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Abstract
The task of multi-camera surveillance is to re-

construct the paths taken by all moving objects that
are temporarily visible from multiple non-overlapping
cameras. We present a Bayesian formalization of this
task, where the optimal solution is the set of object
paths with the highest posterior probability given the
observed data. We show how to efficiently approximate
the maximum a posteriori solution by linear program-
ming, and present initial experimental results.

1 Multi-camera surveillance
Video surveillance in a large or complex environ-

ment requires the use of multiple cameras. In this
paper we address a particular task that we call multi-
camera surveillance (MCS). The multi-camera surveil-
lance task arises in an environment with moving ob-
jects that is monitored by multiple non-overlapping
cameras, such as an office building with pedestrians,
or a set of highways. The task is to reconstruct the
paths taken by all objects that were visible during the
observation period, despite the fact that a moving ob-
ject can be temporarily out of view of any camera.

We will assume that objects moving through the
monitored environment are likely to pass several cam-
eras, and that their movement is constrained to fol-
low certain paths. We are given the topology of these
allowable paths as input, together with information
about transition probabilities and transition times.
We assume that these transition models are supplied
as part of the input, although it would be easy to es-
timate them as part of the surveillance system.

We first run a motion detection and tracking algo-
rithm on each video stream. The tracking algorithm
returns one observation interval for each passer-by, i.e.
the collection of all per-frame views of that person, an-
notated by the time interval and the camera location
at which the observation was made.

The solution of the MCS task will consist of a set
of links between observation intervals, where each link
connects two successive appearances of the same ob-

ject. We probabilistically model the fact that observa-
tion intervals of the same person should look similar
and that all transitions and transition times should be
plausible. Besides ensuring that each chain is plausible
on its own, we also model how likely the hypothesized
number of chains is with respect to the environment’s
traffic statistics. An important global constraint stems
from the fact that an object can only be in one location
at a time: if the motion segmentation algorithm works
correctly and the cameras have non-overlapping view
fields, then the links of a correct solution will form
non-overlapping chains. This reduces the number of
possible hypotheses considerably.

It seems difficult to directly determine which set of
mutually-exclusive chains is a posteriori most likely.
Yet under a few independence assumptions, we can
transform a scaled version of the posterior probabil-
ity in such a way that its maximum can be found by
solving a linear program. Moreover, the linear pro-
gram formulation of the problem naturally encodes
the global constraint that the chains should not over-
lap. This approach is a modification and extension
of Poore’s linear program formulation of probabilistic
data association tasks in radar tracking [12].

We will begin by presenting a Bayesian formaliza-
tion of the problem of reconstructing the set of object
paths given the data. Section 3 will explain how to
transform the maximum a posteriori (MAP) estima-
tion problem into a linear program. After describing
some related work in section 4, we present experimen-
tal results from a system with four cameras that mon-
itors a research lab. Section 6 describes extensions of
the system that relax some current assumptions.

2 Bayesian formalization
An individual observation interval contains two dif-

ferent types of information. It tells us that something
moved through the monitored area of a specific camera
at a specific time, and it contains information about
the visual appearance of the observed object during
a short period of time. Since the motion segmenta-



tion algorithm may make mistakes even in determining
how many objects were visible at each time, a full hy-
pothesis has to state first where and when how many
objects passed through monitored areas, and where
and how many passing incidents were detected by the
motion segmentation algorithm (the incident struc-
ture). Secondly, the hypothesis has to state which
observations are successive appearances of the same
object (the links).The hypothesis Ω = Ωis ∩ Ωli is
therefore composed of the incident structure hypoth-
esis Ωis and the link hypothesis Ωli. Similarly, the
observation O = Ois ∩ Oapp consists of the observed
incident structure Ois as well as the observed visual
appearance of objects Oapp. Bayes formula yields

P (Ω|O) =
P (Oapp|Ω,Ois)P (Ois|Ω)P (Ωli|Ωis)P (Ωis)

P (O)

In order to simplify the hypothesis space, we will as-
sume that P (Ois|Ω) vanishes unless Ois = Ωis. This
assumption means that the motion segmentation is
correct in terms of the times and locations of passing
incidents. We will write P ′ to refer to probabilities
that are implicitly dependent on the incident struc-
ture Ωis or the observed incident structure Ois.

Each object moving through the environment
passes several cameras, causing a chain of ‘passing
incidents’ that are recorded on video. We will refer
to these real-life incidents mostly in terms of their
position in hypothesized chains, and will write Ci =
(ci,1, . . . , ci,l(i)) to denote the hypothesis that the in-
cidents ci,1, . . . , ci,l(i) were performed by the same ob-
ject and form the ith chain. We will write oi,j to refer
to the per-frame views of the observation interval as-
sociated with incident ci,j , and we will write Oi to
refer to all visual appearance data of chain Ci.

The prior is composed of three main terms:1 the
probability P (trans(ci,j, ci,j+1)) of the time length
and locations of each transition, the probability
P (len(Ci)) of a certain chain length, and the probabil-
ity P (new(Ωli, l)) of the hypothesized frequency with
which new people enter the environment at location l,
which regulates the overall number of chains.

P ′(Ωli) =
∏

chain i

∏
link j

P (trans(ci,j, ci,j+1))·
∏

chain i

P (len(Ci)) ·
∏
loc l

P (new(Ωli, l))

We model transitions between locations as Markov,
but allow arbitrary transition time densities, so that

1The actual prior we use models more data aspects. They
have been ommitted here to simplify the expressions.

the movement of a single object is modeled as a semi-
Markov process [7].2 Such a model can be graphically
represented as a stochastic state automaton, i.e. a di-
rected graph, where the nodes correspond to camera
locations. The links represent possible transitions be-
tween connected camera locations and are annotated
by a model of the transition time and the probability
that an object visible in the first location will become
visible next in the second camera location.

3 Transformation of the MAP estima-
tion problem into a Linear Program

Since it is unclear how to maximize the posterior
directly, we maximize instead the ratio of the poste-
rior over the posterior of a reference hypothesis Ω0,
which states that all passing incidents were caused by
different objects.

P (Ω|O)
P (Ω0|O)

=
P ′(Oapp|Ωli)P ′(Ωli)
P ′(Oapp|Ω0

li)P ′(Ω0
li)

This ratio will be decomposed first into terms that
refer to one chain each, and then further into terms
for each chain link. These chain link terms will serve
as coefficients of a linear program, whose solution will
maximize the posterior probability while obeying the
constraint that the chains be mutually exclusive.

Decomposition.We can assume that an object’s
visual appearance does not depend upon any other
object, thus the likelihood decomposes into chains

P ′(Oapp|Ωli) =
∏

chain i

P (Oi|Ci).

Most factors of the prior already refer to one chain
each, but the number of new chains is a property in-
herent to the hypothesis as a whole. However, if the
frequency of new objects is modeled as a Poisson pro-
cess, the ratio of the time-recursive formulations of
P (Ω|O) and P (Ω0|O) can be shown to decompose into
chain terms as follows:

P (Ω|O)
P (Ω0|O)

=

n∏
chain i=1

P (Oi|Ci)P (trans(Ci))P (len(Ci))λloc(ci,1)∏l(i)
j=1 P (oi,j|ci,j)P (len(ci,j))λloc(ci,j)

where j ranges over the observation intervals of the
ith chain, and λloc(i,j) is the mean of the per-frame
Poisson probability density function for new appear-
ances at the location of incident ci,j . The proof has to

2In section 6, we will explain how to implement a higher-
order Markov model.



be omitted due to space constraints, but is an adapta-
tion of Poore’s proof [12] to transition graphs instead
of motion in euclidean space, to more general distri-
butions for the transition times, and to a reference
hypothesis appropriate for the MCS task.

The decomposition into chains would lead to a lin-
ear program with as many variables as there are dif-
ferent chain hypotheses. It is however possible to re-
duce the complexity of the MCS task much further by
decomposing the chain terms into per-link terms. In
radar tracking, a decomposition into per-link terms is
inappropriate because pairwise closeness of radar sig-
nals in successive frames does not capture the notion
of a trajectory. In the MCS task however, the observa-
tion intervals are rich in appearance information and
permit us to assess whether two observation intervals
show successive appearances of the same object.

The decomposition into per-link terms makes two
modeling assumptions and uses an approximation of
the likelihood. It requires Markov transition prob-
abilities and a decomposable model of chain length
such as the geometric density function. If we de-
note by o1, o2, . . . oz all (per frame) observations in
a chain, then the likelihood that all these observa-
tions stem from the same object can be computed
by

∏z
h=1 P (oh|o1, . . . oh−1), where P (oh|o1, . . . oh−1)

computes the probability that a sample observation
oh is from the same distribution as all the previous
views. We approximate this by comparing each view
with only a small number of recent observations:

P (oi,j,k|oi,1, . . . , oi,j−1, oi,j,1, . . . , oi,j,k−1) ≈⎧⎨
⎩

P (oi,1,1) if j = 1 & k = 1
P (oi,j,k|oi,j,1, . . . oi,j,k−1) if k �= 1
P (oi,j,1|oi,j−1) if k = 1 & j > 1

where i, j and k index chains, links, and frames, re-
spectively, and P (oi,1,1) is a non-informative prior over
the observation space. The last case in the above ex-
pression handles the first observation in an observa-
ton interval that is not the first incident in a chain:
this first observation is matched against a model of
appearance estimated from the whole previous obser-
vation interval. With this independence assumption,
many terms that are common to both hypotheses can-
cel out, yielding

P (Ωli|Oapp)
P (Ω0

li|Oapp)
≈

∏
i

l(i)∏
j=2

P (oi,j,1|oi,j−1)P (trans(ci,j−1, ci,j))(1− Pχ)
P (oi,j,1) · Pχ · λloc(i,j)

,

(1)

where Pχ (exit probability) is the parameter of the
geometrically distributed chain length probability.

Transformation into a Linear Program.
Above, we transformed the ratio of posteriors into a
product of terms. Each of the terms refers only to
a hypothesized transition (link) or its two endpoints.
The best solution will be that set of links which max-
imizes the corresponding product of link terms. By
taking the negated logarithm, the maximization of the
product turns into the minimization of a sum. This
makes it possible to express the maximization of the
posterior under the constraint of mutual exclusivity of
the chains as a linear program. More specifically, it be-
comes a weighted assignment problem for which very
efficient algorithms exist, for example the Munkres al-
gorithm [4] that we currently use to compute a solu-
tion. The input to the Munkres algorithm is a matrix
whose elements are the negated logarithm of product
terms of expression (1), one element for every possible
link between two incidents and between each incident
and the virtual incident ‘NEW’.

Focus sets. The size of this matrix is proportional
to the square of the number of observations. However,
only a small fraction of the matrix elements have to
be actually computed because most links can never
be part of the optimal solution. These are all links
between observation intervals oA and oB for which the
hypothesis of a link between them is a priori less likely
than that of the hypothesis that oA is a new object.
More precisely, these are those links for which

P + · P (trans(oB, oA)) · (1 − Pχ)
P (oA,1) · Pχ · λloc(A)

(2)

is smaller than 1. Here,

P + = max
o∈M

(max(P (·|o)))

is the upper bound on the visual match probability of
any possible observation matched with any of the pre-
viously seen observations o ∈ M . Since we use para-
metric distributions for the visual match probability,
the inner maximum can be determined analytically for
each of the observations already in the modelbase M ,
and P + is updated when a new observation is made.

The remaining terms in expression (2) only depend
on the locations of the two observations and their rel-
ative temporal distance. In particular, the transition
probability is composed of a spatial transition prob-
ability and a probability of transition times. This
means that if searching for plausible previous occur-
rences of the person in incident oA, we only have to
consider those previous incidents whose ending times



fall into the time window3 of those ending times that
make expression 2 larger than or equal to 1.

We call the set of all match candidates that pass
this criterion the focus set of a new observation in-
terval, because the subsequent matching process can
focus on these candidates only without loss of correct-
ness. If one stores the previous monitoring incidents
ordered by location and ending times, it suffices to
compute one time window per possible preceding lo-
cation. This time window can then be used to prune
the match candidates that are necessarily less plausi-
ble than a new object entering the scene.

Online processing. The algorithm as described
above uses batch processing, which is unreasonable if
the system is used for continuous monitoring. How-
ever, we can prove that there is no online algorithm
that returns the same answer as the batch algorithm
for all inputs. More specifically, for all k it is possible
to construct a matrix that could have arisen from a
tracking situation, and for which it holds that none of
the assignments of the optimal solution for the subma-
trix containing the first k − 1 monitoring incidents is
part of the optimal solution for the matrix containing
the first k monitoring incidents.

Yet inputs with very long-term effects seem infre-
quent, and simulations suggest that approximate so-
lutions with very few wrong links can be obtained by
the following modification of the algorithm: In order
to assign a new monitoring incident A to its most likely
previous occurrence (or NEW), we consider the sub-
matrix containing A and all those monitoring incidents
recorded after A whose focus set contains at least one
element of A’s focus set. Note that by an argument
similar to that of the focus set time windows, one can
determine the time one has to wait for ‘contesting’ in-
cidents of A. Once the submatrix is complete, the op-
timal assignment for A is computed and the assigned
incident marked as taken. Then an analogous subma-
trix is constructed for the next monitoring incident.

This means that each assignment considers a cer-
tain lookahead so as to preclude the possibility that
a premature assignment drastically limits the choice
of reasonable matches for future monitoring incidents.
Possible conflicts with past monitoring incidents are
handled because their assignments have already con-
sidered the conflict and made the assignment accord-
ingly. This online algorithm can be made arbitrarily
correct by including not only the set of possible con-

3The computation of the time windows requires the inver-
sion of probability pdfs, which can approximated very fast by
a table lookup. We only need one table because we compute
(transition dependent) walking time probabilities from (transi-
tion independent) walking speed probabilities

testants into the submatrix, but also the set of con-
testants of the contestants, and so on. The novelty of
this online algorithm does not lie in its use of time win-
dows, but in the dynamic choice of the time windows
such as to include all direct contestants, secondary
contestants and so on by means of the focus sets.

4 Related work
Cox [5] appears to be the first to use probabilis-

tic formalizations of the radar tracking community for
computer vision tasks. However, he did not exploit
the visual characteristics of observations (i.e., track-
ing features) but only used their incident structure
and left the probabilistic formalization of the radar
task unchanged. Huttenlocher [9] devised a tracker
that could lock back onto tracking targets after they
went temporarily out of the field of view. However,
his visual matching method assumes smaller changes
in appearance than we do (one camera vs. multiple
cameras with different viewing angles). He also does
not impose a prior on matchings between observations,
because he assumes an environment without a spatio-
temporal structure such as the one imposed by the
corridors. Exploiting such structure will however al-
low our system to scale. Berkeley’s traffic monitoring
system [10] tracks cars and performs occlusion reason-
ing for a single video stream. The occlusion reasoning
method could not be extended to handle disappear-
ances of cars between multiple cameras.

Recently, a number of multi-camera monitoring sys-
tems have appeared in the literature. Olson and Brill
[11] built an indoor monitoring system that creates a
graph representing the per-frame movement and inter-
action of objects in a single video stream. Although
their system architecture assumes multiple cameras,
no analysis across cameras is performed. Boyd et al.
[2] presented an architecture designed for multiple sen-
sors observing a dynamically changing environment.
However, their cameras overlap and the view fields
are transformed into one contiguous view field. The
system is designed to perform tasks that involve tech-
niques with project-update cycles, such as Kalman
tracking or HMMs. However, although their archi-
tecture is quite general, it is difficult to apply it to
tasks such as ours where observed objects are invisi-
ble for extended periods of time. Grimson et al. [6]
have built another multi-camera system that assumes
overlapping camera fields: they envision observing ac-
tivities by a set of cameras that are scattered in an
environment and that determine automatically how to
map their local view fields into one global view field.
They then learn classes of observed behavior.

Huang and Russell’s system [8] performs a task sim-
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Figure 1: Floor plan of the camera setup and back-
ground snapshots from the 4 cameras.

ilar to ours: they monitor a highway at two consecu-
tive locations and try to find matching cars. They con-
centrate on appearance constraints, but also transform
their problem into a weighted assignment problem.
They start from different premises than our derivation
which leads to different link weights and to a different
structure of the weighted assignment problem. Their
solution is confined to setups where cameras are placed
alongside a single path so that the movement of the
objects is deterministic, with the exception of objects
entering and exiting the environment. Our solution
is much more general by allowing arbitrary corridor
systems in which moving objects can choose paths.
Therefore, our system is able to reconstruct the paths
of all objects through an environment, which is inter-
esting for some tasks. For example, traffic planners
might want to optimize traffic light controls such that
traffic flow is least interrupted for the most popular
routes through a city. Huang and Russell also describe
a heuristic online algorithm that trades off matching
confidence with solution coverage. Unlike the online
algorithm described above, they do not use a temporal
lookahead, which could cause their algorithm to make
premature decisions.

5 Experimental results
In order to evaluate the system, we set up a small

surveillance system of 4 cameras in and around a re-
search lab. The floor plan is depicted in figure 1, to-
gether with background snapshots from the 4 cameras.
Our data contained strong reflections and shadows of
the pedestrians on the corridor floors. In order to
eliminate most of the background from the segmented
pedestrians, we employ both a background subtrac-

tion scheme and a recent dense motion algorithm that
maximizes the area of coherently moving, similar pix-
els [3]. The latter tends to group background pixels
with faint reflections with the rest of the non-moving
background. We find all coherent patches of mov-
ing pixels that surpass a certain size and track them
as long as they are visible by employing a projection
scheme similar to [1].

The collection of image regions corresponding to
such a track is then mapped into a coarse partition of
the HSV color space. We empirically designed this col-
orspace to distinguish between popular clothing colors
such as beige, offwhite, or denim, while being coarse
enough to be robust to lighting changes due to shad-
ows. We then count for each bin how large an area of
the tracked object is covered by this color and cluster
the count vectors of each observation interval. The
counts in each color bin across a cluster are modeled
as a poisson distributed variable. This very simple
scheme results in relatively robust probabilities of vi-
sual similarity.

Instead of modeling walking times for each tran-
sition, we use a single frame-quantized gamma pdf
to model walking speeds. This reduces walking time
model construction to measuring the distances be-
tween camera view fields. Penalty distances had to
be added for transitions that involve opening of regu-
lar doors (exiting the lab) and doors with a security
card lock (entering the lab).

We conducted an experiment of about 8 minutes,
where two subjects walked separately and together as
many paths through the system as they could think
of, always changing clothes in between different paths
so as to impersonate different people. Since the ex-
periment was conducted on a summer morning, only
three additional people walked through our setup. The
experiment resulted in a total of 28 observation inter-
vals from 14 true tracks. We count the tracks that two
people walked together as one track because the basic
tracker consistently merged the two people together
and therefore also into one observation interval. The
next version of the system will include a more sophis-
ticated motion segmentation algorithm to reduce the
frequency of such merges.

Figure (2) shows observation intervals and the cor-
rect observation links from a subsequence of the exper-
iment. Overall, 28 links had to be estimated, because
the system determines for each incident either a pre-
ceding incident or links the incident to ‘NEW’. Our
initial results are quite promising: only two out of the
28 incidents were assigned to an incorrect predecessor.
In both cases, the transition times of the suggested



links were likely, and the clothing of the correct and
wrong matches had similar color and differed only in
the pants’ length.

However, the data also contains two cases in which
the same person appears again after an unnaturally
long disappearance time, but is not recognized as pre-
viously seen by the system: in the first case, a person
unrelated to the experiment crossed the hallway and
disappeared into a room from which he reappeared
after a few minutes to cross the hallway again. Nei-
ther the crossing behavior nor the disappearance in
rooms is modeled in our current system, and therefore
the system labeled both appearances of this person as
‘NEW’.

The other case of a long disappearance time was
constructed deliberately: one of the subjects paused
on a very short stretch of hallway for several seconds
so as to simulate a pedestrian that would stop to chat
with another pedestrian (which violates the modeling
assumption that the person would just walk through
the hallway). In this case, the system also labeled the
second appearance as ‘NEW’.

It would be interesting to extend the system in a
way that would detect such special cases from the fact
that such exit/new events would occur for two or more
pedestrians at the same time, namely for the people
who talk to each other. For this experiment, the batch
version and the online version with a lookahead that
includes only the direct contestants yield the same so-
lution.

These first results were obtained in difficult light-
ing situations and with a very weak representation of
visual appearance, as well as significant segmentation
errors.4 But they nonetheless suggest that our ap-
proach performs well. Our focus sets led to reasonable
time windows and ensured that each observation only
had to be compared with a very limited number of
other observations. The average size of the focus sets
in this experiment was 1.6, while without the focus
sets we would have needed to compare an observation
with an average of 13.5 other observations.

6 Extensions
There are three obvious extensions that generalize

the current model.
Handling segmentation errors. Throughout

the paper, we have assumed that the motion segmen-
tation algorithm works correctly, at least in terms of
the number, location, and time of the incidents it re-
ports. However, in practice observations of two ob-
jects can be merged into one if they are too close

4The segmentation errors were due to strong reflections and
shadows on the hallway floor.

and partially occlude each other. In these cases, we
can still express a solution in terms of links between
observation incidents by relaxing the constraint that
the chains must be mutually exclusive. This can be
achieved by allowing each observation incident to ap-
pear in an arbitrary number of chains (instead of in at
most one), and to add a penalty term for chain cross-
ings to the objective function. The resulting problem
is still a linear program and can be solved efficiently,
but in order to make true chain crossings reasonably
likely, we will have to define the matching probability
in a way that allows partial matches of observations
without leading to too many false positives.

If the amount of occlusion is too large, an object
will remain invisible. This can probably be modeled
by introducing a detection probability into the expres-
sion of the posterior, as is common in the radar track-
ing community.

Higher order Markov models. In the prior, we
used a (first-order) Markov model for transition prob-
abilities. If we assume instead that the location an ob-
ject goes next is dependent on the current location and
the previous locations, we obtain a multidimensional
assignment problem. This problem is NP-complete,
but can be rapidly approximated by Lagrangian re-
laxation [13].

However, it may be easier instead to add the pri-
mary motion direction of an object in the camera
image as another parameter of the transition model.
Such an extended transition model would give U-turns
a low probability, for example.

Handling overlapping cameras. If two cameras
overlap, we can replace them by a single virtual cam-
era with a larger field of view. This requires mosaicing
together the images, which can be done with standard
techniques such as [14].

7 Conclusions
This paper introduced the multi-camera surveil-

lance task and a Bayesian formalization. We showed
how the MAP solution can be found under some addi-
tional independence assumptions by transforming the
problem into a compact linear program. We demon-
strated the viability of our approach with results from
an 8 minute experiment with 4 cameras, for which
nearly all links were correctly reconstructed.
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