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Abstract. Conventional nuclear data evaluation methods using generalized linear least squares make the fol-
lowing assumptions: prior and posterior probability distribution functions (PDFs) of all model parameters and
data are normal (Gaussian); the linear approximation is sufficiently accurate to minimize the cost function (even
for nonlinear models); the model (e.g., of neutron cross section) and experimental data (including covariance
data) are without defect and prior PDFs of parameters and measured data are known perfectly. Neglect of
covariance between model parameters and measured data in conventional evaluations contributes to imperfec-
tions. These assumptions are inherent to the generalized linear least squares minimization method commonly
used for resolved resonance region neutron cross section evaluations but are often not justified due to the pres-
ence of non-normal PDFs, nonlinear models (e.g., R-matrix formalism), and inherent imperfections in data and
models (e.g. imperfect covariance data). Here, these assumptions are removed in a mathematical framework of
Bayes’ theorem, which is implemented using the Metropolis-Hastings Monte Carlo method. Most importantly,
new parameters are introduced to parameterize discrepancies between the theoretical model and measured data
to quantify judgement about discrepancies or imperfections in a reproducible manner. An evaluation of 233U in
the eV region using the ENDF-B/VIII.0 library and transmission data (Guber et al.) is presented, and posterior
parameters are compared to those obtained by conventional evaluation methods. This example illustrates the
effects of removing the most harmful assumption: that of model-data perfection.

1 Introduction

Conventional nuclear data (ND) evaluation tools us-
ing generalized linear least squares (GLS) such as
SAMMY[1] typically incorporate the following common
assumptions:

1. The theoretical model perfectly describes the ex-
perimental data, and the prior probability distribu-
tion function (PDF) of model parameters and data is
known perfectly.

2. Model parameters and data obey a normal (Gaus-
sian) joint-PDF.

3. The linear approximation is sufficiently accurate
to determine the posterior PDF, even for nonlinear
models.
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The first assumption may be the most significant contribu-
tor to unrealistically small uncertainties of evaluated cross
sections, which are propagated to neutron transport appli-
cations. Evaluators must often adjust evaluated ND un-
certainties to provide realistic estimates of uncertainty in
reconstructed cross sections and applications.

The new Bayesian framework presented here elim-
inates all three conventional assumptions and provides
evaluators with a tool to quantitatively incorporate their
expert judgment during evaluations in a scientifically re-
peatable way. By eliminating the first assumption, this
framework may effectively appear similar to methods used
to quantify the model defect [Schnabel et al., e.g. [2]].
However, as stated above, the first assumption is more gen-
eral because it recognizes another aspect: namely, the im-
perfections inherent to the (generalized1) data and their co-
variances. These data contain imperfections which likely
exist even when a model happens to be perfect. One ex-
ample is the conventional tendency to neglect prior co-
variances between model parameters and the measured
data, which could be seen as one of several other poten-
tial sources of imperfections in the generalized data.

1defined in §2
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2 Theory

To simplify the derivation, a generalized data vector [3],
z, is used to denote the concatenation of a vector of model
parameters, P, and a vector of data, D, that is:

z ≡
(
P
D

)
. (1)

In this work we restrict Bayesian prior PDFs to be of the
normal kind,2 namely,

p(z|〈z〉,C) ∝ e−
1
2 (z−〈z〉)ᵀC−1(z−〈z〉), (2)

as defined by the expectation value 〈z〉, computed as

〈z〉 =

∫
z p(z|〈z〉,C) dz =

(
〈P〉
〈D〉

)
, (3)

and by its covariance matrix, C, computed analogously as

C ≡ 〈(z−〈z〉)(z−〈z〉)ᵀ〉 =

∫
(z−〈z〉)(z−〈z〉)ᵀp(z|〈z〉,C) dz,

(4)
as expected for normal PDFs. To derive an expression for
the Bayesian posterior PDF without making Assumption
1, it is useful to define an auxiliary variable, δ, as

δ ≡ T (P) − D, (5)

as well as its covariance matrix,

∆ ≡ 〈(δ − 〈δ〉)(δ − 〈δ〉)ᵀ〉, (6)

where T (P) is a theoretical model3. With these defini-
tions, it can be demonstrated that making Assumption (1)
amounts to constraining the posterior expectation values
of δ and its posterior covariance matrix to be identically
equal to zero. This suggests that the removal of Assump-
tion (1) amounts to setting the posterior expectation values
of δ and its covariance matrix to some arbitrary finite con-
stant values, namely, 〈δ〉′ and ∆′, which are hereby intro-
duced as a new tool for evaluators to quantify their confi-
dence in the quality of (generalized) data or the validity of
the theoretical model.

In this notation, a prime symbol upon an expectation
value indicates that a posterior PDF (also indicated by a
prime symbol) was used to compute that expectation value
in contrast to the (non-primed) prior expectation values
and the (non-primed) prior PDF. With these definitions,
the Bayesian posterior PDF becomes

p′(z|〈z〉,C, 〈δ〉′,∆′) ∝ L(〈δ〉′,∆′|z, 〈z〉,C) × p(z|〈z〉,C),
(7)

where the likelihood function can be expressed as [4, 5]

L(〈δ〉′,∆′|z, 〈z〉,C) ∝ e−
1
2 (δ−λ)ᵀΛ−1(δ−λ), (8)

2Note that posterior PDF may nevertheless be non-normal, even for a
normal prior PDF.

3P is any set of parameters needed for T (P) which models any combi-
nation of experimental data D. For example D could be the concatenation
of neutron capture yield and transmission, and T (P) the concatenation of
theoretical models for each.

where λ andΛ are the parameters determined by constrain-
ing the posterior expectation value of δ and its covariance
matrix to be equal to the 〈δ〉′ and ∆′, respectively. For lin-
ear models, expressions for λ and Λ in terms of 〈δ〉′ and
∆′ can be found analytically, whereas for nonlinear mod-
els, they could be found using an iterative algorithm pre-
sented in [4]. The posterior PDF could then be simplified
by adding the exponent in the likelihood function to the
one in the prior PDF, resulting in

p(z|〈z〉,C, 〈δ〉′,∆′) ∝ e−
1
2 X2(z), (9)

where

X2(z) ≡ (δ − λ)ᵀΛ−1(δ − λ) + (z − 〈z〉)ᵀC−1(z − 〈z〉) (10)

is a generalized cost function.
The conventional cost function, χ2(P), is recovered by

setting 〈δ〉′ = 0 and ∆′ = 0, yielding λ = 0 and Λ = 0,
so that the likelihood function effectively becomes a Dirac
delta function, δDirac(T (P)−D). This allows data, D, to be
integrated out of the posterior PDF. This integration over
data, D, yields a (conventional) posterior PDF of parame-
ters P alone,

p(P|〈z〉,C, 〈δ〉′ = 0,∆′ = 0) ∝ e−
1
2 χ

2(P), (11)

where

χ2(P) ≡ (z|D=T (P) − 〈z〉)
ᵀC−1(z|D=T (P) − 〈z〉) (12)

is the conventional cost function,

z|D=T (P) ≡

(
P

T (P)

)
(13)

has been defined for convenience, and where 〈z〉 and C
are defined by Eqs. (3) and (4), respectively. Often con-
ventional evaluation methods then make Assumption (2),
namely that the posterior PDF is a normal one, by ap-
proximating the posterior expectation values of parame-
ters, 〈P〉′, by the values that minimize χ2(P), and by ap-
proximating the posterior covariance by the Hessian of the
χ2(P) evaluated at the minimum. Finally, Assumption (3)
is introduced with with the use of first-order derivatives
during minimization of χ2(P) by the iterative Newton-
Raphson method.

3 Evaluation of low energy RRR of 233U

The framework described above can be implemented sev-
eral ways. Simply incorporating the cost function given
in Eq. (10) into an existing GLS evaluation code would
remove the assumption of “perfection” described above
(note that this is not done in this work). To remove the
assumptions of PDF normality and model linearity, sim-
ple Monte Carlo (MC) methods can be applied. This work
used the well-known Metropolis-Hastings (MH) algorithm
[6–8], a subset of Markov Chain MC methods. The combi-
nation of MC methods and the new generalized cost func-
tion effectively removes the three assumptions listed in the
introduction.
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Although this framework was designed to work with
arbitrary models, the primary goal in this effort was to
evaluate model parameters for a cross section model in
the RRR, where the Reich-Moore [9] approximation to R-
matrix theory [10] is implemented in the code SAMMY.
Because it is the most current, the ENDF/B-VIII.0 [11]
evaluation of 233U is used to obtain the starting mean val-
ues and uncertainties for resonance parameters P. D is
set to the data produced by Guber et al. [12], and the
covariance C of the resulting hypervector z is a combi-
nation of ENDF/B-VIII.0 variance and variance reported
by Guber et al. For simplicity in this example, all off-
diagonal elements of C are equal to zero, even though the
posterior PDF will result in a posterior covariance C′ with
non-zero off-diagonals. Because it is known a priori that
the cross section model and experimental data cannot per-
fectly match (because of data or model defects), small val-
ues (0.01) have been assigned to the diagonal of Λ to in-
corporate that information into the likelihood function of
δ. In this example, the posterior expectation value of δ,
〈δ〉′, is zero, therefore λ is set to zero in the likelihood
function.

3.1 Uncertainty on Model-Data Residuals

To quantify the expectations of the difference between
models and data, all elements of λ = 0, the diagonal el-
ements of Λ = 0.01, and off-diagonal Λ were set equal
to zero. Setting λ = 0 is essentially stating that the model
should match the data perfectly, but by setting the diagonal
of Λ equal to 0.01, the PDF of the likelihood becomes fi-
nite, allowing imperfections. This means that small varia-
tions of δ away from zero will be penalized a small amount
(within the variance of 0.01), and large variations will be
penalized by more significant cost. Six resonance param-
eters were varied for three resonances: the energy Ei and
neutron width γn,i for each. Starting with these prior data,
the MHMC Bayesian algorithm is iterated until conver-
gence of a posterior parameter set. The posterior mean
cross section model 〈T (P)〉′ is shown in Fig. 1 compared
to the mean of prior models and GLS posterior (SAMMY).
The lower plot in the figure shows the relative standard de-
viation of the model of posterior parameters.

As seen in the lower plot (Fig. 1) of relative uncer-
tainty in transmission, the uncertainties propagated from
the parameters to the model are proportional between the
GLS and MHMC solutions (of course, this ignores all
off-diagonal covariance in T(P)). The GLS method imple-
mented in SAMMY predicts uncertainty in the cross sec-
tion roughly an order of magnitude smaller than that seen
from the MHMC posterior and the variance of data 〈D〉,
which they both assessed. The magnitude of the energy-
dependent uncertainties in 〈T (P)〉′ is related to the values
of Λ: as Λ→ ∞, it approaches the uncertainty propagated
from the prior, and as Λ → 0, it approaches that of the
GLS method. The drastic nature of the reduction in uncer-
tainty can perhaps be seen more clearly in the resonance
parameter PDFs shown in Fig. 2. As each of the PDFs
plotted along the diagonal of the plot-matrix are normal-
ized to integrate to one, the height of the posterior GLS

Figure 1. The posterior expectation values of the model 〈T (P)〉′

computed by the MHMC algorithm (blue) are quite close to those
computed by SAMMY (red) using the GLS method. The energy-
dependent uncertainty computed by these two methods, however,
differs by an order of magnitude (lower plot). Energy-dependent
uncertainty is determined by the square root of the variance of the
posterior models of P. These expectation values and uncertain-
ties are compared to those of the prior data by Guber et al. [12]
(black) and to the prior expectation value of models described in
ENDF/B-VIII.0 [11].

Figure 2. Posterior PDFs of parameters P obtained by GLS
(black, no fill) and generalized BMC (gray, fill) have significantly
different widths and slightly different mean values. The param-
eters for the lowest energy resonance show large correlations to
each other and other resonances. Parameters for the lowest en-
ergy resonance are also positively skewed.

PDF must be cut off to even see the prior and MHMC pos-
terior PDFs. Sometimes the GLS and MHMC mean values
shift the same direction from the prior, but the GLS poste-
riors are consistently and drastically more narrow because
of the inherent assumptions made by GLS, the most sig-
nificant assumption being that D = T (P) for posterior D
and P.
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3.2 Criticality for 233U

One advantage of storing explicit PDFs of posterior reso-
nance parameters is that they can be directly used to cal-
culate PDFs of quantities of interest in neutron transport
calculations (e.g., ke f f ), effectually propagating uncertain-
ties from resonance parameters directly to applications.

Continuing the 233U example above, random samples
are drawn from the posterior PDFs of resonance parame-
ters from the generalized BMC and GLS evaluations, and
233U cross sections are reconstructed each time and used
to simulate a criticality benchmark for 233U (U233-SOL-
INTER-001 in Ref. [13]). This approach involves recon-
structing 1,000 cross sections from each PDF with AMPX
[14] and then running 1,000 eigenvalue calculations with
the KENO-VI code within the SCALE code system [14].
The PDF of ke f f , assuming the posterior PDF of P from
the GLS evaluation, has a standard deviation of ∼93 pcm.
The PDF from the MHMC evaluation, in which the eval-
uator has incorporated explicit uncertainty information in
the model-data residual, is more conservative with a stan-
dard deviation of ∼490 pcm. The experimental uncertainty
in the benchmark is ∼850 pcm.

Figure 3. Posterior PDFs of 6 resonance parameters (Γn,i & Ei)
from three resonances in 233U are used as the nuclear data for
transport simulations which calculate ke f f . The resulting PDFs
of ke f f for GLS and MHMC methods show significant differ-
ences in width and mean value. The GLS method produces a
PDF indicating significantly lower uncertainty on ke f f .

4 Conclusions

Conventional methods of nuclear data evaluation make in-
herent assumptions about the a priori and a posteriori
PDFs, occasionally leading to underestimation of uncer-
tainties or the need for ad hoc methods to properly esti-
mate uncertainty. The framework presented here attempts
to remove these assumptions and provides a method which
can explicitly define the evaluator’s belief in the likeli-
hood function. The most deleterious assumption is that of

perfection in model-data PDFs, which in turn makes the
removal of this assumption with a new likelihood func-
tion the most impactful contribution of this work. In
practice, this means that evaluators can define model de-
fects, data defects, and other expert judgements in a well-
documented, repeatable way. This information is essential
for creating nuclear data libraries that properly estimate
covariance.
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