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this issue, we derive a chemical language model that 

acquires commonly occurring patterns of chemical frag-

ments through natural language processing of ASCII 

strings of existing compounds, which follow the SMILES 

chemical language notation. In the backward prediction, 

the trained language model is used to refine chemical 

strings such that the properties of the resulting structures 

fall within the desired property region while chemically 

unfavorable structures are successfully removed. The pre-

sent method is demonstrated through the design of small 

organic molecules with the property requirements on 

HOMO-LUMO gap and internal energy. The R package 

iqspr is available at the CRAN repository.

Keywords Inverse-QSPR · Molecular design · Bayesian 

analysis · Small organic molecules · Natural language 

processing · SMILES

Introduction

Computational molecular design has a great potential to 

promote enormous savings in time and cost in the discov-

ery and development of functional molecules and assem-

bles including drugs, dyes, solvents, polymers, and cataly-

sis. The objective is to computationally create promising 

molecules that exhibit desired properties of various kinds, 

simultaneously. For instance, the chemical space of small 

organic molecules is known to consist of more than 10
60 

candidates. The problem entails a considerably complicated 

multi-objective optimization where it is impractical to fully 

explore the vast landscape of structure-property relation-

ships. In general, the molecular design process involves 

two different types of prediction; the forward predic-

tion is aimed at predicting physical, chemical and electric 
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properties of a given molecular structure, and the backward 

prediction is to inversely identify appropriate molecular 

structures with the given desired properties. While the for-

mer design process is referred to as the quantitative struc-

ture-property relationship (QSPR) analysis, the latter is 

known as the inverse-QSPR analysis  [1–9]. In this study, 

a Bayesian perspective is employed to unify the forward 

and backward prediction processes. Therefore, the present 

method is called the Bayesian molecular design.

In cheminformatics or an emerging new research field 

called materials informatics, there have been extensive 

studies on the forward prediction; however, there has been 

considerably less progress made in the backward predic-

tion. An obvious approach to the inverse problem is the use 

of combinatorial optimization techniques. The objective is 

to minimize the difference between given desired proper-

ties and those attained by the designed molecules. Some 

previous studies tackled this issue with genetic algorithms 

(GAs) [2, 4–7, 10–13] and molecular graph enumeration [8, 

9, 14]. Graph enumeration is generally less effective due to 

the combinatorial complexity of the design space. To nar-

row down the candidates, several ways to use a restricted 

class of molecular graphs have been investigated  [9, 14]. 

Using GAs [15], which have been more intensively studied, 

searches for optimal or suboptimal designs by successively 

modifying chemical structures with genetic operators con-

sisting of mutation, crossover, and selection.

The major difficulty of using a GA lies in the procedure 

of mutating molecules such that unfavorable structures 

are successfully excluded, for instance, unfavorable and/or 

unrealistic chemical bonds such as F–N and C=O=C. This 

issue is common to the graph enumeration. To avoid the 

emergence of unfavorable structures, exclusion rules were 

employed in some studies, particularly those aimed at the 

design of drug-like molecules [16, 17]. However, such rules 

might be incomprehensive, and it is impractical to establish 

a general rule of chemically favorable structures. A prom-

ising alternative is fragment assembly methods  [4–7, 13, 

18–20]. In a structure manipulation step of these methods, 

randomly chosen substructures are replaced by fragments 

of existing compounds. While the fragment assembly meth-

ods have a certain appeal, as is evident from their wide-

spread use, they suffer from critical disadvantages: (i) the 

design space is restricted to possible combinations of col-

lected fragments, (ii) the use of a vast amount of fragments 

entails unacceptably large computational loads to homol-

ogy search in the fragment exchange operation, and (iii) 

mutation and crossover operations require computationally 

intractable graph manipulations. The proposed method cir-

cumvents all these issues.

The Bayesian molecular design begins by obtaining a 

set of machine learning models that forwardly predict prop-

erties of a given molecule for multiple design objectives. 

These forward models are inverted to the backward model 

through Bayes’ law, combined with a prior distribution. 

This gives a posterior probability distribution for the back-

ward prediction, which is conditioned by a desired property 

region. Exploring high-probability regions of the poste-

rior with the Sequential Monte Carlo (SMC) method [21], 

molecules that exhibit the desired properties are compu-

tationally created. The most distinguished feature of this 

workflow lies in the backward prediction algorithm. In this 

study, a molecule is described by an ASCII string accord-

ing to the SMILES chemical language notation. To reduce 

the emergence of chemically unfavorable structures, a 

chemical language model is trained, which acquires com-

monly occurring patterns of chemical substructures by the 

natural language processing of the SMILES language of 

existing compounds. The trained model is used to recur-

sively refine SMILES strings of seed molecules such that 

the properties of the resulting molecules fall in the desired 

property region while eliminating the creation of unfavora-

ble chemical structures.

The key contributions of the newly proposed method are 

summarized below.

•	 String-based structure refinement The string representa-

tion of molecules enables much faster structure refine-

ments in the backward prediction than those based on 

graph representation.

•	 Generator for chemically favorable structures The 

method is designed according to a fragment-free 

strategy. Structural patterns of known compounds or 

implied contexts of ‘chemically favorable structures’ 

are captured by the probabilistic model. Afterward, the 

resulting SMILES generator will be shown to be very 

effective in creating chemically plausible hypothetical 

molecules. The trained model serves as a substitute for a 

fragment library. This model also forms the prior distri-

bution in the Bayesian analysis.

The forward and backward predictions are pipelined 

with the R package iqspr which is provided through the 

CRAN repository  [22]. The present method is illustrated 

through the design of small organic molecules exhibiting 

properties within prescribed ranges of HOMO-LUMO gap 

and internal energy.

Methods

Outline

The objective of the backward prediction is to cre-

ate a chemical structure S with p properties 

� = (Y1,… , Yp)
T ∈ ℝ

p lying in a desired region U. The 
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Bayesian molecular design relies on the statement of 

Bayes’ law, which is sometimes called the inverse law of 

conditional probability,

This law states that the posterior distribution p(S|� ∈ U) 

is proportional to the product of the likelihood p(� ∈ U|S) 

and the prior p(S). Exploring high-probability regions of 

the posterior, we aim to identify promising hypothetical 

structures S that exhibit the desired U.

Along with Eq. (1), three internal steps linking the for-

ward and backward analyses are outlined (see also Fig. 1):

•	 Forward prediction A set of QSPR models on the p 

properties is trained with structure-property relationship 

data. This defines the forward prediction model 

p(��S) =
∏p

j=1
p(Yj�S) on the right-hand side of Eq. (1).

•	 Prior. The prior distribution p(S) serves as a regular-

izer that imposes low probability masses on chemically 

unfavorable structures in the posterior distribution.

•	 Backward prediction Bayes’ law inverts the forward 

model p(�|S) to the backward p(S|� ∈ U) in which 

a desired property U is specified for the conditional. 

A Monte Carlo calculation is conducted to generate a 

random sample of molecules {S
r|r = 1,… , R} of size R 

according to the posterior distribution.

In this study, a chemical structure is described by a 

SMILES string. As will be detailed, a chemical language 

model defines the conditional distribution S� ∼ p(S�|S) to 

which the current structure S is randomly modified to a 

(1)p(S|� ∈ U) ∝ p(� ∈ U|S)p(S).

new S′. By the machine learning of the SMILES language 

in tens of thousands of existing compounds, structural pat-

terns of real molecules are compressed to the probabilistic 

language model. In combination with SMC, the trained 

model, which acquires the implicit meaning of ‘chemi-

cally unfavorable structures’, is utilized to modify SMILES 

strings under a given U while reducing the emergence of 

structures unlikely to occur. Furthermore, the trained lan-

guage model serves as the prior in Eq. (1).

Forward prediction

A structure-property data set j = {Yij, Si:i = 1,… , N} on 

property j is given where Yij ∈ ℝ
1 and S

i
 consist of the ith 

sample. With the N observations, a QSPR model is trained 

by a linear regression Yj = �
T

j
� j(S) + � with a d-dimen-

sional fingerprint descriptor � j(S) ∈ {0, 1}d. To simplify 

the notation, the property index j is temporally omitted. 

The noise � is independently and identically distributed 

according to the normal distribution N(�|0, �2). The 

unknown parameters consist of the coefficient vector 

� ∈ ℝ
d and the noise variance �2

∈ ℝ
1

+
. Putting the normal 

prior � ∼ N(�|�, �2�), and the inverse gamma prior 

�
2 ∼ IG(�2|a, b) on the unknowns, we derive the predictive 

distribution on the property Y with respect to an arbitrary 

input S:

where �
T
= (�(S1),… ,�(S

N
)) and �

T = (Y1,… , Y
N
). 

Here, � denotes the identity matrix, and T�(Y|�, �) denotes 

the density function of the t-distribution with mean �, scale 

� and the degree of freedom �. The predicted value of the 

property is given by the mean �T

∗
�(S) of the predictive 

distribution.

The prediction models on the p properties, p(Yj|S,j) 

( j = 1,… , p), are obtained individually from the respective 

training sets. We then define the likelihood in Bayes’ law 

with a desired property region U = U
1
×⋯ × Up as

For brevity, we write p(� ∈ U|S) = p(� ∈ U|S,).

Though a simple instance of QSPR models is described 

here, we can exploit more advanced techniques of super-

vised learning such as state-of-the art deep learning or a 

p(Y|S,) = T2a∗

(
Y
|||�

T

∗
�(S),

b∗

a∗

(1 + �(S)T�∗�(S))

)
,

�∗ = (�−1 +�T�)−1,

�∗ = �∗�
T
y

a∗ = a + N∕2, and

b∗ = b +
1

2
(� −��∗)

T(� +���T)−1(� −��∗),

(2)p(� ∈ U|S) =
p∏

j=1
�

Uj

p(Yj|S,j)dYj.

Fig. 1  Outline of the Bayesian molecular design method
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class of the ensemble learning algorithms. When dealing 

with a discrete-valued property, the regression should be 

replaced by a classification model. This study is developed 

along the use of conventional fingerprints as the descriptor, 

but it is highly beneficial in practice to use more advanced 

descriptors, for example, molecular graph kernels coupled 

with kernel machine learning [23–25].

Chemical language model

With the SMILES chemical language, a molecule is trans-

lated to a linearly arranged string S = s
1
s

2
… sg of length 

g. A string of the SMILES encoding rules consists entirely 

of symbols that indicate element types, bond types, and the 

start and terminal for ring closures and branching compo-

nents. The start and terminal of a ring closure is designated 

by a common digit, ‘1’, ‘2’, and so on. A branch is enclosed 

in parentheses, ‘(’ and ‘)’. Substrings corresponding to 

multiple rings and branches can be nested or overlapped. 

In addition to the formal rule of SMILES, all strings are 

revised as ending up with the termination code ‘$ ’. Inclu-

sion of this symbol is necessary to automatically terminate 

a recursive string elongation process. For instance, once a 

string pattern ...CCC=O is present, any further elongation 

is prohibited and should be terminated at once by append-

ing ‘$ ’. In addition, digits indicating the starts and termi-

nals of rings are represented by ‘&’. The revised representa-

tion rule is listed in Table 1. Appendix 1 in Supplementary 

Materials provides an illustrative example.

With no loss of generality, the prior p(S) can be 

expressed as the product of the conditional probabilities:

The occurrence probability of character s
i
 depends on the 

preceding s
1:i−1

= s
1
⋯ s

i−1
. In general, the non-canonical 

SMILES encodes a chemical structure into many equiva-

lent forms that correspond to different atom orderings. We 

treat such structurally equivalent strings as different S.

(3)p(S) = p(s
1
)

p∏

i=2

p(si|s1:i−1
).

The fundamental idea of the chemical language modeling 

is as follows: (i) the conditional probability p(si|s1:i−1
) is esti-

mated with the observed frequencies of substring patterns in 

known compounds, and (ii) the trained model is anticipated 

to successfully learn an implied context of the chemical lan-

guage. For a given substructure s
1:i−1

, the model is used to 

modify the rest of the components: until the termination code 

appears, subsequent characters are recursively added accord-

ing to the conditional probabilities while putting the acquired 

chemical reality into the resulting structure.

The SMILES generator should create grammatically valid 

strings. In particular, we focus on two technical difficulties to 

be addressed, which are relevant to the rules of grammar on 

the expression of rings and branching components.

(i) Unclosed ring and branch indicators must be prohib-

ited. For instance, any strings extended rightward from 

a given s
1:6

= ��(�(� should contain two closing char-

acters, ‘)’, somewhere in the rest.

(ii) Neighbors in a chemical string are not always adjacent 

in the original molecular graph. Consider a structure 

expressed by CCCCC(CCCCC)C. The substring in the 

parentheses is a branch of the main chain. The main 

chain consists of six tandemly arranged carbons that 

are split into before and after the branch. In this case, 

the occurrence probability of the final character s
13

= � 

should be affected more by characters in the main 

chain than those in the branch. In other words, the con-

ditional probability of s
i
 should depend selectively on 

a preferred subset of the conditional s
1:i−1

 according 

to the overall context of s
1:i−1

 and s
i
. The same holds 

when one or more rings appear in the conditional, e.g., 

c1ccc2ccccc2c1C.

To remedy these issues, the conditional probability is 

modeled as

(4)p(si|s1:i−1) =

20∏

k=1

p(si|�n−1(s1:i−1),k)
I(s1:i−1∈k),

Table 1  Correspondence 

table between the formal and 

modified rules of SMILES

Type Original Modified

Start of a ring closure n∈ {�, �,…} &

End of a ring closure n (same to the start) &
i
 for the ith ring terminators to 

the last of a string

Bond followed by atom A =A (double), #A (triple) =A or #A form a single character

Terminal character of a molecule N/A $

String in a square bracket [abcde] [abcde] form a single character
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where I(⋅) denotes the indicator function which takes value 

one if the argument is true and zero otherwise. One of 

the 20 different models p(⋅|⋅,k) (k = 1,… , 20) becomes 

active when the state of the preceding sequence s
1:i−1

 

falls into any of the mutually exclusive “conditions” 
k
 

(k = 1,… , 20). The 20 (= 2 × 10) conditions are classified 

according to the presence or absence of unclosed branches 

and the numbers {0, 1,… , 9} of unclosed ring indicators in 

s
1:i−1

. For instance, if s
1:i−1

 contains two unclosed ring indi-

cators, e.g., CCCC(CC(, the corresponding models should 

be probabilistically biased toward producing the two ter-

minal characters ‘)’ in subsequent characters. In addition, 

the substring selector �
n−1

(s
1:i−1

) is introduced for the treat-

ment of the second problem. The definition is as follows:

	– Contraction Suppose that s
1:i−1

 contains a substring 

t = t
1
⋯ tq enclosed by the closed parentheses such that t 

itself is never enclosed by any other closed parentheses. 

In other words, t is a substring inside of the outermost 

closed parentheses. The substring is then reduced to be 

t → t
�
= t

1
 by removing all characters in t except for the 

first character, t
1
. In other words, t

1
 is the character that is 

the right-hand neighbor of the opening ‘(’ of the outer-

most closed parentheses.

	– Extraction The selector �
n−1

(s
1:i−1

) outputs the last n − 1 

characters in the reduced string of s
1:i−1

.

The substring selector is illustrated with several examples in 

Fig. 2. This operation reduces a substring in any nested closed 

parentheses to a single character that indicates the atom adja-

cent to the branching point. The occurrence probability of s
i
 

is then conditioned by its n − 1 preceding characters in the 

reduced strings that correspond to neighbors in the molecular 

graph.

Under the maximum likelihood principle, the conditional 

probability for 
k
 in Eq. 4 is estimated by the relative fre-

quency of co-occurring n-gram, s
i
 and �

n−1
(s

1:i−1
), in train-

ing instances of known compounds. Let fk
(si,�n−1(s1:i−1)) 

denote the count of the n-grams in which the conditional 

string s
1:i−1

 is in condition 
k
. We then conduct the back-

off procedure [26] separately with all possible substrings s
1:i

 

whose the conditionals s
1:i−1

 belong to 
k
:

where Σ denotes the set of all possible characters. This is 

a recursive formula across n = 1, 2,… , nmax. In the upper 

formula, the estimate is given by the relative frequency 

of each instance of an n-gram in the 
k
-conditioned sub-

strings. If there are no instances, the estimate at the previ-

ous (n − 1)-gram is substituted as in the lower formula.

Backward prediction

The objective of the backward prediction is to gener-

ate chemical strings from the posterior distribution in 

Eq. (1), conditioned on a desired property region U. The 

forward models and the trained chemical language model 

define the posterior as in Eqs. (2) and (3). The SMC algo-

rithm that we developed is shown in Algorithm 1.

p(si��n−1(s1:i−1),k)

=

⎧⎪⎨⎪⎩

fk
(si,�n−1(s1:i−1))∑

si∈Σ
fk

(si,�n−1(s1:i−1)
if
�
si∈Σ

fk
(si,�n−1(s1:i−1)) > 0

p(si��n−2(s1:i−1),k) otherwise

,

Fig. 2  Illustration of the sub-

string selector �
n−1

(⋅) with three 

examples. In the contraction 

operation, a substring inside of 

the outermost closed parenthe-

ses (green) is reduced to the 

character in its first position 

(red). The extraction operation 

is to remove the rest (black) 

of the last n − 1 (= 9) charac-

ters from the reduced string. 

The corresponding graphs are 

shown on the right where the 

atoms in the boxes indicate the 

last characters in the inputs of 

�
n−1

(⋅) (left)

(a) ϕ
9

( CCCCCC(CCCC)C )                     =  CCCCC(C)C

(b) ϕ
9

( CCCCCC(CCCC(CC(C)C )        =  CC(CC(C)C

(c) ϕ
9 

( CCCCCC(CCCC(CC(C)C)C )   =  (CCCC(C)C

() Outermost closed parentheses

C First letter in the outmost closed parentheses to be retained

C Removed letters

(c)(b)(a)
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In general, diverse molecules exhibit significantly 

high probabilities in the posterior. In order to better cap-

ture the diversity of promising structures, we create a 

series of tempered target distributions, �
t
(S) (t = 1,… , T

), with a non-decreasing sequence of inverse temperatures 

0 ≤ �
1
≤ �

2
≤ ⋯ ≤ �

s−1
≤ �

s
= ⋯ = �

T
= 1.

The likelihood function becomes flatter as the inverse tem-

perature decreases, and vice versa. The algorithm begins 

with a small �
1
≃ 0. The series of target distributions mono-

tonically approaches as the iteration number increases, and 

bridges to the posterior at �
t
= 1, ∀t ≥ s.

At the initial step t = 0, R structures {S
r

0
|r = 1,… , R} 

are created by some means. For each subsequent t, a 

currently obtained structure Sr

t−1
 is mutated randomly to 

S
r

∗
 (r = 1,… , R) according to a structure manipulation 

model G
�
(Sr

t−1
, S

r

∗
) with a set of parameters, � = (�, �)

, as detailed below. A new population {S
r

t
|r = 1,… , R} 

is then produced by conducting the resampling of 

{S
r

∗
|r = 1,… , R} with the selection probabilities, W

Sr

∗

 

(r = 1,… , R), which involve the current tempered distri-

bution �
t
(S). The greater the likelihood a mutated struc-

ture achieves, the higher the chance it survives and the 

more the offspring it leaves. In general, this continues 

�t(S) ∝ p(� ∈ U|S)�t p(S).

until the population has been updated hundreds or thou-

sands of times. The present algorithm is essentially the 

same as a GA. The crucial difference lies in the mutation 

operator G
�
(⋅, ⋅).

The structure manipulation model G
�
(S, S

�) is designed 

with the trained SMILES generator as summarized below.

(i) Draw a uniform random number z ∼ U(0, 1). If S is 

grammatically correct and z is less than the reorder-

ing execution probability � (=0.2), reorder the string 

S → S
∗ of length g, otherwise set the unprocessed 

string to S∗. With the first character chosen randomly 

using a uniform distribution, Open Babel 2.3.2 [27] is 

used from the command line with an argument ‘-xf’ for 

the reordering.

(ii) Discard the rightmost m characters of the reordered 

string to derive S∗∗
= s∗∗

1:g−m
. The deletion length m is 

sampled from the binomial distribution m ∼ B(m|L, �) 

with binomial probability � (=0.5 by default) and the 

maximum length L (=5 by default).

(iii) Extend the reduced string by sequentially adding a new 

character to the terminal point L − m times. A newly 

added character follows the trained language model 

si ∼ p(si|s1:i−1
). Once the termination code appears, the 

elongation is stopped, and then we have S′.

The reordering of strings plays a key role in preventing a 

series of designed molecules from getting stuck in local 

states. Note that temporally, the SMC algorithm can cre-

ate structures containing unclosed rings and branching 

components. Then, the corresponding start codes for the 

unclosed rings or branches are temporally removed to 

avoid the syntax error when obtaining a descriptor for the 

likelihood calculation. In addition, the atom order is rear-

ranged only when a current string is grammatically valid.

Software

The iqspr package can be installed thorough the CRAN 

repository. Installation of Open Babel 2.3.2 is required 

for getting started. The package consists of a set of func-

tions to perform the QSPR model building (QSPRpred 

reference class) with molecular fingerprints in the rcdk 

package  [28], the inverse-QSPR prediction (SmcChem 

reference class), and the training and simulation of the 

chemical language generator (ENgram reference class) 

with user-specified input SMILES strings. Currently, 

the chemical language modeling and the inverse analysis 

cannot deal with isomers, or ionic compounds. A sample 

code is given in Appendix 2 in Supplementary Materials.
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Results and discussion

Data set

The molecular design process is demonstrated through the 

creation of small organic molecules with the design objec-

tive intended to the HOMO-LUMO gap (HL) [29, 30] and 

the internal energy (E). With the quantum chemistry calcu-

lation based on DFT, the two properties were obtained for 

16,674 chemical instances which were selected randomly 

from PubChem  [31] (available at Supplementary Data 1). 

The data set does not contain molecules including one or 

more inorganic elements which are surrounded by square 

brackets in the SMILES notation, or atomic symbols with 

chiral specification @. Strings including either ‘+’ or ‘-’, 

representing ionic elements, were also excluded. Because 

of its performance and suitability for our parallel computer 

facilities, the Gaussian09 suite of program codes [32] was 

used to carry out all the present DFT simulations. The 

corresponding molecular structures were obtained via the 

PubChemQC project  [33], which were fully optimized 

at the B3LYP/6-31+G(d) level of theory though using 

GAMESS  [34, 35]. We found that further optimization at 

the same level with Gaussian09 leaves the GAMESS geom-

etries unchanged for some preliminary cases. Therefore, the 

two target properties were evaluated for all the cases from 

the single-point B3LYP/6-31+G(d) calculations.

In the forward analysis, the entire set was divided 

into 10,000 and 6674 instances for training and test-

ing, respectively. The chemical language model was 

trained with 50,000 organic compounds without chi-

ral specification @ or ionic elements ‘+’ and ‘-’, which 

were selected randomly from the PubChem database. 

The performance of the backward prediction was tested 

on three different property regions of � = (YHL, YE)
T: (i) 

U1 = [100, 200] × [4, 5.5], (ii) U2 = [250, 400] × [5, 6], 

and (iii) U3 = [100, 250] × [2.5, 3.5]. Designed hypotheti-

cal molecules were validated with the DFT calculation as 

to whether or not their physical properties fall within each 

desired range.

Forward prediction

As shown in Table 2, eight different descriptors �(S) were 

derived by using six types of molecular fingerprints in 

combination; which these fingerprints are implemented in 

the R package rcdk [28]. The mean of the predictive distri-

bution was employed as the predicted value of each prop-

erty. The parameters of the normal and gamma priors in 

regression were set as � = � and (a, b) = (0, 0). The perfor-

mance of the trained models was assessed with the mean 

absolute error (MAE). As shown, the augmented descrip-

tor that combined the ‘standard’, ‘extended’, ‘circular’ and 

‘pubchem’ fingerprints delivered the highest predictive 

accuracy. However, the average runtime for the likelihood 

calculation per 100 molecules (∼7.71 s) was significantly 

greater than the others because the translation into the 

PubChem fingerprint involves an intractable graph pattern 

matching. This led to a significant increase in the runtime 

of the backward prediction. We therefore employed the sec-

ond-best descriptor containing ‘standard’, ‘extended’ and 

‘circular’, which delivered relatively small MAEs, 0.54 eV 

and 23.5 kcal/mol, for the HOMO-LUMO gap and internal 

energy, respectively. With this, the runtime was reduced by 

nearly 80% (to ∼1.61 s per 100 molecules), compared with 

the best performing model.

Chemical language model

To determine the order n of the chemical language model 

and to verify its learning ability in the chemical language 

context, ten training sets of 1000 compounds were ran-

domly produced from the PubChem compounds. Each set 

was halved for training 
train

 and testing 
test

. The selected 

model was learned all over again with 50,000 different 

training compounds for the inverse-QSPR prediction.

The models with varying orders, n ∈ {4, 7, 10}, were 

trained with two different procedures, the back-off (BO) and 

the Kneser–Nay smoothing (KN) methods [26]. As a control 

Table 2  MAEs of the QSPR models with the eight different finger-

print descriptors for the internal energy and the HOMO-LUMO gap

The six fingerprints in the rcdk package (bottom) and their combina-

tions were tested. The last column denotes the average runtime for the 

QSPR score (likelihood) calculation per 100 molecules. The runtimes 

were measured on an Intel Xeon 2.0 GHz processor with 128 GB 

memory using the iqspr package

1. ‘standard’: paths of a default length (1024 bits)

2. ‘extended’: the ‘standard’ fingerprint is modified such that ring and 

atomic properties are taken into account (1024 bits)

3. ‘maccs’: MDL MACCS keys (166 bits)

4. ‘circular’: ECFP6 fingerprint (1024 bits)

5. ‘pubchem’: PubChem fingerprint (881 bits)

6. ‘graph’: ‘standard’ is modified by taking into account connectivity 

(1024 bit)

Fingerprint Energy (kcal/

mol)

HOMO-LUMO 

gap (eV)

Runtime (s)

1 32.6 0.53 0.50

2 30.4 0.54 0.41

3 29.3 1.37 2.57

4 28.3 1.66 0.36

5 22.1 0.55 5.32

6 46.8 0.84 0.39

1,2,4 23.5 0.54 1.61

1,2,4,5 18.9 0.50 7.71
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group in the comparison, we added a conventional n-gram 

that learned the (n − 1)-order Markov relationship among 

the chemical strings simply without using the stratification 


k
 (k = 1,… , 20) and the substring selector �

n−1
(⋅). Model 

performances were evaluated with two criteria: the perplex-

ity measure  [36] and the grammatical validity of produced 

chemical strings.

Perplexity is a commonly used measure in the natural lan-

guage processing that evaluates the generalization capability 

of a language model  with the trained probability function 

p(S) in Eq. 3,

perplexity() = exp
(
−

1

|test|
∑

i∈test

log p(Si)

)
.

For each model, the goodness-of-fit, i.e., the likelihood, to 

the 1000 test instances was measured. As shown in Fig. 3a, 

the models resulting from BO outperformed the others 

in terms of perplexity. In the comparison among the BO-

derived models with the different orders, there were no 

significant differences in the generalization capability. Fur-

thermore, this experiment showed the significance of the 

stratification 
k
 (k = 1,… , 20) and the substring selector 

�
n−1

(⋅), as significant improvements of perplexity were 

observed in the extended models relative to the conven-

tional models.

In light of grammatical validity, the syntax error rates 

were evaluated for 1000 hypothetical molecules generated 

from each of the ten trained models. The grammar check 

Fig. 3  a Perplexity scores (left) and valid grammar rate (1 − the 

syntax error rate) (right) with respect to 1000 SMILES strings gen-

erated from trained chemical language models. The conventional 

n-gram and the extended language models were trained with the BO 

and KN algorithms. The error bars represent the standard deviations 

across the 10 experiments corresponding to different training sets. b 

Examples of molecules generated from the trained chemical language 

model with n = 10 (top). The bottom row displays the most similar 

PubChem compounds that had the Tanimoto coefficient ≥0.9 on the 

PubChem fingerprint



387J Comput Aided Mol Des (2017) 31:379–391 

1 3

was done with the SMILES parser function ‘parse.smiles’ 

in the rcdk package with the option ‘kekulise = TRUE’. As 

shown in Fig. 3a, the error rate was monotonically reduced 

with an increase in the Markov order in the extended 

models. The minimum error rate (≤2.7 %) was attained at 

n = 10. The performances of the BO and KN algorithms 

were much the same. In conclusion, we selected the BO-

derived model with n = 10 based on perplexity and gram-

matical validity.

To further validate the learning ability of the BO-

derived model with n = 10, randomly created 50 molecules 

were associated with PubChem compounds in which the 

training compounds were removed. Approximately 72% of 

the 50 virtual molecules exhibited extensive similarities to 

one or more existing compounds meeting the acceptance 

criterion of the Tanimoto coefficient ≥0.9 on the PubChem 

fingerprint. Figure  3b shows five instances of the created 

molecules; these instances indicate the great ability of the 

chemical language model. Conventional structure gen-

erators could never reproduce such structurally complex 

molecules.

Backward prediction

Table  3 summarizes the parameters of the backward pre-

diction. Phenol ’c1cccccc1O’ was assigned to the 100 

initial structures (R = 100) which were refined across 

t = 1,… , T  with T = 500 as a desired property region was 

sought. The movies in Supplementary Movie 1–3 show the 

processes of transforming structures aimed at the given 

property regions, U
1
, U

2
 and U

3
, respectively. Figure  4a 

shows snapshots of these processes. The created molecules 

underwent substantial changes in size, geometry and com-

position. A visual inspection of the movies verifies that 

backward calculation prevents structures from getting stuck 

in locally high-probability regions.

Figure 4b illustrates the early stages (t ∈ {1, 20, 50, 200}

) of the property refinements, during which they are moving 

in toward their respective target regions. For each t, a non-

redundant set of created molecules is shown: molecules 

ranked in the top 10 by the likelihood score were selected 

from a ranking list in which a molecule was removed from 

the list if its Tanimoto coefficient on the PubChem finger-

print exceeded 0.9 with respect to any of the higher ranking 

molecules. The reported HOMO-LUMO gap and internal 

energy correspond to the means of the predictive distribu-

tions for the trained forward models. At t = 1, the proper-

ties were very far from the desired regions. As the calcu-

lation proceeds, the resulting properties approached the 

targets quite rapidly. At t = 200, almost all of the created 

molecules had properties falling within their respective 

target region, U
1
, U

2
, or U

3
. This observation indicates that 

the proposed method is capable of drastic and rapid refine-

ments of the properties of seed molecules.

Figure 4c shows the properties of molecules created at 

t = 251 and 500 with their verifications by the DFT calcula-

tion. In the same way described above, 50 non-redundant 

molecules were selected from the likelihood-based prior-

itized list of 25,000 candidates: similar to the results shown 

in Fig.  4b, 50 non-redundant molecules were selected, in 

this case selected from a prioritized list of the 25,000 

candidates corresponding to the 100 particles produced 

between t = 251 and 500. The physical properties were 

evaluated by the QSPR models and the DFT calculation. 

For the DFT calculation, the created SMILES strings were 

first converted into the 3D structures by using OpenBabel 

with the ‘-gen3d’ option. Such initial conformations were 

fully optimized using Gaussian09 with B3LYP/6-31+G(d). 

Finally, the electronic properties at the equilibrium geome-

tries were computed at the same level of theory. As shown, 

all the QSPR-derived properties of the created molecules 

fell within the respective desired regions. However, in the 

verification by the DFT calculation, the arrival rates for U
2
 

and U
3
 were significantly reduced to 25/50 and 7/50, while 

the high rate (45/50) was maintained on U
1
. The cause of 

the performance depression in the former cases is appar-

ent. As shown in Fig. 4c, the number of known compounds 

used for the training was fairly small in neighborhoods of 

U
2
 and U

3
. By necessity, the trained forward models had 

much lower accuracies in prediction in neighborhoods 

of U
2
 and U

3
 relative to U

1
. The ability of the backward 

Table 3  Parameters and experimental conditions for the Bayesian 

molecular design analysis

Process Description Parameter

Forward prediction Number of training 

data

N = 10,000

Fingerprint descriptor 1, 2, 4

The normal prior � = �

The Gamma prior (a, b) = (0, 0)

Chemical language 

model

Number of training 

data

50,000

Markov-order n = 10

Estimation algorithm Back-off method

Backward prediction Size of population R = 100

Number of iterations T = 500

Reordering prob-

ability

� = 0.2

Binomial probability � = 0.5

Trial number L = 0.5

Cooling schedule �
t
= 50.95t−1

 for 

t ≤ 250, �
t
= 1 for 

t ≥ 251

Threshold on ESS E = 50

Initial structures Phenol c1ccccc1O
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prediction therefore declined as the desired properties were 

placed within regions where data are sparsely populated. 

The proposed method has a great ability to discover mol-

ecules when a desired property lies within a region where 

enough data are given, but the creation of truly novel mol-

ecules that reside in a far tail of the distribution of known 

molecules is an issue yet to be addressed. This will be dis-

cussed more in the “Concluding remarks” section.

Fig. 4  a Snapshots of structure alteration during the early phase of 

the inverse-QSPR calculation (t ∈ {10, 20, 50, 200}) with the desired 

property region set to U
1
, U

2
 or U

3
. The initial molecule (phenol) is 

shown at the top. The created molecules shown here were those 

ranked in the top four by the likelihood score at each t. Supplemen-

tary Movie 1–3 visualize the whole processes of structure modifica-

tion over t ∈ [1, 200]. b Property refinements resulting from the back-

ward prediction at t ∈ {1, 20, 50, 200}. Results on the three different 

property regions, U
1
, U

2
 and U

3
, are displayed together, and color-

coded by red, green and blue, respectively. The shaded rectangles 

indicate the target regions. The dots indicate the HOMO-LUMO gaps 

and internal energies of the designed molecules that were calculated 

by the predicted values of the QSPR models. For each U
i
 and t, the 

10 non-redundant molecules exhibiting the greater likelihoods are 

shown. c Properties of 50 molecules which were selected from the 

overall backward prediction process for U
1
 (red), U

2
 (green), and U

3
 

(blue). The HOMO-LUMO gap and internal energy were calculated 

by the trained QSPR models (left) and the DFT calculation (right). 

The gray dots indicate the training data points. In each U
i
, the 50 

non-redundant molecules that achieved the highest likelihoods are 

shown. d Newly created molecules in the predefined property regions. 

The bottom row of each pair shows instances of significantly similar 

PubChem compounds that had the Tanimoto index ≥ 0.9
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The novelty of derived molecules was investigated by 

seeking structurally similar compounds in PubChem. For 

a created S that appeared in U
i
 in terms of DFT, we cal-

culated the Tanimoto coefficient T(S, S
∗) on the PubChem 

fingerprint with respect to all PubChem compounds S
∗ 

after removing the training instances. Under the accept-

ance criterion T(S, S
∗) ≥ 0.9, significantly similar known 

compounds were identified for S. Figure  4d illustrates an 

instance of promising hypothetical molecules and the 

results of the similarity search. Thus, it has been confirmed 

that the proposed method can reproduce the highly complex 

and diverse molecules in the database. As expected, mol-

ecules that emerged in U
2
 and U

3
 were less well matched to 

existing compounds. More importantly, it has been proved 

that various types of molecules can exist in the same prop-

erty region and that many of these have yet to be identified. 

In practice in science and industry, such molecules could be 

truly important candidates for further testing and synthesis.

The backward prediction algorithm was run on an Intel 

Xeon 2.0 GHz processor with 128 GB memory using the 

iqspr package. The average execution time was about five 

seconds per step in SMC. The essential part of the current 

implementation was all developed in the R language and 

does not support parallel processing. The development of 

more advanced software is a future subject.

Concluding remarks

This study presented a principled approach to computa-

tional molecular design thorough a unified Bayesian per-

spective to the forward and backward predictions in the 

structure-property relationship analysis. The method was 

demonstrated with multi-objective molecular design for the 

prescribed regions of the HOMO-LUMO gap and internal 

energy. The presented analyses can be performed with the 

R package iqspr that we developed. The structure-property 

data set generated from the high-throughput DFT calcula-

tion has been made available online. Despite potentially 

great impacts on science and industry, the use of com-

puter-aided molecular design methods has not been widely 

adopted. The lack of easy-to-access software and bench-

mark data has restrained the proliferation of the use of 

inverse-QSPR and the growth of methodologies and tools 

has been hampered due to the difficulty of performance 

competition.

The main contribution of this study lies in the newly 

developed structure refinement algorithm based on the 

chemical language model. As mentioned earlier, most exist-

ing methods utilize chemical fragments of real compounds 

for the reduction of creating chemically unfavorable molec-

ular graphs. The drawback of the fragment-based methods 

is the limited diversity of the created structures. To enhance 

diversity and novelty, a vast number of fragments should be 

used, but this makes the operation of structure transforma-

tion in the fragment exchange process and similarity search 

on the large fragment library much more computationally 

expensive. The present study showed the great promise 

of a fragment-free strategy based on a chemical language 

model. The trained model acquired the implicit meaning of 

‘chemically favorable structures’ and succeeded in the crea-

tion of seemingly realistic molecules. Surprisingly, more 

than 70% of the generated molecules had significantly simi-

lar known compounds, and in addition, some of these were 

structurally very complex to the point that no conventional 

structure creators would ever be able to reproduce them. 

The proposed method demonstrated a new way to make 

computationally efficient structure refinements based on 

the string representation of molecules. It is important to see 

that the acquired context of the chemical language is not 

well defined, but rather is ambiguous. Possibly, the trained 

language model did not recognize higher-level chemi-

cal knowledge such as chemical stability, synthesizability, 

and drug-likeliness. The creation of much more realistic 

and valid structures is an important consideration in future 

work. It should be remarked that more recently, a research 

group has proposed a molecular generator that relies on a 

neural network trained on SMILES instances of real mole-

cules [37]. This generator was designed to achieve the same 

purpose as our study.

As demonstrated, the backward method is enormously 

powerful in the exploration when enough data are observed 

in a neighborhood of a specified property region. However, 

the prediction ability declines as the desired properties are 

placed around regions where data are sparsely populated. 

The ultimate goal of computational molecular design is the 

creation of truly novel molecules that reside in an exceed-

ingly far tail of the distribution of known molecules. The 

apparent cause of the limited ability is that the trained for-

ward models become less accurate in property prediction 

in far tails of the training set. This is an issue common to 

all existing methods but less attention has been paid to this 

important problem. Ultimately, we wish to arrive in yet-

unexplored property regions where no one has gone before. 

In Supplementary Fig. 1, we have provided snapshots of the 

property refinement process that explored a yet-unexplored 

property region, to emphasize the significance of overcom-

ing this limitation. Within early steps, the resulting prop-

erties approached the desired region quite rapidly, but the 

search trajectories became more disperse as they got closer 

to the target.

A promising solution to this problem might be the inte-

gration of computer experiments and the backward predic-

tion algorithm with experimental design techniques. Once 

created molecules get fairly close to an unexplored prop-

erty region, a new set of structure-property data could be 
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produced in a neighborhood of the region by conducting, 

for instance, a first-principle calculation with respect to a 

preferred subset of the currently created structures. Then, 

one could refine the forward models using the newly added 

data. Possibly, the query points of the computer experiment 

should rationally be selected under a sequential design 

strategy by maximizing the expected improvement of pre-

diction under a given constraint of computational costs. 

The refined backward prediction might acquire a greater 

ability to move a step closer to the target region. The inte-

gration of the backward prediction algorithm and rationally 

designed adaptive data production is the next challenge in 

future work.
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