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Foreword

Genome-wide marker data is used in animal and plant breeding in comput-

ing genomic breeding values, and in human genetics in identifying disease

susceptibility genes, predicting unobserved phenotypes and assessing dis-

ease risks. While the tremendous number of markers available for easy

and cost-effective genotyping is an invaluable asset in genetic research and

animal and plant breeding, the ever increasing data sets are placing heavy

demands on the statistical analysis methodology. The statistical methods

proposed for genomic selection are based on either traditional best linear

unbiased prediction (BLUP) or different Bayesian multilocus association

models. In human genetics the most prevalent approach is a single SNP

association model. The thesis consists of three original articles trying to

obtain further understanding of the behavior of the different Bayesian mul-

tilocus association models and of the instances in which different methods

work best, to seek connections between the different Bayesian models, and

to develop a Bayesian multilocus association model framework, along with

an efficient parameter estimation machinery, that can be utilized in pheno-

type prediction, genomic breeding value estimation and quantitative trait

locus (QTL) location and effect estimation from a variety of genome-wide

data.

1 Introduction

The invention of single nucleotide polymorphisms (SNP) in conjunction

with the utilization of microarray technology in high-throughput genotyp-

ing has exploded the availability of genome-wide sets of molecular markers.

Whole genome SNP chips are available for a wide range of species, includ-

ing humans, agriculturally important plant and animal species, and genetic

model organisms. In human genetics the common goal of a genome-wide

association (GWA) study is to detect disease susceptibility genes, predict

unobserved phenotypes, and assess disease risks at the individual level (Lee
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et al. 2008; de los Campos et al. 2010). The animal and plant breeders,

on the other hand, are mainly interested in estimating genomic breeding

values for genomic selection (Eggen 2012; Nakaya and Isobe 2012).

Genomic selection refers to marker assisted selection using a genome-

wide marker information directly in predicting genomic breeding values,

rather than first identifying the causal genes (Meuwissen et al. 2001). The

basic principle of genomic selection includes a set of individuals, known

as the training set or the reference population, with phenotypic records

and genotypic information of a whole-genome SNP array, and a statistical

model explaining the connection between the marker genotypes and the

phenotypic observations. The training set data is employed in estimating

the effects of the SNP markers or genotypes to the phenotype, that is, the

parameters of the model. The acquired information is then used in pre-

dicting the heritable part of the phenotype, i.e. genomic breeding value,

of new individuals (the prediction set) that have only genotypic informa-

tion available. In animal and plant breeding, the most commonly used

approach to predict genomic breeding values based on molecular mark-

ers is the genomic best linear unbiased prediction or G-BLUP, a direct

descendant of the pedigree-based best linear unbiased prediction (BLUP)

model (Henderson 1975). G-BLUP employs the marker information in es-

timating genomic relationships between the individuals, and utilizes the

marker-estimated genomic relationship matrix in a mixed model context

(e.g. VanRaden 2008; Powell et al. 2010). A relatively recent but promis-

ing contender for the BLUP-type of model in the genomic selection field is

to apply simultaneous estimation and variable selection or regularization

to multilocus association models (e.g. Meuwissen et al. 2001; Xu 2003).

A multilocus association model uses the marker information directly by

assigning different, possibly zero, effects to the marker alleles and quanti-

fies the genomic breeding value of an individual as the sum of the marker

effects. The advantage of a multilocus association over G-BLUP is that

the former allows the estimated effect size to vary over the set of markers,

while the latter assumes a constant impact throughout the genome.

In human genetics the genome-wide association methods are mainly

used for mapping of complex genetic traits. Association mapping utilizes

the linkage disequilibrium (LD) between the markers and the causal loci

in locating the actual causal genes by searching associations between the

markers and the phenotype. Population-based association analyses are

more powerful than within-family analyses in detecting the genetic loci

associated with the phenotype of interest. As a draw-back, the population-
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based studies often suffer from an inflated rate of false positives due to pop-

ulation stratification (i.e. model misspecification in the presence of hidden

population structure) and cryptic relatedness (i.e. model misspecification

in the presence of sample structure) (see Kang et al. 2010). For example, if

two populations in Hardy-Weinberg proportions with divergent allele fre-

quencies are combined, the combined population may have large amount

of linkage disequilibrium simply due to the combination (e.g. Ewans and

Spielman 1995). Equivalently, the sample structure of the data may lead

to allelic association caused by close relatedness between the individuals

rather than true association between the marker and the trait. As e.g.

PLINK (Purcell et al. 2007) omits the sample and population structure

from the model, the artificial linkage disequilibrium is likely to cause false

positive and negative signals for marker loci without any connection to the

studied trait. Although some other heavily-used association methods, in-

cluding e.g. TASSEL (Bradbury et al. 2007), GenABEL (Aulchenko et al.

2007), EMMA (Kang et al. 2008) and EMMAX (Kang et al. 2010), provide

a sample structure correction, they consider only one marker at the time,

ignoring the possible effects of the other major loci. This is less than ideal

in genome-wide study for a complex trait, as such traits are assumed to be

affected by a multitude of genes (Weeks and Lathrop 1995).

The problem with a multilocus association model applied to a genome-

wide data set is oversaturation: since usually the number of SNP markers

is orders of magnitude greater than the number of individuals, there are far

more explanatory variables than observations in the model. This leads to

a situation where some kind of selection or regularization of the predictors

is required, either by selecting a subset of the variables that explains a

large proportion of the variation, by using orthogonal or nonorthogonal

combinations of the variables, or by shrinking the effects of the variables

towards zero (e.g. Sillanpää and Bhattacharjee 2005; Hoggart et al. 2008;

O’Hara and Sillanpää 2009; Wu et al. 2009; Ayers and Cordell 2010; Cho

et al. 2010). The appeal in the shrunken estimates is that these methods

keep the dimension constant across the possible models by not actually

selecting a subset of variables, but instead setting the effect of unimportant

ones to (or near) zero. The drawback is that the estimates tend to be biased

towards too small values. The methods discarding markers irrelevant to the

phenotype are often referred as variable selection, while the ones assigning

a penalty term to shrink the marker effects towards zero are considered as

variable regularization.
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Contrary to the frequentist way of deriving a shrinkage estimator by

subtracting a penalty from the gain function (in other words, by adding

a penalty to the loss function), in the Bayesian context the regularization

mechanism is included into the model by specifying an appropriate prior

density for the regression coefficients. A penalized maximum likelihood

estimate for the regression coefficients β is acquired by maximizing the

penalized gain function

β̂
PML

= argmax
β

log(p(data|β))− λJ(β), (1.1)

where log(p(data|β)) is the log likelihood and J(β) a penalty function.

Commonly used penalty functions are derived from the sum of the L2 or

L1 norms of the regression coefficients,

J(β) =

p∑

j=1

||βj||
2
2 =

p∑

j=1

β2
j and J(β) =

p∑

j=1

||βj||1 =

p∑

j=1

|βj|,

leading to Ridge Regression (Hoerl 1962) and LASSO (Tibshirani 1996)

estimates, respectively. The frequentist penalty function is connected to

the prior density of a Bayesian model, as the exponent of the function

maximized in the frequentist method equals the product

exp( log(p(data|β))− λJ(β)) = p(data|β) exp(−λJ(β)), (1.2)

where p(data|β) is the likelihood and exp(−λJ(β)) represents the prior

density function. For example, it can be easily seen that the Ridge Regres-

sion penalty equals a Gaussian prior density, as exp(−(1/λ)
∑p

j=1 β
2
j ) is a

kernel of a Gaussian probability density function. Similarly the L1 penalty

equals a double exponential or Laplace density. Although it is clearly more

logical to consider the assumptions about the model sparseness as a part

of the model (the prior is a part of the model) rather than a part of the

estimator (a penalty is a part of the estimator), the difference may seem

trivial in practice. However, the fact that in Bayesian context the model

includes all available information, permits the estimator to be always the

same, either the whole posterior density or a maximum a posteriori (MAP)

point estimate, which in turn enables a straightforward translation of the

model into an algorithm.

In the Bayesian context the variable regularization is included into the

model by specifying a ”spike and slab” prior for the regression coefficients,

with ”spike” being the probability mass centered near zero and ”slab” the

probability mass distributed over the nonzero values (see O’Hara and Sil-

lanpää 2009). This prior represents the assumption that only a small pro-
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portion of the predictors have a non-negligible effect (”slab”), while the

majority of the effects are close to zero (”spike”).

The Bayesian models proposed in the literature differ with respect to

the ”spike and slab” prior densities given for the regression coefficients.

The desired shape for the prior density may be acquired either as a mix-

ture of two densities, in which case the model includes a dummy variable

indicating whether the effect of a given explanatory variable comes from

the ”spike” or from the ”slab” part of the prior, or alternatively a single

prior density approximating the ”spike and slab” -shape may be assigned

directly on the regression coefficients. In the latter case, the probability

density functions commonly used for imitating the ”spike and slab” shape

are Student’s t (e.g. Bayes A by Meuwissen et al. 2001; Xu 2003; Yi and

Banerjee 2009) and Laplace densities (e.g. Park and Casella 2008; Yi and

Xu 2008; de los Campos et al. 2009; Xu 2010; Li et al. 2011). Due to the

connection to the frequentist L1 penalty function the models with a Laplace

prior density are commonly denoted as Bayesian LASSO (Park and Casella

2008). Both Student’s t and Laplace density functions possess several fa-

vorable features, including high kurtosis and heavy tails, that make them

worthy candidates for shrinkage inducing priors. Compared to Gaussian

density, these functions consist of a greater probability mass centered near

zero and higher probability for large values inducing strong shrinkage to

the intermediate sized estimate values and proportionally less shrinkage to

the large values and the values near zero. While a Gaussian prior density,

or equivalently frequentist Ridge Regression, assigns same penalty to all of

the regression coefficients, the heavy-tailed functions work by producing a

clearer distinction between large and small estimate values by pushing the

intermediate sized values to either direction. For this reason the method is

sometimes denoted as adaptive shrinkage.

Several modifications of the indicator-type methods have been intro-

duced, differing with respect to the mixture components (distributions that

are used to form the mixture distribution) set for the regression coefficients

and the hierarchical structure of the prior (the dependency between the in-

dicator and the marker effect, and the participation of the indicator in the

likelihood). While the stochastic search variable selection (SSVS) models

considers the ”spike and slab” as a mixture of two normal distributions

(George and McCulloch 1993; Verbyla et al. 2009), or two Student’s t dis-

tributions (e.g. Yi et al. 2003), majority of the methods straightforwardly

set the regression coefficient to be zero when the indicator is zero (so the

”spike” is in fact a point mass located at zero). A prior consisting a mixture
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of a Student’s t density and a point mass at zero has been used in several

methods, including BayesB (Meuwissen et al. 2001), Hayashi and Iwata

(2010) and Habier et al. (2011). A similar mixture based on a Laplace den-

sity has been used by Meuwissen et al. (2009) and Shepherd et al. (2010).

The simplest hierarchical structure of the prior density, proposed by Kuo

and Mallick (1998), determines the effect of the marker j to the phenotype

as a product of the indicator γj and the effect size βj, and considers these

two to be a priori independent. Hence the joint prior of the marker ef-

fect γjβj becomes simply p(γjβj) = p(γj)p(βj), where p(γj) is a Bernoulli

density with a prior probability for a marker to be linked to the trait and

p(βj) is the Gaussian, Student’s t or Laplace prior density given for the ef-

fect size. Other types of hierarchical structures presented in the literature

include BayesB (Meuwissen et al. 2001) where the marker effect is given

by βj alone since the likelihood does not include the indicator; instead, the

indicator acts through the effect variance. In Gibbs variable selection, on

the other hand, the marker effect is considered as a product of the indicator

and the effect size, but the prior density of the effect size is dependent on

the indicator (Dellaportas et al. 2002).

Whether the model is based on a Student’s t, Laplace, or a mixture

prior density, the intensity of the shrinkage produced by the prior is deter-

mined by the prior parameters (i.e. hyperparameters) defining the shape

of the prior density function. The models proposed in the literature differ

from each other in terms of the procedures they use to determine the prior

parameters. In the original BayesA and BayesB the parameters of the Stu-

dent’s t prior density were defined to produce the desired genetic variance

(Meuwissen et al. 2001). The Xu (2003) method is otherwise similar to

BayesA, except that the prior parameters are estimated instead of setting

into constant values. Similar modifications of BayesB have been considered

by e.g. Yi and Xu (2008) and Habier et al. (2011). Under the Bayesian

LASSO the prior parameters are more commonly estimated from data (e.g.

Yi and Xu 2008; de los Campos et al. 2009; Sun et al. 2010; Shepherd et al.

2010) than given as constants (Xu 2010).

While the Bayesian models have proven workable, efficient and flexi-

ble, the tremendous number of markers in the modern genome-wide data

sets make the computational methods traditionally connected to Bayesian

estimation, e.g. Markov Chain Monte Carlo (MCMC), quite slow and cum-

bersome. For the same models fast alternative estimation procedures have

been proposed, most commonly based on estimation of the maximum point

of the posterior density (MAP-estimate), rather than the whole posterior
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distribution, by expectation-maximization (EM) algorithm (Dempster et al.

1977; McLachlan and Krishnan 1997; for the methods see e.g. Yi and

Banerjee 2009; Hayashi and Iwata 2010; Figueiredo 2003; Sun et al. 2010;

Xu 2010; Meuwissen et al. 2009; Shepherd et al. 2010; Lee et al. 2010).

2 Objectives of the study

The objectives of this work are to 1) better understand the behavior of the

different Bayesian multilocus association models, especially under themaxi-

mum a posteriori estimation context, and to obtain further information on

the instances in which different methods work best, 2) seek connections

between the different Bayesian models and try to see the different model

variants as special cases or sub-models of a common model framework,

3) pay special attention to the significance of the parametrization and hi-

erarchical structure of the model for elegant derivation and convergence

properties of the estimation algorithm, and 4) to develop a flexible and

versatile Bayesian multilocus association model framework, along with an

efficient parameter estimation machinery, that can be utilized in phenotype

prediction, genomic breeding value estimation and QTL (quantitative trait

loci) detection and effect estimation from a variety of genome-wide data.

The original papers I–III contribute to the objectives in the following

manner.

In I we lay the foundation for our Bayesian model framework, examine the

behavior and predictive performance of different sub-models and prior

densities, including G-BLUP, and present a generalized expectation-

maximization algorithm (GEM) for the parameter estimation.

In II we apply selected parts of the model framework in QTL mapping con-

text and, in particular, consider the impact of an additional polygenic

component for the performance of the model and the GEM-algorithm.

In III we generalize the model framework and the GEM-algorithm for

ordered categorical and censored Gaussian phenotypes.
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3 Hierarchical Bayesian model

In Bayesian inference the learning from data is based on updating the

prior belief concerning the model parameters into the posterior belief by

applying the Bayes’ theorem. Let p(Θ) denote the joint prior density for

the unknown parameters and p(data|Θ) the likelihood of the data given

those parameters. Now the posterior density for the unknown parameters,

given the data, is acquired from the Bayes’ formula

p(Θ|data) =
p(data|Θ)p(Θ)

p(data)
∝ p(data|Θ)p(Θ),

where the normalizing constant p(data) =
∫
Θ
p(data|Θ)p(Θ)dΘ is the mar-

ginal likelihood of the data. As the marginal likelihood has a constant

value, it is usually omitted from the computation, and the joint posterior

density is considered to be proportional to the product of the likelihood

and the joint prior density. In addition to the prior conception of the

parameter values, the joint prior density expresses the mutual relationships

of the parameters, e.g. whether the parameters are considered a priori

independent or conditional to some other parameters. This definition is

denoted as the hierarchical structure of the Bayesian model. Let e.g. the

parameter vector be Θ = (θ1, θ2), and let θ1 be a priori dependent on θ2.

Now the joint prior is given by p(Θ) = p(θ1|θ2)p(θ2), and the dependent

parameter θ1 is said to be located on a lower layer of the model hierarchy.

In its complete form our hierarchical Bayesian model framework, de-

picted as a directed acyclic graph in Figure 3.1, consists of two separate

parts, the linear Gaussian model and the threshold model. Under the linear

Gaussian model the phenotype measurements are assumed to be continuous

and follow a Gaussian density, while the additional threshold model han-

dles binary, ordinal and censored Gaussian observations. The hierarchical

model has a total of six layers, two of which are optional. The observed

data, located on the 1st and 2nd layers in the graph, comprises phenotype

and genotype information and, optionally, a known pedigree of a sample

of related individuals. The continuous Gaussian phenotypes, denoted by a

vector y, and the genetic data matrix X consisting the genotypes of bial-

lelic SNP markers, are located on the ”observed data” layer of the linear

Gaussian model. As the binary, ordinal and censored Gaussian observa-

tions are handled via a latent variable parametrization, they are located

on the ”optional observed” layer of the threshold model in Figure 3.1. The

possible pedigree information is given in a form of an additive genetic re-

lationship matrix (Lange 1997), located on the ”optional observed” layer

12



Figure 3.1: Hierarchical structure of the model framework. The ellipses

represent random parameters and rectangles fixed values, while the round-

cornered rectangles may be either, depending on the selected model. Solid

arrows indicate statistical dependency and dashed arrows functional rela-

tionship. The background boxes indicate the main modules of the model

framework.
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in the directed acyclic graph (Figure 3.1) to represent its non-compulsory

nature.

In the following sections we first will consider the linear Gaussian model

part, and only after that focus on the threshold model for the discrete or

censored data.

3.1 Gaussian likelihood

In the center of a Bayesian model there is the likelihood function of the

data given the model parameters. The likelihood is based on the proba-

bility model (sometimes called the sampling model) determining how the

independent variables or traits are connected to the explanatory variables.

In our model framework the Gaussian phenotypes are connected to the

marker and pedigree information with a linear Gaussian association model

(see Figure 3.1)

y = β0 +XΓβ+ Zu+ ε, (3.1)

where y denotes the phenotypic records of n individuals, β0 is the popu-

lation intercept, and ε corresponds to the residuals, assumed normal and

independent, ε ∼ MVN(0, Inσ
2
0). If necessary, the intercept β0 can be eas-

ily replaced with a vector of environmental variables. The second term on

the right hand side of the equation (3.1) comprises the observed genotypes

X and the allele substitution effects Γβ. The observed genotypes of the

p biallelic SNP markers are coded with respect to the number of the rare

alleles (0,1 and 2) and standardized to have null mean and unity variance.

In the complete model the allele substitution effect (see ”Marker effect” in

Figure 3.1) is modeled following Kuo and Mallick (1998) as a product of

the size of the effect and a variable indicating whether the marker is linked

to the phenotype. In the equation (3.1), β denotes the additive effects

sizes, and Γ is a diagonal matrix of indicator variables, whose jth diagonal

element γj has value 1 if the jth SNP marker is included in the model, and

0 otherwise. As depicted in Figure 3.1, the indicator and the effect size are

considered a priori independent. The term u in the equation (3.1) denotes

the additive polygenic effects due to the combined effect of infinite number

of loci, and Z is a design matrix connecting the polygenic effects to the

observed phenotypes.

The individuals, or their phenotypic values yi, are assumed conditionally

independent given the genotype information X and the polygenic effect u.

This assumption and the described linear marker association model (3.1)

14



gives a multivariate normal likelihood

p (y | β0, σ
2
0,β,Γ,u,X,Z) ∝ det(Inσ

2
0)

−1/2

× exp

(
−
1

2
(y − β0 −XΓβ− Zu)′(Inσ

2
0)

−1(y − β0 −XΓβ− Zu)

)
(3.2)

for the phenotypes given the parameter vector. Due to the independence

of the observations, the likelihood can be interpreted also as an univariate

normal N(β0 +
∑p

j=1 γjβjxij + ui, σ
2
0) given a single observation yi and

the appropriate parameters. The parameters of the multilocus association

model that are present in the likelihood function are located in the ”model

parameters” -layer of the linear Gaussian model in Figure 3.1.

3.2 Shrinkage inducing priors

The second essential component of a Bayesian model consists of the prior

densities for the model parameters. The prior for a given parameter repre-

sents the a priori understanding of the plausibility of different parameter

values. In some cases there is no reason to believe that one parameter

value would be more plausible than another, which conception is expressed

with a flat or an uninformative prior density, e.g. by setting p(β0) ∝ 1 and

p(σ2
0) ∝ 1/σ2

0 (note the ”Noninformative uniform priors” at layer 5 in Fig-

ure 3.1). In some cases, however, the prior density plays a most important

role in the model operation.

A central feature of handling an oversaturated model is the selection

or regularization of the excess predictors. In the Bayesian context the

regularization is included into the model by specifying such a prior density

for the regression coefficients, that it represents the a priori understanding

that the majority of the predictors have only a negligible effect, while there

are a few predictors with possibly large effect sizes. A prior that would

evince this idea should consist of a probability mass centered near zero and a

probability mass distributed over the nonzero values, including a reasonably

high probability for large values. The probability density functions we have

used for imitating this ”spike and slab” shape are Student’s t (following e.g.

Meuwissen et al. 2001; Xu 2003) and Laplace densities (following e.g. Park

and Casella 2008; de los Campos et al. 2009), either alone or combined with

a point mass at zero (e.g. Meuwissen et al. 2001; Shepherd et al. 2010).

In our full model framework, (3.1) and Figure 3.1, the mixture prior

with the point mass at zero is accomplished by adding a dummy variable

to indicate whether the effect of a given predictor variable is included into
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the model or not. Following Kuo and Mallick (1998) the marker effects

are modeled as a product of the indicator variable γj and the effect size

βj, which are considered a priori independent, hence the joint prior of

the marker effect becomes simply p(γjβj) = p(γj)p(βj), where p(γj) is a

Bernoulli density with a prior probability π = P(γj = 1) for a marker to

be linked to the trait and p(βj) is the prior density for the effect size.

3.2.1 Hierarchical formulation of the prior densities

The Student’s t and the Laplace distribution can both be expressed as

a scale mixture of normal distributions with a common mean and effect

specific variances. The hierarchical formulation of a Student’s t-distribution

with ν degrees of freedom, location µ and scale τ 2 is a scale mixture of

normal densities with mean µ and variances following a scaled inverse-χ2

distribution with ν degrees of freedom and scale τ 2,

βj|σ
2
j ∼ N(µ, σ2

j )

σ2
j |ν, τ

2 ∼ Inv-χ2(ν, τ 2)

}
=⇒ βj ∼ tν(µ, τ

2),

while a Laplace density with location µ and rate λ can be presented in a

similar manner, the mixing distribution now being an exponential one,

βj|σ
2
j ∼ N(µ, σ2

j )

σ2
j |λ

2 ∼ Exp(λ2/2)

}
=⇒ βj ∼ Laplace(µ, λ).

The hierarchical representation of the prior densities bears a twofold

advantage (I). First, the derivation of the fully conditional posterior densi-

ties, and hence the derivation of the estimation algorithm, simplifies greatly.

Within MCMC world, the hierarchical formulation of the prior densities,

also known as model- or parameter expansion, is a well known device to

simplify computations by transforming the prior into a conjugate and thus

enabling Gibbs sampling. Conjugacy of a prior distribution means that the

fully conditional posterior probability distribution of a given parameter will

be of same type as the prior distribution of that parameter, and hence we

are guaranteed to get a closed form fully conditional posterior with a known

probability density function. The hierarchical formulation of a prior den-

sity is also known to accelerate convergence of a MCMC sampler by adding

more working parts and therefore more space for the random walk to move

(see e.g. Gilks et al. 1996; Gelman et al. 2004; Gelman 2004). In maximum

a posteriori (MAP) estimation, on the other hand, a commonly adopted ap-

proach to try and simplify the model is to integrate out the effect variances.

However, the conjugacy maintained by preserving the intermediate variance
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layer (layer 4 in Figure 3.1) is a valuable feature also for MAP-estimation,

as it enables the straightforward derivation of the fully conditional posterior

density functions. Expressed as a scale mixture, the Student’s t distribu-

tion leads to conjugate priors for normal likelihood parameters, and hence

is a perfect choice for a conjugate analysis. Although the decomposition of

the Laplace prior does not provide conjugacy, it leads to a tractable fully

conditional posterior density for the inverse of the effect variance.

Second, the estimation algorithm is likely to behave better under a

hierarchical model. Even though the marginal distributions of the marker

effects are mathematically equivalent in hierarchical and non-hierarchical

models, we noted in I that the parametrization and model structure alter

the properties and behavior of the model, and thus have influence on the

mixing and convergence properties of an estimation algorithm, and also

on the values of the actual estimates. We noted in I that in some cases

the hierarchical Laplace model was clearly more accurate than its non-

hierarchical counterpart. Also, contrary to the non-hierarchical version,

the hierarchical Laplace model worked without the additional indicator

variable, i.e. without a zero-point-mass in the prior of the marker effects.

This simplification of the model leads not only to more straightforward

implementation and faster estimation, but also to easier and more accurate

selection of prior parameters.

3.3 Sub-models

As mentioned above, we like to consider the full model in Figure 3.1 as a

framework incorporating a set of model variants, or sub-models, embodying

different components of the model framework. In I we covered a multitude

of such variants, and also showed how the model variants correspond to

the Bayesian phenotype prediction and genomic breeding value estimation

methods proposed in the literature.

The non-compulsory components of the multilocus association model

comprise the polygenic component, the indicator variable and the 6th,

”optional hyperprior” layer. The selection between the Student’s t and

the Laplace prior densities forms one means of modifying the prior density

assigned for the marker effects, while the inclusion/exclusion of the indica-

tor and the hyperprior layer forms another. The polygenic component, on

the other hand, is clearly an external addition to the multilocus association

model.
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3.3.1 Polygenic component

The polygenic component u is included into the model to represent the

genetic variation possibly not captured by the SNP markers and to take

account for putative residual dependencies between individuals (Yu et al.

2006). The sample or population structure is included into the model as

the covariance matrix of the multivariate normal prior density given for

the polygenic effect u|(σ2
u,A) ∼ MVN(0, σ2

uA), where σ2
u is the polygenic

variance component and A is the genetic relationship matrix. The genetic

relationship matrix is either a pedigree based additive genetic relationship

matrix (see Lange 1997) (I and II), or, if there is no pedigree available,

a finite locus approximation based on the markers not included in the ac-

tual multilocus association model (a genomic relationship matrix) (II). The

polygenic variance component σ2
u has been given an Inverse-χ2(νu, τ

2
u) prior

distribution with suitable data specific parameter values.

On the basis of the existing literature the need for an additional poly-

genic component within a multilocus association model is unclear. Many

authors have found the polygenic component irrelevant (e.g. Calus and

Veerkamp 2007; Pikkuhookana and Sillanpää 2009), while e.g. de los Cam-

pos et al. (2009) and Lund et al. (2009) see it as a necessary. In I and

II we examined the importance of the additional polygenic component in

genomic selection and in association mapping context, respectively, with

both simulated and real data. Within these works the estimates of the

polygenic component were negligible, and had no influence neither in the

prediction accuracy (I) nor in the gene location ability (II) of the model.

None of the Bayesian multilocus models seemed to benefit from addition

of the polygenic component with neither simulated (I and II) nor real data

(I), the phenotype of the latter most likely being quite polygenic in nature.

The polygenic component did not find extra information even when the

task was made as easy as possible by generating the polygenic component

of the data by using the same relationship matrix which was also used in

the analyses (II). Therefore, to our experience, the polygenic component

can safely be omitted from the multilocus association model (3.1).

3.3.2 Indicator

The indicator variable is added to the model framework to participate as

a source of extra shrinkage in a mixture prior alongside the Student’s t

or the Laplace density. The usefulness of the indicator variable depends

on the other source of shrinkage in the model. As mentioned above, the
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hierarchical Laplace model does not seem to require the additional point

mass at zero, on the contrary the model efficiency sustains damage if the

indicator is added (Tables 2–5 in I). On the other hand, the Student’s t

model clearly benefits from the additional point mass. The latter observa-

tion is in strict concordance with the existing literature, as the superiority

of BayesB (Student’s t plus indicator) (Meuwissen et al. 2001) over BayesA

(only Student’s t) can be considered as common knowledge.

While the main purpose of the indicator variable within our model

framework is to participate in the mixture prior with the Student’s t or

Laplace densities, in II we have considered a pure indicator model. Under

the Indicator model proposed in II, the prior for the effect sizes βj is Gaus-

sian with zero mean and a predetermined variance, and therefore the prior

for the marker effects γjβj is a mixture of a Gaussian density and a point

mass at zero. As the Gaussian prior introduces a constant shrinkage to the

estimates, and hence the variable selection relies solely on the indicator, a

Bayes factor based on the values of the indicators can be used in determin-

ing the significance of a marker effect. Contrary to phenotype or breeding

value prediction, in gene mapping the significance of the individual marker

effects is of importance. Nevertheless, the Indicator model in II is mainly

considered as a curiosity and a proof of the power of a multilocus associa-

tion treatment, as even an extremely simple multilocus association method

may exceed the performance of a most sophisticated single marker method

(Figure 1, A and B in II).

The indicator has a Bernoulli prior with a prior probability π = P(γj =

1) for the SNP j contributing to the trait. The value given for the proba-

bility π also represents our prior assumption of the proportion of the SNP

markers that are linked to the trait. However, as the indicator affects the

shrinkage of the marker effects concurrent with the shrinkage generated by

the Student’s t or the Laplace density, the parameters assigned for these

densities affect the selection of π.

3.3.3 Hyperprior

The optional hyperprior layer (the 6th layer in Figure 3.1) composes an-

other facultative part of the model framework. The parameters of the prior

densities (layer 5 in Figure 3.1) can be either predetermined or estimated

simultaneously to the model parameters. As the prior densities for the

effect size and the indicator are responsible for the regularization of the

excess variables in the model, the impact of the parameter values of these

priors is greater than of the other prior densities in the model. There-
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fore the putative estimation of the prior parameters is limited to these two

parameters. The estimation of the prior parameters is depicted in Figure

3.1 by considering the priors for the indicator and the effect variance as

random variables, and adding the 6th layer into the model. If the param-

eters for the prior densities are considered fixed, the optional hyperprior

layer is absent from the model. The fixed prior parameter values can be

determined e.g. by cross validation or by Bayesian information criterion

(see Sun et al. 2010). It is noteworthy, that even if the prior parameters

are estimated from the data, i.e. the 6th layer is present in the model, the

need for predetermined values does not vanish, but simply passes to the

next layer of the model hierarchy. Hence, inevitably, at the very bottom

of the model hierarchy the user has to determine some values prior to the

actual parameter estimation.

The hyperprior given for the effect size is a conjugate Gamma(κ, ξ) den-

sity for the scale τ 2 of the inverse-χ2 density under the Student’s t model,

or, respectively, for the rate λ2 of the exponential density under the Laplace

model. There is neither conjugate prior nor closed form posterior density

available for the degrees of freedom parameter of the Student’s t model,

and hence we have decided to consider it as fixed (I). For the indicator

variable, the prior probability π = P(γj = 1) of the marker j to be linked

to the trait, is estimated with either an uninformative uniform Beta(1,1),

or an informative Beta(a, b) density. The informative beta prior embodies

our a priori assumed belief of the proportion of significant markers by con-

sidering a as the number of markers assumed to be linked to trait and b as

the number of markers not to be linked (i.e. b = p−a, p being the number

of markers in the data set).

3.3.4 Student’s t vs. Laplace prior

In the original work I one of our main interests was to consider the pros

and cons of the Student’s t and Laplace prior densities. The advantage of

the hierarchically formulated Student’s t density as a prior is the extremely

easy derivation of the fully conditional posterior densities. Although the

hierarchical Laplace prior also leads to tractable fully conditional posterior

functions, the derivation of the posterior for the effect variance is clearly

more complicated than with the Student’s t density. However, the Student’s

t prior has some shortcomings too. The first problem we encountered with

the Student’s t model was the estimation of the parameters for the prior

densities (5th layer in the Figure 3.1). We tried numerous hyperpriors for

the effect variance and the indicator, but it appeared to be impossible to
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select ones leading to a reasonable estimate. Hence, after several attempts,

we decided on treating the prior parameters of the Student’s t model as

given. Under the Laplace model there was no such complications, and the

prior parameters of the Laplace model are estimated from the data. There-

fore, in the Laplace model the 6th layer of Figure 3.1 is always included in

the model, while in the Student’s t model it is always excluded from the

model.

Due to its shape, the shrinking ability of the Student’s t prior is weaker

than of the Laplace prior. While the hierarchical Laplace prior worked fine

without the additional indicator variable, the Student’s t prior required the

additional point mass at zero in order to provide a strong enough shrinkage

(Tables 2–5 in I). As pointed out previously, a low number of parameters is a

desirable characteristic in a model. Apart from a single data set (table 2 in

I), the prediction accuracy of the Laplace model was higher compared to the

Student’s t model (Tables 3-5 in I). The better performance of the Laplace

model may be partially due to the easier and hence more accurate prior

selection, partially due to the more favorable shape of the density itself.

Also, as the prior parameters for the effect variance can be estimated, and

hence there is an additional layer in the hierarchical model, the model may

be more robust to the given hyperprior parameter values. Altogether, on

the basis of our findings in I, we feel that the hierarchical Laplace model

appears to have an advantage over the Student’s t model, and therefore

decided to concentrate on the former in II and in III.

3.3.5 Bayesian LASSO and its extensions

The hierarchical Bayesian model with a Laplace prior density is commonly

denoted as the Bayesian LASSO (Park and Casella 2008) since it leads to

a nearly identical estimate as the frequentist LASSO by Tibshirani (1996).

The Bayesian LASSO has been further modified by several authors, includ-

ing Yi and Xu (2008), Mutshinda and Sillanpää (2010), Sun et al. (2010)

and Fang et al. (2012).

In II we considered a modification of the Bayesian LASSO introduced

by Mutshinda and Sillanpää (2010) called the Extended Bayesian LASSO

(EBL). Following common hierarchical Bayesian LASSO, the Laplace prior

is expressed as a scale mixture of normal densities with exponential mixing

distribution, so the EBL assigns a normal prior with independent locus-

specific variances to the regression parameters given the locus variances

βj|σ
2
j ∼ N(0, σ2

j ), and further an exponential prior to the variances σ2
j |λ

2
j ∼

Exp(λ2
j/2). Unlike Bayesian LASSO, the regularization parameters λ2

j of
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EBL are locus specific, and can be decomposed by setting λj = δηj, where

δ represents the model sparseness common to all loci, and ηj is a locus-

specific deviation representing the shrinkage working at locus j. Now the

common Bayesian LASSO can be seen as a special case of EBL with the

locus specific component set to ηj = 1 ∀ j. Setting the common shrinkage

parameter δ = 1 would lead to the Improved Bayesian LASSO proposed

by Fang et al. (2012).

3.3.6 Bayesian G-BLUP

In addition to the multilocus association model, in I and III we have con-

sidered a Bayesian version of the genomic- or G-BLUP, a classical BLUP

model where the numerator relationship matrix, estimated from the pedi-

gree, is replaced by a genomic marker-based relationship matrix

y = β0 + Zu+ ε. (3.3)

In the model framework in Figure 3.1 the G-BLUP can be seen as a mirror

image of the multilocus association model without the polygenic compo-

nent, as here we have the polygene without the marker effects. The likeli-

hood of the data under the G-BLUP is simply a multivariate normal with

mean β0 + Zu and covariance Inσ
2
0. Prior for the genetic values u and the

population intercept β0 are conjugate multivariate normal MVN(0,Gσ2
u)

and uniform, respectively, G being the genomic relationship matrix. The

variances σ2
0 and σ2

u have inverse-χ
2 priors, uninformative p(σ2

0) ∝ 1/σ2
0 and

a level Inv-χ2(νu, τ
2
u), respectively.

Under the G-BLUP the genetic marker data is incorporated into the

model in a form of a genomic relationship matrix. There are numerous

methods of generating the genomic relationship matrix, we have used the

second method described in VanRaden (2008). This method is based on

the identity by state (IBS) of the marker genotypes, and hence it measures

the realized relationship between the individuals.

The Bayesian approach differs from the frequentist G-BLUP in terms

of handling the variance components. While the frequentist methods com-

monly estimate the genomic breeding values with known variance com-

ponents, in a Bayesian approach the variance components are estimated

simultaneously to the breeding values (Hallander et al. 2010). Therefore

the Bayesian inference is always based on variances that are up-to-date and

specific to the analyzed trait, letting also the uncertainty of the variance

components to be incorporated into the estimates of the breeding values.

Even though e.g. ASREML (Gilmour et al. 2009) estimates the variance
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components from the data, and hence satisfies the up-to-date criterion, the

variances are not estimated simultaneously to the breeding values, instead,

the pre-estimated variance components are considered constant while esti-

mating the breeding values.

3.4 Fully conditional posterior densities

As depicted in the Figure 1, the model parameters β0, σ
2
0,β,γ and u, lo-

cated at the 3rd layer, are considered a priori independent of each other.

The prior independence of the indicator and the effect size, as suggested

by Kuo and Mallick (1998), leads to the most straightforward parametriza-

tion of a mixture prior for the effects. In conjunction with the conjugate,

or otherwise well chosen, prior densities it enables an easy derivation of a

closed form fully conditional posterior distribution for every parameter of

the model framework.

The joint posterior distribution of the parameters, given the data, is

proportional to the product of the joint prior and the likelihood. We can

easily extract the fully conditional posterior densities of individual param-

eters from the joint posterior by handling all other parameters as constants

and leaving them out, and hence selecting only the terms including the

parameter in question. For example, the fully conditional posterior distri-

bution of a single regression coefficient βj, given all other parameters and

the data, is derived from the joint distribution simply by selecting only the

terms including βj, i.e. the likelihood and the conditional prior p(βj|σ
2
j ).

Under the full multilocus association model (3.1) we get the following,

closed form, fully conditional posterior distributions for the model param-

eters (for simplicity: ⋆ = ”the data, and the parameters except the one in

question”):

β0 | ⋆ ∼ N
( 1
n

n∑

i=1

(yi −

p∑

j=1

γjβjxij − ui),
σ2
0

n

)
, (3.4)

σ2
0 | ⋆ ∼ Inv-χ2

(
n,

1

n

n∑

i=1

(yi − β0 −

p∑

j=1

γjβjxij − ui)
2
)
, (3.5)

βj | ⋆ ∼ N(µj, s
2
j), where (3.6)

µj =
n∑

i=1

γjxij

(
yi − β0 −

∑

l 6=j

γlβlxil − ui

) / ( n∑

i=1

(γjxij)
2 +

σ2
0

σ2
j

)
,

s2j = σ2
0

/( n∑

i=1

(γjxij)
2 +

σ2
0

σ2
j

)
,
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u | ⋆ ∼ MVN(µu,Σu), with (3.7)

µu =
(
Z′Z+

σ2
0

σ2
u

A−1
)−1

Z′
(
y − β0 −XΓβ

)
, and

Σu =
( 1

σ2
0

Z′Z+
1

σ2
u

A−1
)−1

,

γj | ⋆ ∼ Bernoulli
( πRj

(1− π) + πRj

)
, where (3.8)

Rj =
p(y|γj = 1,θ−γj)

p(y|γj = 0,θ−γj)

= exp
( 1

2σ2
0

n∑

i=1

(
2βjxij

(
yi − β0 −

∑

l 6=j

γlβlxil − ui

)
−

(
βjxij

)2))
.

The corresponding fully conditional posterior densities for the different sub-

models can be derived from the above by eliminating the obsolete model

components. If the polygenic component u is not included in the sub-

model, we set ui = 0 for all i in the other posteriors. Correspondingly,

if the indicator γ is absent, γj = 1 for all j. In the Bayesian G-BLUP

(3.3) the marker effect in its entirety is absent since there is no genotype

matrix (X) present in the model, and the numerator relationship matrix

A is replaced by the genomic relationship matrix G. The residual variance

σ2
0 is updated only if the Gaussian phenotype is fully observed, otherwise

(when the threshold module is present in the model) it is set to unity (this

is discussed at the following section).

The fully conditional posteriors for the latent variance parameters (layer

4 in Figure 3.1) are as follows. Under the Student’s t model the fully

conditional posterior for the effect variance is

σ2
j | ⋆ ∼ Inv-χ2

(
ν + 1,

β2
j + ντ 2

ν + 1

)
, (3.9)

and under the Laplace model the fully conditional posterior for the inverse

of the effect variance is an inverse-Gaussian (Chhikara and Folks 1989)

1

σ2
j

| ⋆ ∼ Inverse-Gaussian
( λ

|βj|
, λ2

)
, (3.10)

the parametrization of an Inverse-Gaussian(µ′, λ′) density with mean µ′

and shape λ′ being

f(x|µ′, λ′) ∝ x−3/2 exp

(
−
λ′(x− µ′)2

2(µ′)2x

)
.
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The fully conditional posterior density for the variance of the polygene is

σ2
u | ⋆ ∼ Inv-χ2

(
νu +N,

u′A−1u+ νuτ
2
u

νu +N

)
, (3.11)

where N denotes the total number of individuals in the learning and pre-

diction sets, and the numerator relationship matrix A is replaced by the

genomic relationship matrix G, when necessary.

When the hyperprior layer is included in the model, the prior param-

eters (layer 5 in Figure 3.1) have the following fully conditional poste-

rior densities. The fully conditional posterior density for the probability

π = P(γj = 1|⋆) of a given marker to be linked to the trait is given by

π | ⋆ ∼ Beta
(
a+

p∑

j=1

γj , b+ p−

p∑

j=1

γj

)
. (3.12)

Under the Student’s t model, the fully conditional posterior density for the

scale of the inverse-χ2 distribution is

τ 2 | ⋆ ∼ Gamma
((κ− 1)p ν

2
+ 1 ,

ν + 1

2 ξ

p∑

j=1

1

σ2
j

)
, (3.13)

however, as mentioned above, in practice we have not included the optional

hyperprior layer into the Student’s t model. Under the Laplace model, or

the Bayesian LASSO, the fully conditional posterior density for the regu-

larization parameter is given by

λ2 | ⋆ ∼ Gamma
(
κ+ p , ξ +

p∑

j=1

σ2
j

2

)
. (3.14)

3.5 Threshold model

In this section we shall consider the threshold model part of the full model

framework depicted in Figure 3.1. We assume that the observed pheno-

type w consists of either binary, ordered categorical or censored Gaussian

observations, and that the ordered categorical variable has arisen as an

underlying normally distributed continuous response y is rendered discrete

with known number of thresholds at unknown positions. Now the underly-

ing Gaussian response y can be explained by the genetic factors with the

multilocus association model (3.1) or one of the sub-models, including the

G-BLUP (3.3). As the Gaussian response y is unobservable, in order to

avoid overparametrization the residual variance component σ2
0 of the linear

model is set to unity.
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Given the value of the continuous, normally distributed latent variable

yi, the binary or ordinal response wi has value k ∈ {1, . . . , K} with a

probability

P(wi = k | yi, tk−1, tk) =

{
1, when tk−1 < yi < tk

0, otherwise,
(3.15)

where tk−1 and tk are the thresholds delimiting the kth category. If the

ordinal variable has K categories, there will be K+1 thresholds, such that

t = {(t0, t1, . . . , tK)|t0 < t1 < · · · < tK , t0 = −∞, t1 = 0, tK = ∞}. The

K−2 of the thresholds t⋆ = {(t2, . . . , tK−1)|t2 < · · · < tK−1} are considered

unknown, and are estimated simultaneously to the model parameters. With

a binary response (K = 2) there obviously are no unknown threshold values.

As defined in (3.15), conditionally on the underlying response and the

thresholds, the observed ordinal phenotype wi is known with certainty and

hence the likelihood is degenerated into a constant value, zero or one. Under

the threshold model, the prior density for the latent variable yi corresponds

to the likelihood of the Gaussian response under the linear Gaussian model

(3.1) or (3.3) with residual ε ∼ N(0, 1). Due to the degenerate likelihood

of the observed phenotype wi, the fully conditional posterior density of the

latent Gaussian variable yi, given the value of the observed phenotype, cor-

responds the prior density of yi when tk−1 < yi < tk and is zero otherwise.

Hence, the fully conditional posterior density of yi is a truncated normal

distribution (truncated at points tk−1 and tk) with a density function (for

simplicity, the ⋆ denotes the data and all other parameters)

p(yi|⋆) =
φ(yi − E(yi))

Φ(tk − E(yi))− Φ(tk−1 − E(yi))
, (3.16)

where φ(·) and Φ(·) denote the standard normal density and cumulative

distribution functions, respectively, while E(yi) is the linear predictor of

the model (3.1) or (3.3).

Following Sorensen et al. (1995) the prior for the K − 2 unknown

thresholds t⋆ = (t2, . . . , tK−1) has been given as order statistics from an

Uniform(0, tmax) distribution,

p(t⋆) = (K − 2)!
( 1

tmax

)K−2

for 0 < t2 < . . . tK−1 < tmax, and 0 otherwise.

(3.17)

Note, that the threshold values t⋆ appear in the prior density only at the

definition of the support of the distribution. As the terms not including the

parameter are discarded as constants from the fully conditional posterior,

the support definition is all that passes from the prior to the posterior.
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Therefore, the fully conditional posterior density for a tk is given by the

likelihood of the observed ordinal phenotype w, within the set of values

determined by the prior density of t⋆,

p(tk|⋆) ∝
n∏

i=1

P(wi = k)I(wi=k)P(wi = k + 1)I(wi=k+1)

∝

n∏

i=1

P(tk−1 < yi < tk|tk−1, tk)
I(wi=k)P(tk < yi < tk+1|tk, tk+1)

I(wi=k+1)

(3.18)

for 0 < t2 < . . . tK−1 < tmax and 0 otherwise. As a function of tk, this leads

to the uniform process

p(tk|⋆) =
1

min(yi|wi = k + 1)−max(yi|wi = k)
. (3.19)

As depicted in Figure 3.1, the augmentation of the latent variable is an

additional module in the hierarchical model framework, and hence the other

parameters (except the residual variance that has been fixed to unity), and

their fully conditional posterior densities, remain same as with the Gaussian

response.

3.5.1 Binary response

Although the above threshold model is valid for a binary case-control re-

sponse, the binary variables are often considered in a bit different manner.

The binary response is usually coded as 0 and 1, instead of 1 and 2 as would

be done in the above model when K = 2, and is thought to be linked to

the Gaussian latent variable yi such that

wi =

{
1, when yi > 0

0, when yi ≤ 0.

Now the latent variable is given by the model equation (3.1) or (3.3) with

a residual εi ∼ N(0, 1), and hence the expected value of the binary variable

becomes

E(wi) = P(wi = 1) = P(yi > 0) = Φ(E(yi)).

where Φ(·) denotes the standard normal cumulative distribution function,

E(yi) being the linear predictor of the model (3.1) or (3.3). The probability

of the binary variable, given the expected value of the latent variable, is

Bernoulli with a success probability Φ(E(yi)). This parametrization of the

binary phenotype corresponds to a generalized linear model with the probit

link function (Albert and Chib 1993).
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3.5.2 Censored Gaussian response

A Gaussian phenotype with censored observations can be acquired e.g. as

a logarithm of an event history or survival data, or as spiked phenotypes

as e.g. in Broman (2003). For a censored Gaussian response we define an

additional binary variable ωi = 1 if the ith observation is censored and

ωi = 0 if not. As the threshold model assumes an unity variance for the

latent Gaussian response, the observed phenotype must be standardized

accordingly. This is done by regarding the available observations as a sam-

ple from a truncated normal density and utilizing the connection between

the quantiles and the standard deviation of a Gaussian density. Now, if

ωi = 0 the standardized Gaussian phenotype is used directly, and if ωi = 1

the underlying uncensored response is computed as previously. The latent

variable parametrization of the censored phenotype corresponds to a gen-

eralized linear model with the tobit link function (see e.g. Tobin 1958;

Sorensen et al. 1998; Iwata et al. 2009).

4 Parameter estimation

We perform the parameter estimation with a generalized expectation-maxi-

mization algorithm, that finds the maximum point of the joint posterior

density by updating the parameters, one at the time, to the expected values

of the above fully conditional posterior densities (3.4–3.14, 3.16 and 3.19).

Maximum a posteriori or MAP estimate is the value that maximizes the

posterior probability density function for the parameter vector Θ,

Θ̂MAP = argmax
Θ

p(data|Θ) p(Θ),

where p(data|Θ) denotes the likelihood of the data and p(Θ) the prior

density. The MAP estimate differs from a maximum likelihood estimate

Θ̂ML = argmax
Θ

p(data|Θ)

in that the MAP estimate incorporates the prior beliefs regarding the pa-

rameters values. Due to the conjugate or otherwise suitable prior densities

chosen, the fully conditional posterior densities for the parameters and la-

tent variables are known probability density functions. This guarantees an

easy derivation of the estimation algorithm; as the expected values of the

known densities are automatically available, we do not need to find the fully

conditional posterior expectations by integration. Additionally, if preferred
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it would be trivial to implement a MCMC Gibbs sampler to sample from

these densities.

4.1 Generalized expectation-maximization

The expectation-maximization algorithm is originally designed for imputa-

tion of missing data or estimation of latent variables, and it operates by

iteratively updating the latent or missing variables to their expected values

(E-step) and subsequently the parameter vector to its maximum likelihood

value, given the values assigned to the latent variables (M-step) (Dempster

et al. 1977). Later the algorithm has been used extensively in parameter

estimation: in this case part of the parameter vector is updated to its ex-

pected value and the rest of the vector to its maximum likelihood value,

or, in the Bayesian context, to the expected and maximum values of the

fully conditional posterior densities, respectively. When an EM-algorithm

is applied for parameter estimation, assigning the variables into the E-

and M-steps is somewhat arbitrary. Often the parameters of most inter-

est are maximized, while the variances and other nuisance parameters are

integrated out from the posterior by updating them into their conditional

expectations. As pointed out in I, under a Gaussian model the classifi-

cation gets even more peculiar: due to the symmetric posterior density

the expected and the maximum values of the location parameters are the

same, and moreover the scale parameters with an inverse-χ2 posterior be-

came equivalent by a slight modification of the prior parameters. Thus,

for it is not clear, or even interesting, which parameters are updated into

their conditional maximums and which to conditional expectations, we base

our method on an alternative description of the EM-algorithm (Neal and

Hinton 1999) regarding both of the steps as maximization procedures of

the same objective function. To enable handling of large marker sets the

iterative updating is done one parameter at the time, conditionally on the

other parameters remaining fixed. This practice is a form of a generalized

expectation-maximization (GEM). Under the alternative description of the

EM-algorithm, the GEM-algorithm corresponds to seeking to increase the

objective function instead of attempting to maximize it. That is, we do

not guarantee that the chosen arguments maximize the objective function,

but know that the value of the function will increase with every update.

The generalized algorithm has been proven to converge into same estimate

than the standard EM-algorithm, though possibly slower (Neal and Hinton

1999).
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4.2 Prior selection in MAP estimation

There are clearly two philosophies concerning the selection of the data spe-

cific (hyper)prior parameters, a theoretical one and a more pragmatic one.

In theory, the parameter values could be elicited on the basis of the prior

knowledge or beliefs, however, often it is more practical to choose values

leading to the best result. The latter approach is referred as tuning of the

estimation algorithm. Some authors disapprove this type of a prior selec-

tion, and suggest that it would be better to settle for a suboptimal model

in order to be able to use philosophically more plausible priors (O’Hara

and Sillanpää 2009). As in practice an end user scarcely will be content

with an inferior model, we have in this case put the model performance be-

fore the philosophical affairs. Moreover, it is not clear what issues should

be considered when trying to define the parameter values. The plausible

values depend at least on the variance of the phenotypic response, on the

heritability and genetic architecture of the trait, on the number of mark-

ers and on the LD-structure. Also the goal of the analysis must be taken

into account when selecting the (hyper)prior parameters; within the QTL

mapping context the most desirable result consists of clear and distinct

QTL signals, with as little extra noise as possible, while in the prediction

context this extra noise actually improves the model performance. There

are attempts to determine the prior parameter values analytically (see e.g.

Meuwissen et al. 2001; Shepherd et al. 2010; de los Campos et al. 2013),

however, as these methods take into account only the phenotypic variance,

heritability, and number of markers, they do not, in our experience, provide

optimal results.

The information an EM-algorithm (or a GEM-algorithm) passes from

one iteration to the next consists of one point of the posterior density, the

maximum or the expectation. While in sampling based MCMC estimation

the shape of the prior density is of crucial importance, in MAP estimation

one needs to be more concerned about the behavior of the expectation or

maximum points than the actual shape of the function. As our GEM-

algorithm updates the parameters to their fully conditional expectations,

we have mainly focused on the expected values in selecting the prior or

hyperprior parameters. Since the tuning of the model will be the harder

the more parameters there are to adjust, it is reasonable to try to manage

with as few as possible. To this end, we have decided to set constant

values to the (hyper)prior parameters having only a minor impact to the

corresponding fully conditional expectations.
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Under the Bayesian LASSO, or the Laplace model (I and III), the op-

tional hyperprior layer is present in the model, and the the rate parameter

λ2 of the exponential density (a.k.a. the LASSO parameter) has a conju-

gate Gamma(κ, ξ) hyperprior. The conditional posterior expectation of the

LASSO parameter is E(λ2 | ⋆) = (κ+p)/(ξ+
∑

σ2
j/2); since p is very large,

the impact of κ into the posterior expectation is negligible, and therefore

the shape parameter κ of the gamma density is set to one. As we do not

include the indicator variable into the Laplace model, the only parame-

ter requiring tuning is the rate ξ of the gamma density. The shrinkage

induced by the Laplace prior is the stronger the larger value the LASSO

parameter gets. As the parameter ξ appears in the denominator of the

posterior expectation, a low value for ξ is concordant with a high value for

λ2, and thus with more intense shrinkage. In II the prior parameters of the

Extended Bayesian LASSO (Mutshinda and Sillanpää 2010) are handled

correspondingly.

Under the Student’s t model (I), the predetermined prior parameters

for the inverse-χ2 distribution are selected so that the fully conditional

posterior expectation of the effect variance, E(σ2
j | ⋆) = (β2

j + ντ 2)/(ν − 1),

is mainly determined by the the square of the effect size βj. By setting the

degrees of freedom ν = 2, the posterior expectation will become β2
j + 2τ 2,

so if we choose a small value for the scale τ 2 the estimate of the variance

stays always positive, but is shrunken towards zero strongly if βj is small

(βj << 1 =⇒ β2
j << βj) while left intact when βj is large (βj ≈ 1 =⇒

β2
j ≈ βj). The scale parameter τ 2 is tuned into a data specific value.

Contrary to the Bayesian LASSO, the Student’s t model benefits from

of the additional sparseness produced by the indicator variable. If the

indicator variable is present in the model, the parameters requiring tuning

are the scale τ 2 of the inverse-χ2 density and the prior probability π of a

marker to be linked to the trait. As these parameters are related to the

shrinkage inducing mechanisms complementary to each other, their optimal

values are interdependent. The value for π indicates the prior probability

of a marker to be included into the model, so a low value naturally leads

to stronger shrinkage than a high value. The scale parameter τ 2 behaves

alike, low values producing more shrinkage.

The variance of the polygenic component (I and II), or the additive

genetic variance under the Bayesian G-BLUP (I and III), has an inverse-χ2

prior density. Similarly to the Student’s t model, the degrees of freedom of

the inverse-χ2 density is set to νu = 2 and the scale parameter τ 2u has been

given a data specific value. The magnitude of the value given for τ 2u depends
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above all upon the role of the polygenic component in the model. When

used as an additional polygenic component incorporated into a multilocus

association model, the polygene is to explain only a fraction of the genetic

variance, while in the context of Bayesian G-BLUP the polygene needs to

cover the genetic variance in its entirety.

The (hyper)prior parameters are tuned into suitable data specific values

by examining the model performance with different values, and selecting

the ones leading to the most favorable outcome. What outcome is favorable

depends naturally on the purpose of the analysis. In prediction the (hy-

per)prior parameters yielding the highest correlation between the predicted

and observed phenotypes are selected, however e.g. in QTL mapping one

may wish to use some other measure. In practice the optimization is done

by simply selecting two arbitrary values for the parameter, observing the

result under these values, and proceeding the search for an optimal value

to the direction pointed by the better performing one. This step could be

automatized, but so far we have performed it manually.

4.3 GEM-algorithm for a MAP estimate

The original papers I–III present slightly varying versions of the estimation

algorithm, each corresponding to the model variate(s) considered in that

particular paper. The algorithm presented here is a less-detailed summary

of the previous versions.

1. Initial values

Set initial values for the estimated (hyper)parameters. We use zeros

for the location parameters β0, β and u, small positive values (0.1) for

the dispersion parameters σ2
0,σ

2, σ2
u and λ2 (δ and ηj under the EBL

of II) and 0.5 for the indicators γ. The possible unknown threshold

values are initialized with t⋆ = ( 1
K−2

, 2
K−2

, . . . , K−2
K−2

), where K is the

number of classes. Some authors report sensitivity for starting values

(e.g. Shepherd et al. 2010), but as we have not noticed such a behavior

in our algorithm we are able to use always the same initial values.

2. Threshold model

When the Gaussian phenotype is not (fully) observed, the threshold

module is present the model, and the Gaussian response y is consid-

ered as a latent variable.
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2.a. The values of the latent variable y are updated by replacing the

current values of yi with the expected values of the truncated

normal distribution (3.16),

E(yi|⋆) = E(yi) +
φ
(
tk−1 − E(yi)

)
− φ

(
tk − E(yi)

)

Φ
(
tk − E(yi)

)
− Φ

(
tk−1 − E(yi)

) ,

where φ(·) and Φ(·) denote the standard normal density and

cumulative distribution functions, respectively, and E(yi) is the

appropriate (given the sub-model) prior expectation for the la-

tent response.

2.b. When applicable, the K − 2 unknown thresholds are updated to

their conditional expectations. From (3.19) we get

E(tk|⋆) =
1

2

(
max(yi|wi = k) + min(yi|wi = k + 1)

)

for all k = 2, . . . , K − 1.

3. Population intercept

The population intercept β0 is updated into an appropriate version

of the fully conditional expectation given by (3.4), the version refer-

ring to the different sub-models. The fully conditional posterior is a

normal density, so E(β0|⋆) is given by its location parameter.

4. Residual variance

When the Gaussian response is fully observed, the residual variance

σ2
0 is updated into the expected value of an appropriate version of

(3.5). The expected value of an Inv-χ2(df, scale) density is (df ×

scale) / (df − 2), hence

E(σ2
0|⋆) =

1

n− 2

n∑

i=1

(yi − β0 − . . . )2.

5. Marker effect

5.a. The effect sizes βj (for all j) are updated, one at the time, into

an appropriate version of the fully conditional expectation given

by the normal density in (3.6).

5.b. If the indicator variable is included into the model, the values

of γj (for all j) are updated, one at the time, into the expected

value of the Bernoulli distribution in (3.8)

E(γj|⋆) = p(γj = 1|⋆) =
πRj

(1− π) + πRj

,

33



whereRj is computed with an appropriate version of the formula

given in (3.8).

Under the G-BLUP the marker effects are absent from the model,

and this step becomes obsolete.

6. Polygenic component

If the polygenic effect is included into the model, either as an addi-

tional component of the multilocus association model (3.1) or as the

explanatory variable of the G-BLUP (3.3), the following updates will

be carried out.

6.a. The polygenic effect u is maximized by replacing the current

value with the expected value of an appropriate version of the

multivariate normal density (3.7).

6.b. The additive variance of the polygenes σ2
u is replaced by its fully

conditional expectation given by (3.11). As the fully conditional

posterior is an Inv-χ2 density, the expected value is

E(σ2
u|⋆) =

1

νu +N − 2

(
u′A−1u+ νuτ

2
u

)
=

1

N

(
u′A−1u+ 2τ 2

)

for preset degrees of freedom νu = 2. Under the G-BLUP the

pedigree based relationship matrix A is replaced by its genomic

counterpart G.

7. Variance of the marker effects

The effect variances σ2
j (for all j) are updated into their fully condi-

tional expectations.

7.a. Under the Student’s t model the fully conditional posterior dis-

tribution of σ2
j is an inverse-χ2, as expressed in (3.9), hence we

get

E(σ2
j |⋆) =

β2
j + ντ 2

ν − 1
= β2

j+2τ 2, for preset degrees of freedom ν = 2.

7.b. Under the Bayesian LASSO the precision, or inverse of the vari-

ance σ2
j , has an inverse-Gaussian fully conditional posterior dis-

tribution (3.10) whose expected value equals

σ2
j :=

|βj|

λ
.
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7.c. Under the Indicator model in II the effects βj have been given a

Gaussian prior with a constant variance σ2
j = σ2 for all j, and

the effect variance is therefore not updated.

8. Prior parameters

If the optional hyperprior layer is present in the model and update

the values of λ and π into the fully conditional expectations.

8.a. The expected value of a Gamma(shape, rate) density is shape/rate,

hence, from (3.14) we get

E(λ2|⋆) =
(
1 + p

)(
ξ +

p∑

j=1

σ2
j

2

)−1

for preset shape κ = 1.

8.b. The expected value of a Beta(a, b) density is a/(a+ b), so, from

(3.12):

E(π|⋆) =
1

2 + p

(
1 +

p∑

j=1

γj

)
for a = b = 1,

and

E(π|⋆) =
1

2p

(
a+

p∑

j=1

γj

)
for b = p− a,

where p is the number of SNP markers, and a can be considered

as the number of markers linked to the trait.

In practice, while the LASSO parameter λ2 is estimated in all of

our algorithms in I–III, the estimation of the probability π is seldom

carried out. The indicator variable is either absent from the model (as

the hierarchical Laplace model does not need it), or the prior value

for π is fixed (Student’s t model in I and the Indicator model in II).

The steps are repeated until convergence.

5 Example analyses

In the original works I–III we have examined the behavior and performance

of the different sub-models, and tested and demonstrated our method in

both prediction and association mapping context. During the analyses we

have observed especially the prediction (I and III) and association mapping

(II) accuracy, and the ease of finding the suitable (hyper)prior parameters.
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We have used three different data sets, consisting both simulated and

real data. The data sets represent various population structures, genetic

architectures and linkage disequilibrium patterns.

5.1 Data sets

5.1.1 XIII QTL-MAS Workshop data

First of the data sets, used in all of the original works I–III, consists of

a simulated data introduced in the XII QTL-MAS Workshop 2008 (Lund

et al. 2009). The data set can be downloaded from the workshop homepage,

http://www.computationalgenetics.se/ QTLMAS08/QTLMAS/DATA.html.

This is a extensively-used data (e.g Usai et al. 2009; Hallander et al. 2010;

Shepherd et al. 2010), and therefore enables an easy way to get some idea of

the performance of our method in comparison to other methods proposed.

The data set consists the genotypes of 6,000 biallelic SNP loci of 5,865 indi-

viduals from seven generations of half sib families, simulating a typical live-

stock breeding population (see Lund et al. 2009 for details). The first four

generations of the data, 4,665 individuals, function as a learning set, while

the generations five to seven, 1,200 individuals, are treated as a prediction

set. The advantage of using a simulated data set in the example analyses

is the availability of the true genetic values of the individuals, and the true

effects and locations of the simulated causal loci. The individuals’ genetic

value equals a cumulative effect of 48 simulated QTL, and the phenotypic

values have been obtained as a sum of the genetic value and a random

residual drawn from a normal density with null mean and a variance set to

produce heritability value 0.3 (Lund et al. 2009). To examine the model

performance in a less data specific situation, with the influence of sampling

variation diminished, we have generated 100 replicates of the data set by

resampling the residuals from a normal density N(0, var(TBV )(1/h2− 1)),

where var(TBV ) denotes the observed variance of the genetic values and

the heritability h2 equals 0.3.

As in II our main interest was the behavior of the model with and with-

out an additional polygenic component, we modified the data by adding a

simulated polygenic effect into the phenotype. We simulated the polygenic

effect by either sampling the polygene from a pedigree based multivariate

normal density, or by selecting 1000 random SNP to serve as codominant

causal loci with equal allele substitution effects. The former method corre-

sponds to the Fisher’s polygenic model, while the latter can be seen a finite
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locus approximation of the polygenic model. When generating the 100

replicated phenotypes, aside of the residuals, the infinite polygenic terms

and the random SNP acting as the polygene were resampled.

5.1.2 Real pig (Sus scrofa) data

The second data set is a real pig (Sus scrofa) data that we have used in

I and III. The data is provided by the Genetics Society of America to be

used for benchmarking of genomic selection methods, and it is described

in detail by Cleveland et al. (2012). The pig data set consists of pheno-

typic records of 3,184 individuals for trait with predetermined heritability

0.62, and genotypic records for 60k biallelic SNP markers. Since the data

does not consist a separate validation population, we compute the result

statistics using cross-validation, where the 3,184 individuals are randomly

partitioned into 10 subsets (10-fold cross-validation) of 318 or 319 individ-

uals. At each round 9 of the sets are treated as a learning set and the

remaining one as the prediction set.

5.1.3 Human HapMap data

In the third data set, used in the original work II, the SNP genotypes come

from the International HapMap Project (The International HapMap Con-

sortium 2003) phase 3 data, available at http://hapmap.ncbi.nlm.nih.

gov/downloads/genotypes/hapmap3 r3/. The data consists of 1184 indi-

viduals from 11 populations around the world. For our data set we selected

the SNP loci from chromosome 1, that have no missing genotypes and mi-

nor allele frequency (MAF) more than or equal to 0.05, leading to a set

of 31,916 markers. The phenotype data was created by selecting 10 ran-

dom markers with MAF > 0.4 as QTL and drawing the allele substitution

effects of the QTL from a Gamma(4,0.5) density. The MAF limit was as-

signed to produce QTL detectable with the limited number of individuals.

As there is no pedigree available in this data set, the finite locus approxi-

mation approach was the only possibility for the polygene simulation, and

so the polygenic effect was added by randomly selecting 500 markers as a

polygenic loci with equal allele substitution effects. The heritability was set

to 0.5, and 80% of the additive genetic variation was set to be due to the

QTL and 20% due to the polygene. To create a realistic situation where

the SNP are not causal mutations all of the simulated causal loci (total of

510 markers) were removed from the marker data. A set of 100 phenotype

data replicates was created by resampling the residuals.
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5.1.4 Discrete and censored data

The binary, ordinal and censored data sets used in I (only binary) and

III are based on the QTL-MAS (in I and III) and the real pig (III only)

data sets. The binary and ordinal data were generated by discretizing the

original phenotypes by introducing one or several thresholds at selected

positions. The binary response in I is set to have 80% success probabil-

ity, while in III there are two binary phenotypes with success probabilities

50% and 80%. The ordinal phenotypes consists of four classes with either

even 20:30:30:20% of observations in each class, or highly unbalanced with

70% belonging to the first class and 10% in the subsequent three classes.

The censored data sets consist of a continuous Gaussian phenotype with

20-, 50- or 80% right censored observations. The value of the censored

observations is set to equal the largest of the non-censored values, leading

to a spiked Gaussian phenotype (see Broman 2003). The binary and the

evenly distributed ordinal data sets are generated in preparation for an easy

ascertainment of the the extra power acquired by utilizing the category in-

formation compared to the dichotomized phenotype. The binary phenotype

with 80% success probability simply sets the first category of the ordinal

phenotype as a failure and the subsequent three classes as a success while

the binary response with 50% success probability sets the first and second

category as a failure and the third and fourth as a success. The same holds

true for the censored data, as the threshold values are set to correspond the

thresholds of the binary phenotype. All threshold values were determined

as standard normal distribution function parameters leading to the desired

threshold value, e.g. a threshold at 0.84 leading to 20% success probability,

since Φ(0.84) = 0.8.

5.2 Pre-selection of the markers

The multilocus models are not able to handle an unlimited number of loci

with respect to the sample size. In the QTL-MAS data set (I–III) the

proportion of markers to individuals is almost a one-to-one, and no extra

measures are needed, but with the pig (I and III) and the HapMap (II) data

sets the multilocus association model becomes too oversaturated to function

properly. Therefore, prior to the association analysis, we have reduced the

number of markers by applying the sure independence screening method

of Fan and Lv (2008) for ultrahigh dimensional feature space. The sure

independence screening is based on ranking the predictors with respect to
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their marginal correlation with the response variable, and selecting either

a predetermined proportion of the predictors or the predictors exceeding a

predetermined importance measure.

Hoti and Sillanpää (2006) have proposed an upper limit of 10 times

more loci than individuals, but it seems that in practice a smaller number

of loci might be optimal. In I and III we have reduced the number of

markers in the pig data from 45,317 to 10,000 and in II in the HapMap

data from 31,916 to 5,000 markers, leading to roughly three and four times

more markers than individuals, respectively.

5.3 Genomic prediction

The performance of the model from the prediction aspect has been con-

sidered in original works I and III. In I we compared the predictive per-

formance of the model with the two alternative shrinkage priors, Student’s

t and Laplace, and studied the impact of the model components into the

accuracy of the estimates. In III we tested and demonstrated the behavior

of the threshold model for binary, ordinal and censored Gaussian traits.

To compare the accuracy of the estimates we computed the genomic

breeding values for the prediction set individuals and examined the Pear-

son’s product-moment correlation coefficient between the true and the es-

timated breeding values under the model variants. In the simulated QTL-

MAS data set the genetic values of the individuals are known, enabling

us to determine the accuracy by a direct comparison of the simulated and

estimated genetic values. With a real data, on the other hand, the true

breeding values of the individuals are not available, and therefore the cor-

relation for the pig data is computed between the estimated breeding values

and the phenotype, and divided by the square root of the heritability to

compensate for the additional noise. For this we have used the heritability

value given in Cleveland et al. (2012). In both cases the estimated breeding

values are simply computed as the linear predictor of the current model.

5.4 Association mapping

The association mapping perspective of the method is considered in the

original work II. Association mapping aims to locate genes affecting the

phenotype by identifying the SNP markers in linkage disequilibrium with

the causal loci.
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5.4.1 Decision making

An irremovable part of association mapping consists of deciding which ob-

served SNP effects should be considered as a signal for a causal locus and

which should be ignored as a random noise. The decision making poses a

two fold problem: one hopes to find as many of the real associations as pos-

sible, while avoiding the false signals. While the amount of false signals, or

false positive rate, one is willing to accept is decided beforehand by setting

a suitable confidence level for the experiment, the signal size corresponding

to that level is case-specific. Phenotype permutation (Churchill and Doerge

1994; Xu 2003) is an universal, although computer intensive, method for

assessing empirical confidence limits. The significant SNP effects are iden-

tified by randomly shuffling the phenotypes T times, recording the highest

SNP effect of each permutation round, and considering the tth highest ef-

fect as the (T − t/T )% confidence limit. The SNP effects higher than the

confidence limit are then judged as genuine signals.

Under the Indicator model in II also the Bayes factor can be used in

validating the signals. As the normal prior for the effect sizes βj does

not introduce shrinkage to the estimates, the posterior expectation of the

indicator variable truly represents the probability of the marker to be linked

to the trait. Hence the Bayes factor can be defined as the ratio of the

marginal likelihoods of the two models, the first model corresponding to

indicator γj = 1 (SNP is linked to the trait) and the second model to

indicator γj = 0 (SNP is not linked to the trait). Since in an Indicator

model like ours there exists only the two competing models, the Bayes

factor is often computed as the posterior odds of the models divided by the

prior odds of the models, that is, the Bayes factor related to marker locus

j is simply given by

BFj =
γ̂j

1− γ̂j

/ π

1− π
,

where γ̂j is the posterior estimate of the indicator (posterior probability

that marker j is linked to a QTL) and π the prior probability that marker

is linked to a QTL.

5.4.2 Diagnostics

The model performance was assessed by examining the numbers of true

(ntp) and false (nfp) positive, as well as true (ntn) and false (nfn) negative

signals, and computing the false positive (FPR), false negative (FNR) and
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false discovery (FDR) rates as

FPR =
nfp

nfp + ntn

, FNR =
nfn

ntp + nfn

and FDR =
nfp

nfp + ntp

.

The FPR and FNR correspond to the probabilities of a type I error (1−

specificity) and a type II error (or 1− power), respectively, and FDR repre-

sents the proportion of the reported QTL that are actually false positives.

A method was considered to have correctly identified a QTL if it reported

one or more QTL signals within a window of predetermined width around a

known (simulated) QTL. The number of true positives (ntp) was the num-

ber of windows consisting one or more signals. Respectively, the number

of false negatives (nfn) was the number of windows without a QTL signal.

Reported QTL outside the windows were treated as false positives (the

number of false positives being denoted by nfp). The number of true neg-

atives (ntn) was calculated as the number of the SNP outside the windows

around the simulated QTL minus the number of false positives.

To compare the performance of the different models, we examined the

average true positive rates (TPR = 1−FNR, or sensitivity of the method)

against the false detection rates within analyses of the 100 replicated data

sets, under a series of limit values for the SNP effects considered as a posi-

tive signal. The most common diagnostic graph, the ROC-curve, (Receiver

Operating Characteristic curve), plots the true positive rate (TPR) against

the false positive rate (FPR), however we feel that replacing the latter with

the false discovery rate (FDR) leads to a more intuitive presentation when

the number of markers is high (Figure 1 in II). As the number of segre-

gating QTL is usually negligible compared to the number of SNP markers

in a genome-wide data, and hence the number of false positives and the

number of true negatives approximately add up to the number of SNP,

FPR measures approximately the proportion of the markers giving a false

signal. Given that there are tens or hundreds of thousands of markers, a

substantially low percentage of false positives will vastly exceed the number

of true positives, and lead to a situation where most of the validated signals

are in fact false. The false discovery rate, on the other hand, represents

the proportion of the reported QTL that are actually false positives, and

therefore tells exactly what one is going to get.

5.5 Of speed and convergence

The steps of the GEM-algorithm are repeated until convergence. The algo-

rithm is considered to be converged when the correlation between the esti-
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mated breeding values of two consecutive iterations is higher than 1−10−6.

The convergence is confirmed visually, by examining the behavior of param-

eter values during the iterations, and verifying that all of the parameters

have reached a constant level. This is also how the suitable value for the

convergence rule has been originally ascertained. The required number of

iterations is usually between 40 and 80 under the multilocus association

model, and around 10 under the G-BLUP. So far we have not encountered

problems in the convergence, given that appropriate hyper(prior) parame-

ter values have been selected, and that the number of markers with respect

to the sample size has not been too large.

Depending on the data and the model variate, the computation time is

around 10–40 seconds. As a MCMC algorithm usually takes hours at mini-

mum to converge, the speed difference between the two types of algorithms

is far from trivial. The extremely short time requirement in fact enables

the usage of computer intensive techniques such as phenotype permutation.

6 Conclusions

6.1 Current status

Genomic selection has proven to accelerate the genetic gain of a breed-

ing program compared to phenotypic selection (Schaeffer 2006). While the

power of the traditional marker assisted selection is negligible when the

trait is controlled by a large number of small QTL whose effects can not

be reliably identified, in genomic selection this problem is largely avoided

by passing the decision making between QTL and non-QTL and including

all of the effects into the genomic breeding value estimate. In the animal,

especially cattle, breeding field genomic selection is widely accepted as the

new paradigm, and genomic breeding values are used in national and inter-

national cattle breeding programs in several countries (Zhang et al. 2011;

Eggen 2012). The plant breeding community, on the other hand, is still in-

vestigating the practical value of genomic selection (see e.g. Jannink et al.

2010; Nakaya and Isobe 2012).

In human genetics the genome-wide association (GWA) studies have re-

vealed hundreds of validated associations between SNP markers and com-

plex traits (see e.g. Donnelly 2008). However, for any one trait the vali-

dated associations typically explain only a fraction of the observed genetic

variation, causing the so called missing-heritability-problem (Maher 2008).
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Many of the suggested explanations for the missing heritability (epista-

sis, gene-environment interaction, epigenetic factors), are based on non-

additive genetic effects, and hence are discarded as possible explanations

for the missing additive genetic variance or narrow-sense heritability (de los

Campos et al. 2010; Yang et al. 2010). By using a frequentist G-BLUP,

Yang et al. (2010) has found a remarkable part of the missing heritability of

human height: while validated SNPs explain 5% of the phenotypic variance,

the G-BLUP explains 45%, indicating that the GWA analyses have detected

only a proportion of the QTL. This result suggests two things. First, the

GWA study has not been efficient enough, as it has failed to detect many

of the small causal loci, probably because the small effects do not reach the

significance thresholds and are discarded as random noise. This problem

can be overcome by increasing the power of the GWA by increasing sample

size, marker density and statistical methodology. However, it is probable

that many of the causal loci explain such a small amount of the pheno-

typic variation that they will never be detected, and on the other hand,

expending considerable resources in detecting practically insignificant loci

may not be the best policy. This brings us to the second implication. As

the breeding field has witnessed with the genomic selection, in prediction it

is not necessary to know the exact location and effect of the specific causal

variants, but only the total effect (Meuwissen et al. 2001). Therefore, it

might be well advised to separate the gene-detecting GWA studies from

the phenotype and disease risk prediction (see e.g. de los Campos et al.

2010; Yang et al. 2010).

The accuracy of genomic breeding values estimated for a given species

for a given trait depends at least on the effective population size and the

genome length of the species, the heritability and the genetic architecture

of the trait, the size and structure of the training set, the density of the

marker map and the statistical approach used for estimating the genomic

breeding values (Zhang et al. 2011). As the properties of the species and

the trait can not be altered, the improvement must be acquired via the

training set selection and the density of the markers, and by developing

better statistical methodology. Muir (2007) has shown that the size and

structure (number of generations) of the training set affects the accuracy

more than the number and density of the markers. As noted earlier, the

optimal number of markers in the multilocus association model is a function

of the number of individuals in the model, so increasing the size of the

training set may improve the outcome also through this channel. Different

statistical methods of predicting the genomic estimated breeding values
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have been compared in several studies (see e.g. Calus and Veerkamp 2007;

Calus 2010; Moser et al. 2009; Daetwyler et al. 2010), and it seems that

there is no single method working best at all situations.

6.2 What have we learned?

In the original works I and III we have further confirmed the idea of the mu-

tually complementary nature of the Bayesian multilocus association model

and the G-BLUP in the genomic selection. When the trait is influenced

by a moderate number of causal genes (tens, but not hundreds), the mul-

tilocus association model seems to give substantially higher accuracy for

the predictions than the Bayesian G-BLUP. With a highly polygenic trait

the Bayesian G-BLUP may, however, have the advantage. As in all of

the analyses our Bayesian version of the G-BLUP has been able to predict

the breeding values without any prior knowledge about the variance com-

ponents, it seems that the Bayesian G-BLUP may be a serious rival for

ASREML and other frequentist BLUP-type methods.

On the basis of the original work I it seems that, at least in MAP-

estimation context, the hierarchically formulated Laplace prior density is

superior to the non-hierarchical Laplace density and to the hierarchically

formulated Student’s t prior density. Especially with a polygenic trait

(the pig data) the hierarchical Laplace prior provides clearly more accurate

genomic breeding value estimates. This is an important discovery, since

the critique towards marker association models and their bad behavior in a

polygenic situation (e.g. Daetwyler et al. 2010; Clark et al. 2011) is mainly

based on the observations on BayesB, which is a Student’s t model.

The original work II reinforced our prior conception of the robustness

of the multilocus association model to residual dependencies between the

individuals. Based on this work, we are confident to say that multilocus

association methods improve the QTL mapping performance compared to

single SNP methods. Further, to our experience, it seems that neither an

additional correction for population or sample structure, nor an additional

polygenic component, is required under a multilocus association method.

In II we hypothesized that the shrinkage based multilocus association model

per se might provide a possible explanation for the apparent redundancy

of the polygenic component. As the shrinkage based multilocus association

models incorporate all of the marker effects, not only the substantial ones,

the negligible-sized SNP effects may contribute to the model as a finite

locus approximation of the polygenic component. In a high density genetic
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map the approximation may be good enough to leave a separate polygenic

component obsolete. Similarly, if some loci within the marker set were

correlated with the population or ethnic memberships, in a high density

map these loci could serve as an approximation of an explicit population

or ethnic term (Wang et al. 2005).

In addition, our example analyses in II demonstrate that Bayesian mul-

tilocus association approaches can improve QTL mapping accuracy and

avoid occurrences of biased association signals due to model misspecifica-

tion. In the excample analyses the uncorrected single SNP model PLINK

(Purcell et al. 2007) found basically nothing, while the multilocus associ-

ation model was in most cases able to identify the QTL explaining more

than 1% of the phenotypic variance.

In the original work III we proposed the threshold model part of the

model framework. On the basis of our findings it is unclear whether the

additional latent parameter module actually improves the prediction accu-

racy compared to using the linear Gaussian model directly for the binary,

ordinal or censored response. However, even though our results do not con-

firm the practical superiority of the correct threshold model over the linear

Gaussian model, we urge caution when applying a Gaussian model directly

for an ordinal data. Some data sets may be less well-behaving than the

ones we have studied and, as proven by Wang et al. (2013), different linear

models may be less robust to the incompatible data.

In all of the original works we have reduced the number of markers in

the multilocus association model by preselecting the markers with the sure

independence screening (Fan and Lv 2008). Even though sure independence

screening is a strikingly simple method it works very well, probably because

all it needs to do is to let all of the important markers pass to the next step

while, since the final variable regularization is performed by the multilocus

association model, it does not matter if unimportant ones are also selected.

6.3 What’s next?

So far we have built the genomic relationship matrix used in the Bayesian

G-BLUP with the simple identity-by-state method proposed by VanRaden

(2008). As it seems to be clear that G-BLUP is a worthy method with a

highly polygenic trait, it would probably be advised to try and develop a

more realistic method for assessing the relationships, possibly by trying to

take the dependencies between the markers into account.

The marker preselection procedure needs more attention. While in all
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of the original works we have used the sure independence screening, on the

side we have also performed some preliminary testing with other methods.

Even though the sure independence screening works actually surprisingly

well compared to the more sophisticated methods we have tested, there still

may be room for improvement.

The human genetic field intrigues us for a couple of reasons. As the

human genetics field is in possession of the most extensive data sets, it

would be interesting to test the performance of Bayesian multilocus associ-

ation model framework in that context. Also, it seems that the statistical

genome-wide association analysis methods typically used in the human ge-

netics field may not be as efficient as they could be. It would therefore

be especially fascinating to test our hypothesis of the superiority of the

Bayesian multilocus association models or, when applicable, the Bayesian

G-BLUP, compared to the predictive and gene-detection abilities of the

traditional methods.
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