all four of our existing
models. However, this is beside the point. Our point here is that it is surprisingly easy to
accidentally solve the wrong problem, and as a consequence we find ourselves very cautious
about making optimality claims.

Combining Bayesian data analysis with Bayesian cognition

Although not the main focus of our discussion, one theme that has run through some of
our analysis is that it is useful to combine Bayesian models of human cognition with Bayesian
data analysis tools—an approach that has been appropriately dubbed doubly Bayesian
(Huszár et al., 2010; Hemmer et al., 2014). For example, in order to estimate individual
subject response curves in case study 1 we implemented the Bayesian cognitive model as a
parameterized model in JAGS (Plummer, 2003), and the curves reported in Figure 4 were
constructed by plotting the model predictions at the posterior mean parameters. This is
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a fairly standard way of estimating model parameters within the Bayesian data analysis
tradition (e.g., Lee & Wagenmakers, 2014). For the most part we have moved technical
details to the Appendices, in order to make the main text more readable, but it is worth
noting that much of what we are able to achieve in this paper has been because we relied
on principled tools for model fitting and model selection, which the Bayesian data analysis
approach provides.

The merits of combining a descriptive Bayesian cognitive model with a Bayesian
data analysis are considerable. In principle, sophisticated data analysis methods are not
necessary when building an optimal Bayesian model because there are no free parameters to
be estimated—at least in theory if not so much in practice. The model is the very ideal of a
scientific hypothesis because every relevant detail is specified a priori. This is a caricature
of how optimal Bayesian models are constructed in the real world, but the issue of properly
accounting for model complexity seems more important in situations where the researcher
acknowledges that he or she does not know what priors or likelihoods the participant used.

In theory, Bayesian data analysis is naturally applicable to Bayesian cognitive models:
The researcher expresses their uncertainty about the participant in the form of a researcher
prior, and uses the Bayesian cognitive model to express the researcher likelihood. All
inferences about individual participants and all model comparisons are then based on the
researcher posterior beliefs about what actually happened in the experient. This is precisely
the approach to data analysis advocated elsewhere in the methodological literature (e.g., Lee
& Wagenmakers, 2014; Lee, 2008; Wagenmakers, 2007; Kruschke, 2010), but we concede
that it poses a uniquely awkward problem when applied to Bayesian cognitive models:
The same few words (“priors”, “likelihoods”, “posteriors”, etc) become severely overloaded.
Authors must go to considerable rhetorical lengths to disambiguate between participant
priors (what subjects believe about the world) and researcher priors (what the modeler
believes about the subjects). Similarly, a participant likelihood would refer to the theory
that underpins a participant’s learning in the experiment, whereas the researcher likelihood
refers to the researcher’s theory about how participants were producing responses, and thus
corresponds to the entirety of the Bayesian cognitive model. A good deal of care is required
to clearly disambiguate between these different entities. Even so, our view is that the power
of the Bayesian data analysis framework makes it worth the effort.

Conclusions

Our goals in this paper are twofold. Most importantly, we argue that researchers
need to make a clear distinction between Bayesian models that make normative claims and
Bayesian models that make only descriptive claims. We feel that much of the confusion
in the existing literature arises because people do not make this distinction as clearly as
they should. As a secondary goal—because many researchers are unsure whether Bayesian
models are useful when normative claims are not made—we have sought to highlight some of
the types of questions and analyses that are possible while only making descriptive claims.
Descriptive Bayesian models are more modest, because they require the researcher to express
ignorance about which participant priors and participant likelihoods are involved. But it
is exactly this modesty that makes them more generally useful, because the expression of
researcher uncertainty is what allows the model to be used as a tool to guide our learning
as psychologists. Instead of having to state a priori what knowledge people should have
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(priors) or what learning rules they should use (likelihoods), we treat those quantities as
the unknowns that we seek to learn about.

Our three case studies, as simple as they are, illustrate several different ways in which
descriptive Bayesian models can be used to learn about human cognition. The value of
optimal models and normative descriptions have been debated elsewhere in the literature—
it is arguably the central issue spanning the many papers that followed from the initial
Jones and Love (2011a) critique—but in our view the question of whether psychology
needs optimal Bayesian models is very different to the question of whether descriptive
Bayesian models are useful to the field. Even the somewhat cursory applications we have
presented in this paper illustrate the usefulness of these models for addressing a wide range
of psychological questions that go beyond the narrow—albeit powerful—focus of optimal
Bayesian models.

When combined with powerful statistical tools to perform inference (e.g., Bayesian
data analysis, cross-validation, etc), we can use a flexible, descriptive Bayesian cognitive
model to explore individual differences in prior beliefs and in the willingness to have data
change those beliefs (case study 1). We can use them to learn about people’s prior beliefs
and how they compare to environmental statistics or to the performance of non-Bayesian
heuristics (case study 2). Finally, we can develop tools that allow us to learn about the
hypotheses that people rely on to guide their inferences (case study 3). Independent of the
question about whether people’s behavior is optimal, descriptive Bayesian models have an
important role to play in helping us understand this behavior—which is, of course, one of
the main goals of psychology.
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Appendix A: Details for the Bayesian gamblers problems

In the main text we describe a gambling contest to determine which of three Bayesian
agents holds “better” beliefs about a simple binary prediction task (e.g., whether the next
card drawn from a deck will be black or white). The veridical Bayesian assumes—correctly,
as it turns out—that arrivals are independent, and that there is some unknown probability
θ = P (B) with which any given card will be black. Moreover, this Bayesian decides that
they have no knowledge about θ and—again, correctly, as it turns out—places a uniform
prior over this quantity P (θ) ∝ 1. The misinformed Bayesian also assumes that outcomes
are independent, but adopts a prior that favours black P (θ) ∝ θ. Finally, the miscalibrated
Bayesian correctly adopts a uniform prior over θ but incorrectly assumes that the arrivals
will be “streaky”, with successive arrivals tending to be of the same color. Specifically, the
probability that the next card is black is judged to be (θ+1)/2 if the last card was also black,
but only θ/2 if the last card was white. Formally, this likelihood arises from a first order
Markov chain in which the marginal probability of black is fixed at θ, but the probability
that successive cards will be of different colors is only θ(1 − θ) rather than 2θ(1 − θ) as
would be expected if the outcomes were independent Bernoulli trials with probability θ.

To convert this scenario into a gambling problem we suppose that every agent offers
bets that they believe to be fair, and places a $1 bet every time another agent offers a
bet that they believe to be favorable. Given a starting stake of $100, Figure 1 tracks the
relative fortunes of all three Bayesians, averaged across 10,000 repeats of the betting game.
Critically, the game is structured to match the assumptions made by the first Bayesian:
The true probability of a black card θ is generated uniformly at random on each repeat of
the game, and the outcomes on every trial are generated independently on each trial. As
the figure illustrates, the three Bayesians perform very differently on this problem: The
misinformed Bayesian fares very poorly, and quickly loses money to the other two. The
streaky Bayesian initially does well despite the miscalibrated likelihood but the veridical
model tends to win out in the long run by capitalizing on the streaky model’s tendency to
expect too many repetitions and not enough alternations among the outcomes.

Appendix B: Details for the coincidences example

In the original binary-data model for the coincidences task presented by GT1, the
learner is told about a sample containing n binary observations, of which k are “successes”.
If the learner assumes the data represent the outcomes of n independent Bernoulli trials,
then the model described by Equations 5 and 6 results. In our “conservative” version of
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the model the learner acts as if the effective sample size consisted of only n′ observations,
where n′ ≤ n, and similarly assumes that there were only k′ succeses where k′ ≤ k. Thus
the predictions of our model can be obtained by applying Equations 5 and 6 to a smaller
sample in which k′ successes from n′ trials are observed.

To formalize this in terms of a probabilistic model, we imagine that the learner
“retains” only a subset of the original observations, where the probability that a specific
observation is retained is denoted θ. This model implies that the number of success
observations retained k′ and the number of non-success observations n′ − k′ are both
binomially distributed:

k′ ∼ Binomial(θ, k)
n′ − k′ ∼ Binomial(θ, n− k) (11)

Thus the full model has two free parameters to describe the response curve for an individual
participant: θ captures the degree of conservatism (i.e., the extent to which data causes
the learner to adjust his or her beliefs), and as per the original GT1 model, φ captures the
prior degree of belief that the learner places in the alternative hypothesis (i.e., that a real
effect exists). More precisely φ = logP (h1)/P (h0) denotes the logarithm of the prior odds
for the alternative hypothesis over the null.

The output of this model is the posterior probability P (h1|n, k, θ, φ), the probability
that the alternative hypothesis is true (according to the learner) given that observations
k out of n successes were observed, given the learner’s priors φ and likelihood θ. If we
let e = P (h1|n, k, θ, φ) denote the extent of this evidence, then we assume that the actual
response r given by the participant is equal to this evidentiary value e plus some normally
distributed error:

r ∼ Normal(e, σ2
1) (12)

In our applications we defined the researcher prior over the response variability in terms of
the precision (i.e., τ1 = 1/σ2

1) and placed a diffuse prior over it, namely a Gamma(.001, .001).
In order to specify a model that allows us to capture indvidual differences, we adopt

a hierarchical Bayesian approach. We assume that each participant has unique value of θ
and φ, where these parameters are sampled from group level distributions:

θ ∼ Beta(a, b)
φ ∼ Normal(µ, σ2

2) (13)

The researcher prior over a and b is an exponential distribution with scale parameter 1.
The prior over µ was a normal distribution with mean 0 and standard deviation 100, and
the prior over the variability parameter σ2

2 was again defined in terms of the precision,
τ2 = 1/σ2

2, where our prior over τ2 was again a Gamma(.001, .001) distribution. We assume
that different group level distributions exist for each of the cover stories. We implemented
this as a graphical model in JAGS, allowing us to estimate the posterior distribution over
θ and φ for each subject, as well as obtaining estimates of the group level parameters a, b,
µ, and σ2. It is this model reported in the main text.

Appendix C: Details for the optimal predictions example

The descriptive Bayesian model in the second case study uses the same likelihood
function as the original model from GT2, but treats the participant prior as an unknown
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variable to be inferred from the data. To that end we assume that the learner’s prior could
be a normal distribution, an erlang distribution or a pareto distribution, and place a uniform
(researcher) prior across these three possibilities:

t ∼


Normal(µ, σ) if c = 1
Erlang(β) if c = 2
Pareto(γ) if c = 3

(14)

where we (as researchers) place a uniform prior over c and diffuse priors over the parameters
for all three distributional families. Specifically our priors over the parameters are given
by µ ∼ HalfNormal(.0001) and σ ∼ Uniform(0, 1000) for the normal distribution; β ∼
Uniform(0, 1000) for the erlang model; and γ ∼ Gamma(.1, .1) for the pareto distribution.

As noted in the main text, for any specific choice of paricipant prior the Bayesian
cognitive model (both the descriptive model and the original optimal model from GT2)
produces a paricipant posterior P (t|x) corresponding to the learner’s belief about the likely
duration/extent of the unknown quantity. In order to convert this to a full probabilistic
model for the participant response r we assume that people sample the response from their
posterior distribution. We implemented this model with a custom sampler in PyMC in order
to estimate the posterior predictive estimates for the responses to each condition reported
in Figure 7, as well as for the participant priors themselves (in Figure 8).

The Noisy Mink model is probabilistic extension of the Mink heuristic. The only
difference in the new generative model is that instead of assuming that people report the
value of t that is produced by the Mink heuristic, it suggests that the participant samples
their response from a normal distribution that is centered on that value. If t∗ denotes
the value predicted by the deterministic Mink model, the Noisy Mink model predicts that
people sample from

t ∼ Normal(t∗, σ2). (15)

However, since people never report values of t that are below the observed value x, the
actual response distribution is truncated at x. Moreover, instead of assuming that the
experimenter guesses the value of the multiplier g, we fold it into the experimenter’s model.
That is, we specify a prior that captures our actual prior beliefs about the value of g,

g ∼ Uniform(0, 3) (16)

and seek to infer the actual value of g from the empirical data. As with the two Bayesian
cognitive models, we implemented the model in PyMC and applied a custom sampler to infer
posterior distributions over the model parameters g and σ as well as the specific exemplars
people used to estimate t∗.

Appendix D: Details for the generalization example

As outlined in the main text, the Bayesian generalization model specified by TG1
specifies a generalization probability. When told that a set of items possesses some property,
the generalization probability is the chance that a novel item shares that property. Given a
binary matrix of category assignments C—such that cix = 1 if item i belongs to category x
and cix = 0 if it does not—the simplest version of the model assumes that the extension of
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the novel property is to a single category. Under this model, the probability of generalizing
a property from item j to item i is denoted g(i|j),

g(i|j) = ∑
x P (cix = 1)P (x|j)

= ∑
x|cix=1 P (x|j) (17)

where P (x|j) is the posterior probability that category x is the true extension of the novel
property given that the item j is known to possess the property, and

P (x|j) ∝ P (j|x)P (x) (18)

The prior distribution P (x) is captured by a vector of weights w such that wx ≥ 0 and∑
xwx = 1. As discussed in the main text, the likelihood function is a weighted mixture

of the strong sampling model and the weak sampling model, so the probability that item j
would have been generated if x were the true hypothesis is given

P (j|x) = (1− θ) 1
n

+ θ
cjx

nx
(19)

where nx = ∑
j cjx counts the number of item is the x-th category, n is the total number of

items in the domain, and θ is a model parameter that specifies which sampling model the
learner relies upon: θ = 0 implies weak sampling and θ = 1 is strong sampling.

The full model implemented in the paper extends this basic model in four respects.
Firstly, following TG1 we allow generalization from multiple exemplars, so if the learner
has been told that items j and k both possess the novel property, the posterior probability
of category x is given by

P (x|j, k) ∝ P (j|x)P (k|x)P (x) (20)
Secondly, the “base” category matrix C is augmented by one “universal” category (to

which all items belong) and n “singleton” categories (each containing only one item). So if
C is an n×m binary matrix specifying the memberships for m categories, then the model
actually has m+n+ 1 categories once the universal and singleton categories are added. As
such the weights vector w that specifies the prior distribution over categories has length
m+ n+ 1.

The third extension allows the learner to construct a more elaborate hypothesis space
H from the base representation defined by C and w. Instead of assuming that the extension
of the unknown property is necessarily restricted to a single category, the learner also
consider the possibility that the property is possessed by the members of two categories
(i.e., the intersection of two categories in C. We operationalize this in terms of an expanded
hypothesis matrix H that contains a copy of every element in C as well as an additional
column for every pair of columns in C, and whose elements are 1 if either of the original
columns has a 1 in the corresponding location. The prior probability of any such “composite”
hypothesis is computed from the weights vector w in the following way. If hypothesis z is
the union of categories x and y then

P (z) ∝ γwxwy (21)

and similarly if hypothesis z is a “primitive” hypothesis that corresponds to category x only
then

P (z) ∝ (1− γ)wx (22)
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Finally, in order to assign probability to responses at an individual trial level we
assume that the raw response is sample from a normal distribution whose mean corresponds
to the model-predicted generalization probability, g(i|j) or g(i|j, k), and whose variance σ2

is unknown.
The full model is requires that we infer an n ×m binary matrix C for the category

assignments, a vector of n+m+ 1 non-negative weights w for the m base categories, the n
singleton categories and the 1 universal categories (though this corresponds only to n+m
unknowns as these must sum to 1), the parameter θ that defines the sampling model and the
parameter γ that indicates the relative weights assigned to “primitive” versus “composite”
hypotheses. To perform inference in this model we specify researcher priors for θ and γ that
are uniform across the unit interval, uniform priors across all possible binary matrices C
(for a fixed value ofm) and uniform across weight vectors w. We used a simulated annealing
algorithm to find the best fitting (i.e., maximum a posteriori) values for the theoretically
relevant parameters C, w, θ and γ. Following Tenenbaum (1996) we treated σ2 as a nuisance
parameter, and can be used as a de facto temperature parameter in a simulated annealing
algorithm by initalizing σ2 at a large value and gradually reducing it. The results reported
in the main text were the result of an application of the simulated annealing procedure with
m = 8.

It should be noted that unlike the other two cases studies we did not do full Bayesian
inference for this model. What we have reported is a point estimate (in effect the Bayesian
MAP estimate) for the theoretically important variables, rather than estimating the full
posterior distribution over all variables. The reason for this is partly that it is more tractable
to compute the point estimate, though not impossible: We did also implement a fully
Bayesian version of a restricted model that more closely resembles the approach in Navarro
and Griffiths (2008), and found it worked reasonably well. The more important reason is
that the results are somewhat more interpretable when we have a single set of categories C,
rather than a full posterior distribution over possible category assignment matrices. The
former can be described in a table, the latter is difficult to summarize, though Navarro and
Griffiths (2008) do offer suggestions for how to do so.


