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Abstract

Uncovering the haplotypes of single nu-
cleotide polymorphisms and their population
demography is essential for many biological
and medical applications. Methods for haplo-
type inference developed thus far—including
methods based on coalescence, finite and in-
finite mixtures, and maximal parsimony—
ignore the underlying population structure in
the genotype data. As noted by Pritchard
(2001), different populations can share cer-
tain portion of their genetic ancestors, as
well as have their own genetic components
through migration and diversification. In
this paper, we address the problem of multi-
population haplotype inference. We capture
cross-population structure using a nonpara-
metric Bayesian prior known as the hierar-
chical Dirichlet process (HDP) (Teh et al.,
2006), conjoining this prior with a recently
developed Bayesian methodology for haplo-
type phasing known as DP-Haplotyper (Xing
et al.,, 2004). We also develop an efficient
sampling algorithm for the HDP based on
a two-level nested Pélya urn scheme. We
show that our model outperforms extant al-
gorithms on both simulated and real biologi-
cal data.

1. Introduction

Recent experimental advances have led to an explosion
of data which document genetic variation at the DNA
level within and between populations. For example,
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the international SNP map working group (2001) has
reported the identification and mapping of 1.4 million
single nucleotide polymorphisms (SNPs) in the human
genome. These kinds of data lead to challenging in-
ference and learning problems, problems whose solu-
tions could lead to greater understanding of the ge-
netic basis of disease propensities and other complex
traits (Chakravarti, 2001; Clark, 2003).

We concern ourselves with the following problems. For
autosomal loci in the genome of diploid organisms,
the SNP haplotypes, which correspond to the joint
identities of a contiguous sequence of multiple SNPs,
are inherently ambiguous when only their genotypes
(the unordered set of SNP alleles) are given (Clark,
1990; Hodge et al., 1999). The problem of inferring
SNP haplotypes from genotypes is essential for the
understanding of genetic variation in a population.
A straightforward statistical genetics argument shows
that the problem of haplotype inference can be for-
mulated as a mixture model, where the set of mixture
components corresponds to the pool of ancestor hap-
lotypes, or founders, of the population (Excoffier &
Slatkin, 1995; Niu et al., 2002; Kimmel & Shamir,
2004; Xing et al., 2004). Crucially, however, the size
of this pool is unknown; indeed, knowing the size of
the pool would correspond to knowing something sig-
nificant about the genome and its history. Thus we
have a mixture model problem in which a key aspect
of the inferential problem involves inference over the
number of mixture components.

This uncertainty regarding the size of the haplotype
pool is an instance of the perennial problem of “how
many clusters?” in the clustering literature. The prob-
lem is particularly salient in large data sets where the
number of clusters needs to be relatively large and
open-ended—exactly the scenario in population ge-
nomic analysis. Model selection techniques based on
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fixing the number of clusters and using an information-
theoretic score to gauge the appropriate number seem
misplaced when the uncertainty is so high. An alter-
native is provided by nonparametric Bayesian mod-
els, specifically the Dirichlet process (DP) (Ferguson,
1973; Blackwell & MacQueen, 1973), which provides
a prior and posterior distribution for mixture mod-
els with unbounded numbers of mixture components.
Xing et al. (2004) proposed to address the haplo-
type inference problem by exploiting DP mixtures.
Completing the DP model specification with a set
of ancestor-specific inheritance models, this approach
yields Bayesian posterior inference for many of the en-
tities of interest in the haplotype problem, including
ancestral states and haplotype phases. The perfor-
mance of the DP-based haplotyper was shown to be
comparable to the state-of-the-art haplotype inference
algorithm, PHASE (Stephens et al., 2001), and it sig-
nificantly outperforms other algorithms based on finite
mixture models (Excoffier & Slatkin, 1995; Niu et al.,
2002; Kimmel & Shamir, 2004).

This progress notwithstanding, the haplotype models
developed so far are still limited in their scope and
are inadequate for addressing many realistic problems.
Consider for example a genetic demography study, in
which one seeks to uncover ethnic- and/or geographic-
specific genetic patterns based on a sparse census of
multiple populations. In particular, suppose that we
are given a sample that can be divided into a set of sub-
populations; e.g., African, Asian and European. We
may not only want to discover the sets of haplotypes
within each subpopulation, but we may also wish to
discover which haplotypes are shared between subpop-
ulations, and what are their frequencies. Empirical
and theoretical evidence suggests that an early split of
an ancestral population following a populational bot-
tleneck (e.g., due to sudden migration or environmen-
tal changes) may lead to ethnic-group-specific popu-
lational diversity, which features both ancient haplo-
types (that have high variability) shared among dif-
ferent ethnic groups, and modern haplotypes (that
are more strictly conserved) uniquely present in dif-
ferent ethnic groups (Pritchard, 2001). This struc-
ture is analogous to a hierarchical clustering setting
in which different groups comprising multiple clusters
may share clusters with common centroids (e.g., differ-
ent news topics may share some common key words).

A naive solution to the aforementioned problem would
be to infer haplotypes separately in the subpopula-
tions, using, say, separate DP mixtures. This is clearly
suboptimal, however, because it may unnecessarily
fragment the data, and may lead to unrobust estima-
tion of demographic parameters. In particular, for rare

haplotypes that are present in a small number of indi-
viduals (e.g., one or two) in each population but overall
still have many bearers across all populations, the es-
timation of their founders (i.e., the centroid) should
take into account of these bearers in all populations
jointly, rather than being based on each population
separately. Essentially, what we want is a model to
solving multiple clustering problems simultaneously.
Each clustering can be modeled by an infinite mixture,
and the centroids of different clustering problems can
be shared. We can formulate this problem using a hi-
erarchical infinite mixture. In a hierarchical infinite
mixture, we have a finite number of infinite mixtures,
each corresponds to a specific empirically defined pop-
ulation. The components in each of the mixtures can
be shared. The hierarchical Dirichlet process (HDP)
mixture model developed by Teh et al. (2006) pro-
vides a Bayesian approach to capturing exactly such
structure.

In this paper, we present HDP-Haplotyper, a new
statistical genetic model for Bayesian multi-population
haplotype inference. This model conjoins a hierarchi-
cal Dirichlet process to the haplotype model proposed
in Xing et al. (2004), leading to a general Bayesian
inference algorithm for jointly inferring haplotypes in
multiple populations. Our model is in fact more gen-
eral than the haplotyping domain. However, apart
from its intrinsic interest, this domain has a signifi-
cant advantage as a development domain for hierar-
chical Bayesian clustering methods—in the haplotype
setting the ground truth, i.e., the true haplotypes, can
be obtained if desired via (expensive) sequencing ex-
periments (Patil et al., 2001). Also, pedigree informa-
tion can be exploited in some cases to obtain ground
truth.

2. Background

Elaborating on the notational scheme used in Xing
et al. (2004), let G = [G{1,...,G}] denote the
genotype of T' contiguous SNPs of individual i from
ethnic group j. For diploid organisms such as human,
we denote the two alleles of a SNP by 0 and 1; thus
each GY} can take on one of four values: 0 or 1, indi-
cating a homozygous site; 2, indicating a heterozygous
site; and ’?’; indicating missing data. (A generaliza-
tion to polymorphisms with k-ary alleles is straight-
forward, but omitted here for simplicity.). A haplo-
type of individual ¢ from ethnic group j is denoted
by H = [H;Z)l, e ,H;jfT], where the sub-subscript
e € {0,1} denotes the two possible parental origins
(i.e., paternal and maternal) of the haplotypes.

In the following, we present a probabilistic model for
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the generation of haplotypes in multiple populations,
and for the generation of genotypes from these haplo-
types. We assume that each individual’s genotype is
formed by drawing two random templates from an an-
cestral pool of founding haplotypes typical of the eth-
nic population to which the individual belongs, and
that these templates are subject to random pertur-
bation according to an inheritance model Pn(H|A),
where H denotes an individual haplotype and A de-
note its ancestral template. We further assume that
the given noisy observations of the resulting genotypes
are related to the true haplotypes via an genotyping
model Py,(G|Hy, H1). Since the size of the ancestor
pool and its composition are both unknown for each
of the populations, we treat them as random variables
under a hierarchical Dirichlet process prior. We be-
gin by providing a brief description of both the ba-
sic Dirichlet process and hierarchical DP, and subse-
quently show how this process can be incorporated into
a model for multi-population haplotype inference.

2.1. Dirichlet Process Mixtures

In the context of mixture models, we associate mix-
ture components with colors in the Pélya urn model
and thereby define a “clustering” of the data. Specif-
ically, let ¢; denote the choice of mixture component
associated with the data point x;; i.e., let x; ~ f(+|$:)
for some likelihood function f. Under the DP model,
¢; is a sample from ). Note that since many balls
in a Pélya urn have the same color, and the num-
ber of colors is not fixed but grows with the number
of data points, we end up with a mixture model for
(1,22, x3,...) with unbounded cardinality. This mix-
ture model is referred to as a DP mixture. Xing et al.
(2004) used this construction to define a generative
model for genotypes in a single population as follows:

e Draw first haplotype:
(ybl | DP(T7 QO) ~ QO(')7

sample the 1st founder;

sample the 1st haplotype
from an inheritance model
defined on the 1st founder;

hi ~ Pu(:|¢1),

e for subsequent haplotypes:
— sample the founder indicator for the ith haplotype:

For completeness, we begin with a brief recap of

s i< B
the basic DP mixture model for haplotypes, as used ei[DP(7, Qo) N{ p(ci = ¢; for some j <iifea, ..., cio1) = 7740
in Xing et al. (2004). As introduced by (Ferguson, plei # ¢ for all j <iiles, .., ci1) = 771+

1973), a Dirichlet process (DP) is the distribution of
a random probability distribution G on some sample
space, such that for any partition (A, ..., Ax) of the
sample space, we have:

(Q(A1)7 SRR Q(Ak)) ~ Dir(TQO(Al)v s 7TQO(A/€))7
where Dir denotes the finite-dimensional Dirichlet dis-
tribution, where 7 denotes a concentration parameter
and where )¢ denotes a base measure over the sample
space. We write Q ~ DP(1,Qp) if Q is distributed
according to a DP.

A more concrete understanding of the DP can be ob-
tained by considering a Pdlya urn model, a distribu-
tion on labeled partitions of data. Consider in par-
ticular an urn that at the outset contains a ball of
a single color. At each step we either draw a ball
from the urn and replace it with two balls of the same
color, or we are given a ball of a new color which we
place in the urn. The parameter 7 defines the prob-
abilities of these two cases. Viewing each (distinct)
color as a sample from @y and each ball as a sam-
ple from @, Blackwell and MacQueen (1973) showed
that this Pélya urn model yields samples whose distri-
butions are those of the marginal probabilities under
the Dirichlet process. The urn scheme also directly
suggests a sampling-based computational scheme for
posterior inference.

where n., is the occupancy number of class ¢;—the num-
ber of previous samples belonging to class c¢;.

— sample the founder of haplotype i (indexed by ¢;):
— 4 if ¢; =c¢; for some j <1 (ie.,
R ¢; refers to an inherited founder)

(bci |DP (7—7 QO)

if ¢i #c; forall j<i(ie., ¢
Qo(¢) refers to a new founder)

— sample the haplotype according to its founder:
hi | ¢i ~ Pu(:|oec;)-

e sample all genotypes (according to a one-to-one map-
ping between haplotype index 4 and allele index n.):

gn |hngs hny ~ Py(:[hng, bny ).

2.2. Hierarchical Dirichlet Process Mixtures

Now we consider the case in which there exist multiple
sample populations (e.g., ethnic groups), each modeled
by a distinct DP mixture. The components (e.g., an-
cestors) in any of the mixtures may be shared across
the mixtures, but the weight of a component in each
mixture is unique. To tie population-specific DP mix-
tures together in this way, we develop a hierarchical
DP mixture model (Teh et al., 2006), in which the
base measure associated with each population-specific
DP mixture is itself drawn from a Dirichlet process
DP(y,F). Since a draw from a DP is a discrete
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measure with probability 1, atoms drawn from this
measure—atoms which are used as the mixture compo-
nents in each of the population-specific DP mixtures—
are not generally distinct. This allows sharing of com-
ponents across mixture models.

As with the DP, it is useful to describe the marginals
induced with an HDP using the more concrete repre-
sentation of Pélya urn models. Imagine we set up a
single “stock” urn at the top level, which contains balls
of colors that are represented by at least one ball in one
or multiple urns at the bottom level. At the bottom
level, we have a set of distinct urns which are used to
define the DP mixture for each population. Now let’s
suppose that upon drawing the m;-th ball for urn j at
the bottom, the stock urn contains n balls of K distinct
colors indexed by an integer set C = {1,2,...,K}.
Now we either draw a ball randomly from urn j, and
place back two balls both of that color, or with some
probability we return to the top level. From the stock
urn, we can either draw a ball randomly and put back
two balls of that color in the stock urn and one in j,
or obtain a ball of a new color K + 1 with probabil-
ity —7 = and put back a ball of this color in both
the stock urn and urn j of the lower level. Essentially,
we have a master DP (the top urn) that serves as a
source of atoms for J child DPs (bottom urns). Our
Pélya urn scheme is similar in spirit to the urn scheme
discussed in Teh et al. (2006), but it differs in that
it avoids having separate occupancy counters in each
lower-level DP for repeated draws of the same atom
from a top-level DP.

Associating each color k with a random variable ¢
whose values are drawn from the base measure F,
and recalling our discussion in the previous section,
we know that draws from the stock urn can be viewed
as marginals from a random measure distributed as a
Dirichlet Process Qo with parameter (v, F). Specifi-
cally, for n random draws ¢ = {¢1,...,¢,} from Qy,
the conditional prior for (¢,,|¢_,, ), where the subscript
”—n” denotes the index set of all but the n-th ball, is

K

¢n|¢—n ~ Z k

———— 4 () +
k:ln_1+7 %((b )

n—1+v

where ¢,k = 1,..., K denote the K distinct values
(i.e., colors) of ¢ (i.e., all the balls in the stock urn),
ny denote the number of balls of color k in the top
urn, and d,(®;) denotes a unit point mass at ¢; = a.

Conditioning on Qo (i.e., using Qo as an atomic base
measure of each of the DPs corresponding to the
bottom-level urns), the mj-th draws from the jth
bottom-level urn are also distributed as marginals un-

T F(g), (1)

der a Dirichlet measure:

¢Mj |¢7m:,

Nk

n—1lty 5., T Y
mj—1+7 ¢’“(¢mj)+mj—1+7n—1+’y

k=1
K
= Z Tz (Pm; ) + T 1 (Pm; ), (2)
k=1
.
where m, = ﬁ, TK41 = ﬁnf’yﬁv

and m;; denotes the number of balls of color k in
the j-th bottom urn.

3. The HDP-Haplotyper Model

Using the HDP construction described in the previ-
ous section, we now define an HDP mixture model for
the genotypes in J populations. The basic generative
structure of the model is as follows:

sample a DP of founders for

Qoly, F' ~ DP(y, F), all populations;

sample the DP of founder for
each population;

Qj |T7 QO ~ DP(T7 Q0)7

¢(j) 0, ~ Q; sample the founder of haplo-
ie 17 7 type i. in population j;
D40 e sample haplotype i. in pop-

hil 193 Pu(lei,), ulation 7;

sample genotype i in popu-

gl(j)|h(_j) h(_j) ~ Pg(|h(J) h('j))71ation i

i0 7T i0 7T
where in practice the first three sampling steps follow
the nested Pdélya urn scheme described above. Note
that in the HDP the base measure of each lower-level
DP is a draw from the root DP(~, F'). From this de-
scription, it is apparent that the totality of all atomic
samples (i.e., ancestors) from the base measure F' form
the common support of both the root DP and all the
population-specific DPs. The child DPs place different
mass distributions on this common support.

We now discuss the parameterization of the model in
more detail, specifically the inheritance model P (-)
and the genotyping local P,(-). We follow the presen-
tation in Xing et al. (2004), making modest extensions
where necessary.

Recall that a base measure F' at the root of HDP is de-
fined as a distribution from which ancestor haplotype
templates ¢y are drawn. We define ¢ = {Ay, 0},
where Ay = [Ag1,..., Akr| is a founding haplotype
configuration for loci t = [1,...,T] and define 6}, as the
mutation rate of this founder. The latter denotes the
probability that an allele at a locus is identical to the
ancestor at this locus. Under this framework, the base
measure F is a joint measure on both A and 6. We



Bayesian Multi-Population Haplotype Inference via a Hierarchical Dirichlet Process Mixture

let F(A,0) = p(A)p(d), where p(A) is uniform over
all possible haplotypes and p(#) is a beta distribution,
Beta(ap, Or), with a small value for 8y, /(ap + Bp) cor-
responding to a prior expectation of a low mutation
rate. For simplicity, we assume each Ay, (and also
each Hl“t)) takes its value from an allele set B. Omit-
ting all but the locus index ¢, we define our inheri-
tance model to be a single-locus mutation model as
follows (Xing et al., 2004):

I(ht#at)
p(hilag, 0) = gl(hi=ar) 1—-6 "
| |B| -1

where I(-) is the indicator function.

Let J denote the total number of populations (i.e., eth-
nic groups), let I; denote the number of individuals in
j-th group, and assume that the population identity
(i.e., ethnic identity) of each individual is known (al-
though unknown population identity can be addressed
by introducing latent population indicator variables).
For each individual haplotype H”, define Cl(g ) to be
its founder indicator. With this setup, the joint con-
ditional probability of haplotype instances h = {hii )
e € {0,1},i € {1,2,...,;},5 € {1,2,...,J}} and the
mutation rates 6 = {61, ...,0k}, given the ancestor in-
dicator ¢ = {¢{’ : e € {0,1},i € {1,2,...,[;},j €
{1,2,...,J}} of haplotypes and the set of ancestors
a={ay,...,ax}, can be written explicitly as:

7 Rlon, Br) ,
p(h, 9|a, C) = 7’,[9k]ah+lk—l[1 _ ek]ﬁh+lk_1
1 G 0

where R(ap, 8r) = %7 ly = Zj,i,e,t]l(h;i),t =

art)l(c;) = k) is the number of alleles in all popula-
tions which are identical to the ancestral alleles, and
Do =2 e LR # an)l(cf” = k) is the total num-
ber of mutated alleles. The marginal conditional dis-
tribution of haplotype instances can be obtained by
integrating out 6 in Eq. (4):

p(h|a, C)

K
= H R(on, Bn)

k=

r(ah+zk)r(6h+z;)< 1 >l%
Lo +Bn+ U +1,) \|B|—1

—

(5)

Our genotyping model Py is the same as in Xing et al.
(2004); it assumes that the observed genotype at a lo-
cus is determined by the paternal and maternal alleles
of this site, subject to low-probability corruptions (i.e.,
inconsistencies).

For the concentration parameters v and 7, we use

vague inverse Gamma priors:

p(y ") ~G(1,1) = p(y) <y 2exp(—1/7))  (6)

and similarly for 7. The posterior distribution of v de-
pends only on the number of instances and the number
of classes. The predictive distribution of + is:

YT (y)
p(na,...,nxly) m
72 exp(1/9) ()
pOlkn) gl B ()

The conditional posterior for v depends only on the
number of samples, n, and the number of components,
k, and not on how the samples are distributed among
the components. The distribution p(log(v)|k, n) is log-
concave, so we may efficiently generate independent
samples from this distribution using adaptive rejection
sampling (Rasmussen, 2000).

Finally, note that we have used a single concentration
parameter 7 for the lower-level DPs; it is also possible
to allow separate concentration parameters for each of
the lower-level DPs, possibly tied distributionally via
a common hyperparameter.

4. Inference

In this section we describe a Gibbs sampling algorithm
for posterior inference under the HDP-Haplotyper
model. The variables of interest are c{”,,ax, b,
and gz“g (the only observed variables). We may as-
sume that the represented mixture components (i.e.,
founders) are indexed by 1,..., K, the weights of the
founders (i.e., the mixing proportions) at the top level
DP is g = (n_”ll_w,..., n—an-l-'y’ n—¥+7) where 71+1+’Y
is the total weight corresponding to some unrepre-
sented founder K + 1; and the weights of founders
at the bottom-level DP for, say, the jth population,
are (m;njllJrT’ Y m;'nj’lﬁT’ m; IlJrT)’ where m]‘lerT
responds to the probability of consulting the top-level
DP. The Gibbs sampler alternates between two cou-
pled stages. First, we sample the CE? and ay,; given
the current values of the hidden haplotypes. Then,
given the current state of the ancestral pool and the
ancestral template assignment for each individual, we

sample the h{/ )7t variables.

Cor-

Before sampling CZ), we first erase its contribution to
the sufficient statistics of the model. If the old cije ) was
K, set mjp = mjp — 1. If it was sampled from the
top level DP, we also set ng = nir — 1. Note that
CE? < K +1 (i.e., indicating existing founders, plus a
)

e

new one to be instantiated). Now we can sample ¢
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from the following conditional distribution:
Dle) = e )
x p(ef = k[ m, n)p(h |ax, ¢, h! =)
o (mﬁj‘ie] + Tﬂk)p(hii)mk,l;j’ie]), for k=1, ,K+1

where mﬁj’ie] represents the number of ¢}’ that are
e/

equal to k, except ¢’

i in group j, and mj k41 = 0;
1177} denotes the sufficient statistics associated with
all haplotype instances originating from ancestor k,
except hy”’. If as a result of sampling ¢{”’ a formerly
represented founder is left with no haplotype associ-
ated with it, we remove it from the represented list of
founders. If on the other hand the selected value k is
not equal to any other existing index ¢}’ i.e, ¢ =
K + 1, we increment K by 1, set nxg4+1 = 1, update
[ accordingly, and sample ax 1 from its base mea-
sure F'. We can also use the approximate Metropolis-
Hasting updating proposed in Xing et al. (2004) to

speed up the mixing of the Markov chain.

Now, from Equation (5), we can use the following pos-
terior distribution to sample the founder ag:

plaklc, h) H

jvic|cg‘2t:

_ T(an + k)T (B + lkﬁt)l, R(an, Br) (8)
T(an + B + my)(|B| = 1)

where [}, ; is the number of allelic instances originating
from ancestor k at locus t across the groups that are
identical to the ancestor, when the ancestor has the
pattern ax ;. If k& was not represented previously, we
can just use zero values of [+ which is equivalent to
using the probability p(a|h{”).

p(h? Jars, 1))

We now proceed to the second sampling stage, in which
we sample the haplotypes hii ) according to the follow-
ing conditional distribution:

P(hZ{JhEJi)imt] ,C,a,g)
< p(gift) |h§2t7 hgg,t’ ufi)ie_,t] )p(hii),th,t, lfi)ic,t]) (9)

where 19) = 1917 4 142, = ) and uf_, are
the set of sufficient statistics recording the inconsisten-
cies between the haplotypes and genotypes in popula-
tion j. See Eq. (11) in Xing et al. (2004) for detailed

definitions and parameterizations.

5. Experiments

To validate the HDP-Haplotyper algorithm, we ap-
plied it to both simulated data and real data. We com-
pare its performance to those of DP-Haplotyper (Xing

et al., 2004), PHASE 2.1.1 (Stephens et al., 2001;
Stephens & Scheet, 2005) and HAPLOTYPER 1.0
(Niu et al., 2002). We ran each program using its de-
fault values. Two different error measures are used for
evaluation: errg, the ratio of incorrectly phased SNP
sites over all non-trivial heterozygous SNPs (exclud-
ing individuals with a single heterozygous SNP), and
err;, the ratio of incorrectly phased individuals over all
non-trivial heterogeneous individuals (i.e., those with
at least two heterogeneous SNPs). We also present
the number of reconstructed founder haplotypes K
(note that HAPLOTYPER and PHASE do not infer
the number of ancestors and thus the K there merely
means the total number of distinct haplotypes).

5.1. Simulated Data

To simulate multi-population genotypes/haplotypes,
we collected a candidate pool of founding haplotypes
from the dataset used in Stephens et al. (2001).
Among them, a few haplotype templates are selected
as shared founders across different groups, and for
each group, more templates are added to form group-
specific pools of founders. We then drew each individ-
ual’s genotype and haplotypes by randomly choosing
two templates from the pool and applying the muta-
tion and noisy observation process described in Sec-
tion 3.

The synthetic dataset includes 100 individuals from
five groups (20 from each), with genotypes contain-
ing 10 sites. Each group has two shared founders and
three more templates unique to the group. So, overall
each group has 5 founders, while the total number of
founders across the five groups is 17. We tested on two
datasets with different mutation rates, 0.01 and 0.05,
respectively. The noisy observation rate was the same
for each group, each individual, and each locus.

In our first experiment, we type all 100 individuals to-
gether. Our HDP approach makes use of the group
label information, while the other algorithms (DP,
PHASE and HAPLOTYPER) ignore such informa-
tion, treating all individuals as if they are from a sin-
gle population. Table 1 summarizes the performance
of each algorithm. We see that HDP outperformed the
other algorithms on both datasets. Note that we ex-
pect K to be 17, and the MAP estimates under the
DP and HDP models turn out to be very close to this
number (we omit a plot of the full posterior due to
space limitations); note also that the parametric meth-
ods (PHASE and HAPLOTYPER) can not provide an
estimate of this quantity.

Next, to see the effectiveness of simultaneous multi-
ple clustering via the HDP mixture, we compared it
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Table 1. Performance on a simulated dataset. Two kinds of datasets with different mutation rates 6 were tested. Each
dataset includes 100 individuals from 5 groups (20 from each). The sequence length was fixed to 10. The performance of

each algorithm is represented in terms of errs, err; and K.

HDP DP PHASE HAPLOTYPER
0 1 errs err; K errs err; K errs err; K errs err; K

0.01 | 100 | 0.0133 0.0589 15 | 0.0229 0.0732 17 | 0.0287 0.0976 36 | 0.0350 0.0976 34

0.05 | 100 | 0.1076 0.3626 17 | 0.1777 0.4944 24 | 0.1920 0.5840 73 | 0.2006 0.5618 54
to results from separate runs of the other algorithms s H{DP DP ==s== PHASE =-=HAPLOTYPER
on each group of genotypes (Table 2). The group-wise
results from the HDP were extracted from the runs : o6l | :
shown previously in Table 1. Here, K is expected to 04 E P H ,
be 5 for each group, and HDP again yields a MAP es- ’. E 0.4 ,i h . 3
timate that is close to this value. On the dataset with 0.2/ f} ] i ﬁ'p\“ s f\ i |
mutation rate 0.01, all algorithms performed compa- 4 i 0-2% LI\ if ] AV
rably. On the dataset with a higher mutation rate 0 : A 0 v
(0.05), the HDP approach outperformed other algo- 1 B ockin > 87 1 B ockin > 87

rithms and inferred the founders of each group more
robustly than the group-specific runs based on sepa-
rate DP mixtures.

5.2. Real Data

We applied our algorithm to the database from the
International HapMap Project, which contains four
populations of genotypes. Among them, we focused
on two populations of CEPH (Utah residents with an-
cestry from northern and western Europe, CEU) and
Yoruba in Ibadan, Nigeria (YRI) since they contain
30 trios of genotypes and allow us to infer most of the
true haplotypes. The common SNP sites of length 254
could be extracted from the region ENm010.7p15.2.

For computational and biological reasons (e.g., the
presence of recombination), we partitioned the SNP
sites into blocks of shorter lengths; following a recom-
mendation in Niu et al. (2002), we used block lengths
no greater than 10. The results for block length 7
and 10 are shown in Fig. 1. For block length 7, the
average errs across the 37 blocks was 0.0228, 0.0864,
0.0760, and 0.0928 for HDP, DP, PHASE, and HAP-
LOTYPER, respectively; and the average err; was
0.0689, 0.2325, 0.2002, and 0.2158, respectively, in the
same order. We thus see significant performance im-
provements under the HDP model. When tested with
block length 10, the average errs across the 26 blocks
were 0.0276, 0.0754, 0.0565, and 0.0813, and the aver-
age err; across the blocks were 0.1024, 0.1946, 0.1467,
and 0.1901, respectively.

6. Conclusions

We have proposed a new Bayesian approach to haplo-
type inference for multiple populations using a hierar-

(a) Performance on 37 blocks with length 7

0.6

0.4

1 9 17 25 1 9 17 25
BlockID BlockID

(b) Performance on 26 blocks with length 10

Figure 1. Performance on HapMap data, with 254 SNPs
partitioned into (a) 37 blocks of length 7 and (b) 26 blocks
of length 10. The left panels represent errs for each block
and the right panels represent err;.

chical Dirichlet process mixture. By incorporating an
HDP prior which couples multiple heterogeneous pop-
ulations and facilitates sharing of mixture components
across multiple infinite mixtures, the proposed method
can infer the true haplotypes in a multi-ethnic group
with an accuracy superior to state-of-the-art haplotype
inference algorithms.

The experiments presented in this paper focus on rel-
atively short sequences of SNPs. In ongoing work, we
are developing a Partion-Ligation scheme based on the
work in Niu et al. (2002) to deal with longer sequences.

Finally, although in the present study we have as-
sumed that the population structure—the ethnic la-
bels of individuals—are known, it is straightforward
to generalize our method to situations in which the
ethnic group labels are unknown and to be inferred.
This opens the door to applications of our method
to large-scale genetic studies involving joint inference
over markers and demography.
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Table 2. Comparison of HDP and other algorithms on the multi-population data. The results for HDP were extracted
from the corresponding run in Table 1. The results for the other algorithms were obtained by running the algorithms

separately on the different groups and averaging.

HDP DP PHASE HAPLOTYPER
[ I group errs err; K errs err; K errs err; K errs err; K
20 (1) 0.0159 0.0556 5 | 0.0159 0.0556 5 | 0.0000 0.0000 9 | 0.0159 0.0556 &
20 (2) 0.0000 0.0000 5 | 0.0175 0.0590 5 | 0.0000 0.0000 7 | 0.0526 0.0588 6
0.01 20 (3) 0.0141 0.0625 4 | 0.0000 0.0000 5 | 0.0000 0.0000 9 | 0.0000 0.0000 8
’ 20 (4) 0.0366 0.1765 4 | 0.0244 0.0590 5 | 0.0366 0.1765 9 | 0.0244 0.1176 8
20 (5) 0.0000 0.0000 5 | 0.0244 0.0710 7 | 0.0488 0.0714 11 | 0.0732 0.1429 10
avg 0.0133  0.0589 0.0164 0.0489 0.0171  0.0496 0.0332 0.0749
20 (1) 0.0758 0.2780 5 | 0.0758 0.3330 6 | 0.1970 0.6111 20 | 0.0758 0.2222 14
20 (2) 0.1640 0.5000 5 | 0.1640 0.5560 8 | 0.1148 0.3333 17 | 0.1967 0.4444 15
0.05 | 20 (3) 0.0886 0.4120 5 | 0.1140 0.5290 5 | 0.1013 0.4706 17 | 0.1139 0.5294 15
20 (4) 0.0455 0.2110 5 | 0.0568 0.3680 10 | 0.1705 0.6316 22 | 0.1136 0.4737 15
20 (5) 0.1640 0.4120 7 | 0.2180 0.4120 6 | 0.1818 0.4706 16 | 0.1273 0.4118 14
avg 0.1076  0.3626 0.1257 0.4396 0.1531 0.5034 0.1255 0.4163
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