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Bayesian natural selection and the evolution of
perceptual systems
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In recent years, there has been much interest in characterizing statistical properties of natural stimuli in
order to better understand the design of perceptual systems. A fruitful approach has been to compare the
processing of natural stimuli in real perceptual systems with that of ideal observers derived within the
framework of Bayesian statistical decision theory. While this form of optimization theory has provided a
deeper understanding of the information contained in natural stimuli as well as of the computational
principles employed in perceptual systems, it does not directly consider the process of natural selection,
which is ultimately responsible for design. Here we propose a formal framework for analysing how the
statistics of natural stimuli and the process of natural selection interact to determine the design of percep-
tual systems. The framework consists of two complementary components. The � rst is a maximum � tness
ideal observer, a standard Bayesian ideal observer with a utility function appropriate for natural selection.
The second component is a formal version of natural selection based upon Bayesian statistical decision
theory. Maximum � tness ideal observers and Bayesian natural selection are demonstrated in several
examples. We suggest that the Bayesian approach is appropriate not only for the study of perceptual
systems but also for the study of many other systems in biology.

1. BACKGROUND

The evolution of a species occurs as the result of interac-
tions between its environment and its genome. Thus,
achieving a rigorous account of evolution depends as
much on understanding the properties of environments as
it does on understanding the properties of nucleic acid
and protein chemistry. Although many laws of nature are
usefully described in deterministic terms, the complexity
of evolution often requires a description of both environ-
ments and genetics in statistical/probabilistic terms.
Research in the areas of population genetics and theoreti-
cal ecology has emphasized genetics and its relationship
to natural selection. However, recent advances in measur-
ing the statistical regularities of natural environments,
especially in the area of perceptual systems, raise the possi-
bility of developing more complete theories of evolution
by combining precise statistical descriptions of the
environment with precise statistical descriptions of gen-
etics.

Here we show that a constrained form of Bayesian stat-
istical decision theory provides an appropriate framework
for exploring the formal link between the statistics of the
environment and the evolving genome. The framework
consists of two components. One is a Bayesian ideal
observer with a utility function appropriate for natural
selection. The other is a Bayesian formulation of natural
selection that neatly divides natural selection into several
factors that are measured individually and then combined
to characterize the process as a whole. In the Bayesian
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formulation, each allele vector (i.e. each instance of a
polymorphism) in each species under consideration is rep-
resented by a fundamental equation, which describes how
the number of organisms carrying that allele vector at time
t + 1 is related to: (i) the number of organisms carrying
that allele vector at time t; (ii) the prior probability of a
state of the environment at time t; (iii) the likelihood of a
stimulus given the state of the environment; (iv) the likeli-
hood of a response given the stimulus; and (v) the birth
and death rates given the response and the state of the
environment. The process of natural selection is rep-
resented by iterating these fundamental equations in par-
allel over time, while updating the allele vectors using
appropriate probability distributions for mutation and sex-
ual recombination.

Our proposal draws upon two important research tra-
ditions in sensation and perception: ideal observer theory
(De Vries 1943; Rose 1948; Peterson et al. 1954; Barlow
1957; Green & Swets 1966) and probabilistic func-
tionalism (Brunswik & Kamiya 1953; Brunswik 1956).
After reviewing these two research traditions, we motivate
and derive the basic formulae for maximum � tness ideal
observers and Bayesian natural selection. We then demon-
strate the Bayesian approach by simulating the evolution
of camou� age in passive organisms and the evolution of
two-receptor sensory systems in active organisms that
search for prey. Although we describe Bayesian natural
selection in the context of perceptual systems, the
approach is quite general and should be appropriate for
systems ranging from molecular mechanisms within cells
to the behaviour of organisms.
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(a) Ideal observer theory in sensation and
perception

Ideal observer theory uses the concepts of Bayesian stat-
istical decision theory to determine optimal performance
in a task, given the physical properties of the stimuli.
Organisms generally do not perform optimally in any
given task, and thus the aim of ideal observer theory is
often not to model the performance of the organism per
se, but instead to provide a precise measure of the stimulus
information available to perform the task, to provide a
computational theory of how to perform the task, and to
serve as an appropriate benchmark against which to com-
pare the performance of the organism.

To illustrate the logic of ideal observer theory, consider
a simple categorization task where there are n possible
stimulus categories, c1,c2,¼,cn, and the observer’s task is
to correctly identify the category, given a particular stimu-
lus S arriving at the sensory organ. If there is substantial
stimulus noise or overlapping of categories, then the task
will be inherently probabilistic because errors are unavoid-
able. As one might guess intuitively, the ideal classi� er
achieves optimal performance by computing the prob-
ability of each category, given the stimulus, and then
choosing the most probable category. In other words, the
optimal decision rule is

If p(ci|S) . p(cj|S) for all j Þ i, then pick ci.1 ,2

These conditional probabilities are often computed by
making use of Bayes’s theorem:

p(ci|S) =
p(S|ci)p(ci)

p(S)
,

where p(ci|S) is the posterior probability, p(S|ci) is the
likelihood, and p(ci) is the prior probability.3 The prob-
ability in the denominator, p(S), is a normalizing constant
that is the same for all the categories and hence plays no
role in the optimal decision rule. Furthermore, it is com-
pletely determined by the likelihoods and prior prob-
abilities:

p(S) = On
j = 1

p(S|cj)p(cj).

Using Bayes’s theorem, the optimal decision rule
becomes

If p(S|ci)p(ci) . p(S|cj)p(cj),
for all j Þ i, then pick ci. (1.1)

In other words, Bayes’s theorem implies that one can
optimally categorize a given stimulus if one knows the
probability of the different categories (the prior
probabilities), and the probability of the stimulus given
each of the possible categories (the likelihoods).

In perception research, the prior probabilities and the
stimulus likelihoods are generally under experimental con-
trol and hence can be computed directly from the experi-
mental design and from the irreducible physical noise
properties of the stimuli (e.g. the Poisson noise property
of light). Applications of ideal observer theory to simple
categorization tasks have yielded important discoveries
concerning, for example, the detection of signals in noise
(De Vries 1943; Rose 1948; Peterson et al. 1954; Barlow
1957; Green & Swets 1966; Burgess et al. 1981; Watson et
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al. 1983; Pelli 1990), the discrimination of colour (Vos &
Walraven 1972), the discrimination of spatial patterns and
spatial location (Geisler 1984, 1989), the discrimination
of surface slant using texture cues (Knill 1998a), and the
discrimination of 3D shape (Liu et al. 1995). These dis-
coveries include optimal performance laws for various
stimulus dimensions. To mention just a few, it has been
shown that the physical limit for resolving differences in
intensity increases with the square root of the average
intensity, that the physical limit for spatially resolving two
features decreases with the fourth root of stimulus inten-
sity, and that the physical limit for detecting changes in
the relative location of two spatially separated features
decreases with the square root of intensity.

More generally, the ideal observer approach has led to
the discovery of computational theories of how best to per-
form various tasks given the available information. In fact,
an ideal observer amounts to the correct formalization of
the intuitive notion of a computational theory as described
by Marr (1982).4

As mentioned earlier, the performance of real organisms
generally does not reach that of the ideal observer. None-
theless, ideal observer theory serves as a useful starting
point for developing realistic models of sensation and per-
ception (e.g. Schrater & Kersten 2001). With an appropri-
ate ideal observer in hand, one knows how the task should
be performed. Thus, it becomes possible to explore in a
principled way what the organism is doing right and what
it is doing wrong. This can be done by degrading the ideal
observer in a systematic fashion by including, for example,
hypothesized sources of internal noise (Barlow 1977),
inef� ciencies in central decision processes (Green & Swets
1966; Barlow 1977; Pelli 1990), or known anatomical or
physiological factors that would limit performance
(Geisler 1989).

If the costs and bene� ts associated with different stimu-
lus–response outcomes are more complex than maximiz-
ing accuracy, then a more general form of Bayesian
decision theory is required (e.g. Berger 1985). Speci� cally,
if the goal is to maximize the average utility, then the opti-
mal decision rule becomes

If u(ci|S) . u(cj|S) for all j Þ i, then pick ci,

where the average utility associated with picking ci is
given by

u(ci|S) =
1

p(S)O
n

k = 1

u(ci,ck)p(S|ck)p(ck). (1.2)

In this equation, u(ci,ck) is the utility function,5 which
speci� es the bene� t or loss associated with picking cate-
gory i when the correct answer is category k. The remain-
ing terms in the equation specify the probability of
category k given that the stimulus is S. (Once again, the
value of p(S) can be ignored because it has no effect on
the decision.)

Note that if the utility is 1.0 for a correct classi� cation
and 0.0 otherwise, then this decision rule reduces to maxi-
mizing accuracy. The typical goal for categorization tasks
in the laboratory is to maximize accuracy, and hence, in
that case, the utility function takes on this simpli� ed form.
However, in natural categorization tasks there is often a
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complex pattern of costs and bene� ts associated with dif-
ferent stimulus–response outcomes, and hence the utility
function plays a more interesting role.

The utility function also plays a more interesting role
in tasks that involve estimating physical properties of the
environment. In general, estimates that are nearer the
truth have greater utility than those that are wide of the
mark. Thus, the proper utility functions tend to be
smoothly varying (Yuille & Bülthoff 1996; Brainard &
Freeman 1997). Ideal observers have been developed for
a number of perceptual estimation tasks, such as estimat-
ing the direction and spectra of sound sources (Candy &
Xiang 2001), estimating the re� ectance of a surface inde-
pendent of the spectral distribution of the illuminating
light source (Brainard & Freeman 1997), and estimating
the shape of a surface from shading (Freeman 1996) or
the slants of surfaces from texture (Knill 1998b). A collec-
tion of discussions and applications of the Bayesian
approach in perceptual estimation tasks is available in
Knill & Richards (1996).

(b) Probabilistic functionalism and the statistics of
natural environments

It is not surprising that humans fall short of ideal per-
formance in both categorization and estimation tasks.
Organisms evolve to perform many different tasks, and
hence there may be compromises in design that lead to
non-ideal performance in a given task. Also, there are lim-
its to the range of materials that organisms can synthesize
and exploit, and limits on the possible structure of organic
molecules. Furthermore, perceptual systems are designed
through natural selection, and thus the appropriate meas-
ure of utility is � tness (birth and death rates), which may
lead to ideal observer predictions that are different from
those obtained with other utility functions.

These factors will be taken up later, but � rst consider
the obvious factor that the stimuli and tasks used in the
laboratory generally do not correspond well with those
that occur when an organism is operating in its natural
environment. It is conceivable that an organism’s perform-
ance may more closely approach that of the ideal observer
in natural tasks performed with natural stimuli. This is
especially true for those speci� c tasks and stimulus
environments where natural selection has had an opport-
unity to operate over long periods of time or where the
selection pressure is strong.

Ever since Darwin, the importance of characterizing
natural environments for understanding biological design
has been widely recognized. However, Brunswik &
Kamiya (1953) and Brunswik (1956) were the � rst to fully
appreciate the value of measuring directly the statistical
properties of natural stimuli. For example, Brunswik &
Kamiya (1953) measured the distances between parallel
contours in visual images and showed that contours that
are closer to each other are more likely to belong to the
same physical object. Identifying those stimulus features
that are likely to belong to the same object is critical for
object recognition. Thus, Brunswik and Kamiya provided
direct evidence of a selection pressure for perceptual
mechanisms that perform grouping on the basis of ‘prox-
imity’. The Gestalt psychologists had demonstrated dec-
ades earlier (Wertheimer 1958) that the human visual
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system tends to group visual features based on relative
proximity, but Brunswik and Kaymia showed that this
grouping rule has a physical basis in the statistics of natu-
ral environments.

In the 1950s, when Brunswik proposed measuring the
statistical properties of natural stimuli, the technology
required to make such measurements was largely non-exi-
stent. In recent decades, with the advent of more powerful
computers, there has been growing interest in measuring
statistics of natural stimuli. Among recent results for the
visual domain are the following: the wavelength spectra of
almost all natural light sources can be � tted with a single
model having just two or three free parameters ( Judd et
al. 1964; Dixon 1978); the wavelength spectra of most
natural surfaces can be described with a similar model
having just two or three parameters (Buchsbaum & Gotts-
chalk 1984; Maloney 1986); the distribution of contour
orientations in natural scenes peaks in the vertical and
horizontal directions (Switkes et al. 1978; Coppola et al.
1998); and spatial frequency spectra of natural scenes are
not uniform, but instead amplitude varies inversely with
spatial frequency (Burton & Moorehead 1987; Field
1987).

All these statistical facts about natural environments
appear to be re� ected in the design of the human visual
system. The visual system is limited to three classes of
cone photoreceptors, perhaps re� ecting the highly con-
strained spectra of natural sources and surfaces
(Maloney & Wandell 1986). The visual system is more
sensitive to vertical and horizontal contours than to diag-
onal contours, perhaps re� ecting the natural distribution
of contour orientations (Annis & Frost 1973; Timney &
Muir 1976). The visual system contains spatial frequency
channels whose bandwidths are approximately constant
on a logarithmic (octave) scale, perhaps compensating for
the decline in amplitude as a function of spatial frequency
(Field 1987).

The statistical properties of the environment may in� u-
ence the design of perceptual systems either in a rigid gen-
etically programmed fashion (a � xed adaptation) that is
independent of the speci� c environment during the organ-
ism’s lifespan or in a more � exible way (a facultative
adaptation) that is dependent on the speci� c environment
during the lifespan. Facultative adaptations include, for
example, all mechanisms of learning and neural plasticity.
The distinction between � xed and facultative adaptations
is illustrated clearly in the example described by Williams
(1966) of skin thickness: humans have a � xed adaptation
of thicker skin in regions such as the soles of the feet and
have a facultative adaptation to increase skin thickness in
response to friction (i.e. to form a callus). This example
also shows that a particular property of an organism can
be dependent upon both � xed and facultative adaptations.
With respect to the examples described above, the three
classes of photoreceptors are surely a � xed adaptation,
whereas the sensitivity to contour orientation and the
bandwidths of spatial frequency channels may be at least
partly the result of facultative adaptations (e.g. neural
plasticity). Later, we return to the distinction between
� xed and facultative adaptations. In the meantime, it is
important to keep in mind that both kinds of adaptation
result from natural selection (Williams 1966).
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(c) Ideal observers and the statistics of natural
environments

Until recently, ideal observer theory was applied only
to tasks involving relatively simple stimuli created in the
laboratory. As measurements of statistical properties of
natural environments have become available, it has
become possible to apply the theory to tasks involving
more natural stimuli. This is an important development
because the results speak directly to the relationship
between the statistics of natural environments and the
design of perceptual systems.

The development of information theory (Shannon
1948) inspired the hypothesis that organisms may evolve
perceptual systems that encode—or can learn to encode—
natural environmental stimuli in an optimally ef� cient
fashion (Attneave 1954; Barlow 1961). An optimally
ef� cient code is one that represents as much of the input
(sensory) information as possible, given certain assumed
constraints (e.g. a � xed number of neurons with a � xed
dynamic range). Coding is a task with well-de� ned goals,
and hence optimal coding theory may be regarded as a
particular form of ideal observer theory. The optimally
ef� cient code in any given situation depends strongly on
the particular statistical properties (i.e. the relevant prob-
ability distributions) of the stimuli being encoded. Thus,
it is possible to test the ef� cient coding hypothesis by mea-
suring response properties of neurons in a perceptual sys-
tem (e.g. their receptive � eld properties) and then
comparing these properties with the optimal code
expected given the measured statistics of the relevant
natural stimuli. A number of studies have demonstrated
instances where the neural coding of natural stimuli
appears to be nearly optimal. The contrast–response func-
tions of certain neurons in the � y’s eye are closely matched
to the statistical distribution of contrasts in the � y’s
environment (Laughlin 1981). Similarly, spatial receptive
� elds in the � y’s eye (Srinivasan et al. 1982; van Hateren
1992), in the retina (Atick & Redlich 1992), and in the pri-
mary visual cortex of cats and monkeys (Bell & Sejnowski
1997; Olshausen & Field 1997; van Hateren & van der
Schaaf 1998; Hyvarinen & Hoyer 2000) appear to be well
matched to the spatial correlations in natural images. The
correspondence between spatial coding in the primary vis-
ual cortex and natural image statistics appears to be even
closer when one considers the nonlinear contrast response
characteristics of cortical neurons (Simoncelli & Schwartz
1999). Finally, the spatio-temporal receptive � eld proper-
ties of neurons in the cat lateral geniculate nucleus
(Dong & Atick 1995; Dan et al. 1996) and primary visual
cortex (van Hateren & Ruderman 1998) appear to be well
matched to the spatio-temporal correlational structure of
natural images. (For a recent review of optimal coding
theory and its applications towards understanding the
relationship between natural image statistics and the neu-
ral representations in perceptual systems, see Simoncelli &
Olshausen (2001).)

In addition to the numerous studies of encoding tasks,
there have been several recent studies of categorization
tasks. We will describe these examples in more detail
because categorization tasks (particularly detection and
discrimination tasks) will be emphasized here in illustrat-
ing the logic of Bayesian natural selection.
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It has long been known that in trichromatic primates
(including humans) the spectral sensitivity functions of the
M (green) cones and the L (red) cones strongly overlap.
This would seem to limit colour discrimination in the
longer wavelength region of the spectrum. However,
recent studies of natural image statistics have shown that
the placement of the M and L spectral sensitivity functions
along the wavelength dimension may in fact be nearly
optimal for detecting important targets in background foli-
age. In a thorough study, Regan and colleagues measured
the wavelength distributions of primary food sources
(fruits) of several New World (platyrrhine) monkeys and
the wavelength distributions of the surrounding foliage
(Regan et al. 1998, 2001). They then used an ideal
observer analysis to determine optimal placement of the
M and L cones for detecting food sources in the surround-
ing foliage. Interestingly, optimal placement corresponds
fairly well with actual placement, although as Regan et al.
pointed out, other factors (such as minimizing chromatic
aberration) may also contribute to actual placement.
Osorio & Vorobyev (1996) have made a similar case for
placement of the cone photopigments in Old World
(catarrhine) primates. Similarly, the two cone pigments in
dichromatic mammals appear to be nearly optimally
placed for discriminating between natural leaf spectra
(Lythgoe & Partridge 1989; Chiao et al. 2000).

Spatial receptive � eld properties of neurons in the retina
and primary visual cortex are often regarded as being opti-
mized for detecting edges. However, this hypothesis has
never been directly tested using the statistics of edges in
natural images. Konishi et al. (2002) took a signi� cant step
in this direction by measuring the empirical probability
distributions of theoretical receptive � eld responses at
edges and away from edges in images of scenes containing
a mixture of natural and human-made objects. They used
existing presegmented image datasets, and thus the actual
edge locations were known. For a range of different recep-
tive � eld shapes, they determined the optimal decision rule
(ideal observer) for classifying whether an image pixel is
on or off an edge. They found that combining outputs
from multiple sizes of receptive � eld (as found in the
mammalian visual system) provides a substantial increase
in performance in identifying edges. They also found that
receptive � eld shapes similar to the � rst derivative of a
Gaussian performed better for edge detection than those
similar to the popular second derivative of a Gaussian
(Marr 1982). It remains to be seen how well actual recep-
tive � eld shapes found in the retina and primary visual
cortex are suited for edge classi� cation.

Several other recent studies have continued Brunswik’s
original efforts to analyse the relationship between mech-
anisms of perceptual grouping and the statistics of natural
images. Elder & Goldberg (1998), Geisler et al. (2001)
and Sigman et al. (2001) measured natural image statistics
that are relevant for contour grouping ‘good continu-
ation’, and Malik et al. (2002) measured natural image
statistics that are relevant for region grouping ‘similarity
grouping’. Sigman et al. (2001) were primarily interested
in comparing natural image statistics with long-range lat-
eral connections in the primary visual cortex, and hence
they did not measure the natural image statistics required
for an ideal observer analysis of contour grouping.
Further, Elder & Goldberg (1998), Sigman et al. (2001)
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and Malik et al. (2002) did not make quantitative predic-
tions for performance in categorization tasks. Hence, the
Geisler et al. (2001) study is the most relevant example in
the present context.

Geisler et al. (2001) extracted edge elements from
images of diverse natural scenes6 and then computed co-
occurrence probabilities for different possible geometrical
relationships between the edge elements. The geometrical
relationship between two arbitrary edge elements is
described by three variables: distance between the
elements (d), direction of one element relative to the other
( f ), and orientation of one element relative to the other
( u ). Two kinds of co-occurrence probabilities were meas-
ured—absolute probabilities and conditional (Bayesian)
probabilities. The absolute probabilities were obtained
simply by counting the relative number of times each poss-
ible geometrical relationship occurred in a large number
of natural images. The result is a three-dimensional (3D)
probability distribution, p(d,f , u ), which was found to be
similar from one natural image to the next. This absolute
probability distribution has a complex structure, revealing
two properties of contours in natural images: nearby con-
tour elements tend to be parallel to each other, and nearby
contour elements tend to be co-circular (tangent to the
same imaginary circle). It is not implausible that high co-
occurrence probabilities are associated with belonging to
the same physical contour, and thus these two properties
may re� ect natural selection pressures for grouping on the
basis of ‘orientation similarity’ and ‘good continuation’,
respectively. However, the only way to establish this
de� nitively is to measure (as did Brunswik & Kamiya
1953) co-occurrence probability distributions, given that
a pair of edge elements belongs to the same physical con-
tour and given that the elements belong to different con-
tours.

Geisler et al. (2001) measured these conditional prob-
ability distributions for contours using an image tracing
technique, where each edge element in each natural image
was assigned by hand to a unique physical contour with
the aid of specially designed software. With this assign-
ment information, they were then able to determine the
probability of each possible geometrical relationship
between two edge elements given that they belong to the
same physical contour, p(d,f , u |c), or given that they
belong to different physical contours, p(d,f ,u | | c). These
conditional probability distributions clearly demonstrate
the existence of a selection pressure for grouping on the
basis of ‘good continuation’, in the sense that nearby edge
elements that are approximately co-circular are likely to
belong to the same physical contour, and hence should be
grouped perceptually if the organism is to represent the
physical environment correctly.

These distributions can also be used to determine the
optimal decision rule for contour grouping (given only the
geometrical relationships between pairs of edge elements).
Using equation (1.1), we see that the ideal observer should
group elements (i.e. categorize a pair of edge elements as
belonging to the same physical contour) according to the
following decision rule:

If
p(S|c)

p(S| | c)
.

p( | c)
p(c)

, then group, (1.3)

where S is the geometrical relationship between the pair

Phil. Trans. R. Soc. Lond. B (2002)

of edge elements, i.e. the particular value of the vector
(d,f , u ). The ratio of the stimulus probabilities on the left
is the likelihood ratio, and the ratio of the prior prob-
abilities on the right is a criterion whose value is inde-
pendent of the geometrical relationship between edge
elements.

Using this decision rule and the measured conditional
probability distributions for natural images, Geisler et al.
(2001) generated predictions for contour detection per-
formance and compared those predictions with the ability
of humans to detect contours embedded in complex back-
grounds. Human contour detection performance was
measured in an extensive parametric study, testing a wide
range of natural contour shapes. Remarkably, the predic-
tions from the natural image statistics were quite accurate
across all conditions, with only one free parameter—the
value of the criterion. (The correlation between observed
and predicted detection accuracy was approximately 0.9.)
This result demonstrates that there is a close relationship
between contour grouping mechanisms in humans and the
statistics of contours in natural images. Further, the result
suggests that natural selection may have created contour
grouping mechanisms (probably both � xed and facultative
adaptations) that are approximately ideal for detecting
natural contours.7

(d) Maximum � tness ideal observers
Perceptual systems evolve through natural selection,

and thus biologically appropriate ideal observers are those
where the measure of utility is � tness (birth and death
rates). Speci� cally, natural selection picks genes that max-
imize the number of organisms carrying those genes. We
can represent the � tness utility function as a growth-factor
function g (r,v). The greater the growth factor, the greater
the increase in the number of organisms carrying a given
gene. Obviously, the growth factor is a function of the
response r made by the organism in each particular state
of the environment v. Thus, given a particular stimulus
S, the maximum � tness ideal observer will make the
response rop t(S) that maximizes the growth factor aver-
aged across all possible states of the environment. In other
words, the ideal observer will make the response that max-
imizes the quantity

g (r|S) = O
v

g (r,v)p(S|v)p(v). (1.4)

This equation is identical to the standard Bayesian for-
mula (equation (1.2)), except that the utility function is
the growth-factor function, and we have dropped the term
p(S) because (as mentioned earlier) it has no effect on the
optimal response. Note that r is a vector that can contain
any number of discrete or continuous elements, and hence
equation (1.4) is appropriate for a wide range of tasks
including categorization, estimation, and coding. As in
other applications of ideal observer analysis, one can
incorporate physiological and anatomical constraints into
a maximum � tness ideal observer, and hence determine
the optimal responses given those constraints (see Appen-
dix A).

Considering ideal observer theory from the standpoint
of maximum � tness leads immediately to several con-
clusions. First, in order to determine the appropriate ideal
observer it is necessary to measure (or know) the growth-
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factor function. Second, it is obvious that the ideal
observer will vary for different organisms depending upon
their particular growth-factor function. In particular, opti-
mal perceptual design will depend upon the organism’s
nominal birth and death rates, as well as upon the conse-
quences of different responses and states of environment
on those rates. Third, natural selection can produce
changes in nominal birth and death rates (e.g. via changes
in reproductive and ageing mechanisms), and hence the
ideal observer may change depending upon the genes
(alleles) controlling nominal birth and death rates.

If � tness is the appropriate utility function when con-
sidering the design of perceptual systems in biological
organisms, then why do there appear to be so many close
parallels between actual perceptual performance and ideal
observers derived with other utility functions (as reviewed
in the previous section)? The most probable answer is that
in these cases the assumed utility function is approxi-
mately monotonic with the appropriate growth-factor
function, and thus a design feature that is optimal for the
assumed utility function is also optimal for � tness. This is
not to say that the assumed utility function always has
little effect on optimal design. Later, we show that utility
functions based on � tness can yield ideal observers that
are quite different from those obtained with more tra-
ditional utility functions, even for relatively simple tasks.

Even though the maximum � tness ideal observer is
based upon the utility function de� ned by natural selec-
tion, there are many reasons to expect that natural selec-
tion will often fail to achieve ideal performance.
Nonetheless, the maximum � tness ideal observer has an
important role to play in providing the appropriate com-
putational theory for natural tasks, and in providing the
appropriate benchmark against which to evaluate both the
performance of the organism and the process of natural
selection. For example, the maximum � tness ideal
observer allows one to determine how closely natural
selection approaches optimal performance. Also, as we
will see, the maximum � tness ideal observer is very useful
for interpreting and validating simulations of natural selec-
tion.

2. BAYESIAN NATURAL SELECTION

As discussed earlier, there is sometimes a close corre-
spondence between the statistics of natural environments
and the design of perceptual systems, in that performance
of a perceptual system approaches that of an ideal observer
informed or limited by the relevant environmental stat-
istics. However, even for natural tasks there must be many
situations where a perceptual system falls well short of
ideal. Some of the reasons were mentioned earlier: organ-
isms evolve to perform many different tasks leading inevi-
tably to compromises in design that result in non-ideal
performance in some tasks; there are limitations on the
possible structure of organic molecules; and the assumed
utility function may not match the organism’s intrinsic
utility function (� tness). In addition, even without these
factors one would not generally expect to evolve ideal per-
formance because of inherent limits in the process of natu-
ral selection. By de� nition, an ideal observer is obtained
by considering the entire space of possible solutions for a
task and picking the best according to its utility function.

Phil. Trans. R. Soc. Lond. B (2002)

environment

reproduction response

Figure 1. Natural selection involves an interaction between
the environment, the responses of the organism to the
environment, and the survival/reproduction rate of the
organism. In general, natural selection results in changes in:
(i) the responses of the organism; (ii) the
survival/reproduction rate of the organism; and (iii) the
structure of the environment within which the organism
exists. Our de� nition of the environment includes the
organism’s internal state.

Natural selection, on the other hand, does not look across
the landscape of possibilities and pick the best. Instead,
natural selection must always move in small steps, where
each step must produce an increase in � tness. Natural
selection cannot produce a temporary decrease in � tness
in order to later reach a higher point in the landscape of
possible solutions. In mathematical jargon, natural selec-
tion generally creates a perceptual system that corresponds
to a local maximum in the space of possible solutions, not
the ideal system that corresponds to the global maximum.
The small step size in natural selection also implies that
there will be a time-lag in reaching the local maximum.

It is clear then that the design of a perceptual system is
limited not only by the task and the relevant statistics of
natural stimuli, but by a variety of other factors including
inherent limits set by the process of natural selection. How
can we assess the contributions of these other factors?
There is a growing consensus in the perception com-
munity that Bayesian statistical decision theory (through
development of ideal observers) provides the appropriate
formal framework for understanding how the task and the
statistical properties of environments contribute to the
design of perceptual systems. Here we propose that Bayes-
ian natural selection, a constrained form of Bayesian stat-
istical decision theory, provides the appropriate formal
framework for understanding how all factors contribute to
the design of perceptual systems; including the task, rel-
evant statistics of the natural stimuli, compromises among
tasks, limits on materials and organic molecules, and the
incremental character of natural selection. As we will see,
the Bayesian formalization of natural selection may be
useful in formulating and testing hypotheses both about
the design of existing perceptual systems and about the
process of natural selection itself.

To motivate the Bayesian formalization of natural selec-
tion, we note � rst that natural selection involves a complex
interaction between the environment, behaviour, and
reproduction (see � gure 1). At a particular time t, there
is some prior probability distribution over the possible
states of the environment (v). Given a particular state of
the environment, the organism will respond in some
fashion, which may include a passive response such as
re� ecting light. This response (r) is, in general, probabilis-
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Figure 2. The fundamental equation of Bayesian natural
selection shows how the expected number of organisms of a
given species carrying a given vector of alleles a at time t + 1
is related to the number of organisms carrying the same
alleles at time t. The actual number of organisms at time
t + 1 is a random quantity that results from sampling
appropriate probability density functions. The vector v
represents a particular state of the environment. In general,
it is a vector that represents aspects of the environment at
time t that are relevant to the evolution of the organism,
such as the numbers and kinds of nearby predator and prey
species and the background environment. In Bayesian
terminology, the probability density function for v is called
the ‘prior probability’. The vector s represents a particular
stimulus arriving at the organism. In Bayesian terminology,
the probability density function for s given v is called the
‘stimulus likelihood’. The vector r represents the response of
the organism. The response of the organism is probabilistic
and its response probability function depends upon the
organism’s species, its particular allele vector, and the
particular stimulus. In Bayesian terminology, the probability
density function for r given s is called the ‘response
likelihood’. Finally, the growth factor consists of one plus
the birth rate minus the death rate, which both depend upon
the response, the state of the environment, the organism’s
species and its particular allele vector. Each different vector
of alleles in each species under consideration is represented
by a separate fundamental equation; all of the equations are
evaluated and iterated in parallel. The effects of mutation
and sexual reproduction are described by other equations
(see text).

tic and is determined by a vector of alleles (a) carried in
the organism, although we must keep in mind that the
response may re� ect both � xed and facultative adap-
tations. The response of the organism in a particular
environment will have consequences for survival and
reproduction. If the growth factor ( g )—one plus the birth
rate minus the death rate—is greater than one, then the
number of organisms containing the set of alleles will on
average increase. However, success for a set of alleles (a
growth factor greater than one) has an inevitable, and
eventually powerful, feedback effect on the environment.
Speci� cally, growth in the number of organisms contain-
ing any given set of alleles can go on for only so long.
Eventually, equilibrium with the environment must be
approached (i.e. the growth factor must converge towards
one or become less than one). Thus, the prior probability
distribution over the possible states of the environment
must change over time. Under some circumstances
(discussed later), the prior probability and the growth fac-
tor may depend on the allele vector.

This description of natural selection translates directly
into the following Bayesian formula:

Ōa(t + 1) = Oa(t)O
v

pa(v;t)O
r

g a(r,v)pa(r|v). (2.1)

In this equation Ōa(t + 1) represents the average
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(expected) number of organisms of a given species at time
t + 1 carrying a particular vector of alleles a, and Oa(t)
represents the actual number of organisms at time t. The
rest of the terms on the right of the equation give the total
average growth factor for an individual with allele vector
a. This total average is obtained by summing speci� c
growth factors over all the possible states of the environ-
ment and over all the possible responses of the organism.
Speci� cally, pa(v;t) is the prior probability distribution
over the possible states of the environment parametrized
by t, pa(r|v) is the likelihood distribution over the poss-
ible responses given the state of the environment, and
g a(r,v) is the growth factor (utility function) associated
with each possible response in each possible state of the
environment. Equation (2.1) gives the average number of
organisms expected at time t + 1. The actual number at
time t + 1 is a random number, Oa(t + 1), that can be rep-
resented by sampling from appropriate probability distri-
butions for births, deaths, mutations, and sexual
recombination (see later).

To explicitly represent the statistical properties of stim-
uli reaching the organism, we can expand the last term on
the right of equation (2.1) using the de� nition of con-
ditional probability:

Ōa(t + 1) = Oa(t)O
v

pa(v;t)O
r

g a(r,v)O
S

pa(r|s)pa(s|v).

(2.2)

We call this the fundamental equation of Bayesian natu-
ral selection.8

The fundamental equation describes natural selection
for one particular allele vector in a given species. Thus,
the full description of natural selection requires a separate
fundamental equation for each allele vector in each species
under consideration, with all the equations iterating in
parallel over time. At this general level of description, the
unit of time is unspeci� ed; depending on the application,
it could range from units that are a small fraction of the
average lifespan to units that are many lifespans. Also, it
is important to note that the relevant factors (components)
de� ning the environment vector (v), stimulus vector (s),
and response vector (r) will generally be different for
each species.

In the Bayesian framework, � tness is the value of the
expression to the right of Oa(t) in equation (2.2), that is,
the growth factor averaged over all possible states of the
environment, all possible stimuli, and all possible
responses. This de� nition of � tness turns out to be con-
sistent with Hamilton’s concept of inclusive � tness
(Hamilton 1964a,b). Speci� cally, the fundamental equ-
ation describes the number of organisms carrying a given
allele vector irrespective of lines of descent. For example,
the � tness can include the birth and death rates of col-
lateral as well as lineal descendents.

Given that � tness is de� ned with respect to the allele
vector, it follows that the possible states of the environ-
ment can include not only the environment external to the
organism carrying the allele vector, but also the environ-
ment internal to the organism (e.g. properties of the
organism that depend on age). A related point is that the
logic of Bayesian natural selection does not require that
‘stimulus’ and ‘response’ be interpreted only in their usual
psychological sense. Rather, they can be interpreted
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Figure 3. Examples of the complex statistical structure of natural stimuli. (a) Spectral re� ectance distributions of natural
surfaces measured by Krinov (1947). The Krinov spectra are adequately described by the weighted sum of the three basis
functions labelled b1, b2 and b3 (obtained by a principal components analysis). Each dot represents a particular spectral
distribution; the location of a dot indicates the weights on the second and third basis functions, and the length of the line
segment attached to a dot indicates the weight on the � rst basis function. Also shown are the spectral distributions for grass
and red sandstone; their representation in terms of the basis functions is given by the dots located at the arrowheads. (b)
Likelihoods of different geometrical relationships between contour elements in natural images. The central line segment
represents an arbitrary contour element and each of the other 7776 line segments represents a possible geometrical
relationship with that element. The colour of a line segment indicates the likelihood ratio: the probability of observing the
given geometrical relationship when the two elements belong to the same physical contour divided by the probability of
observing the geometrical relationship when they belong to different physical contours. These data show that contour elements
that have a co-circular relationship are more likely to belong to the same physical contour. (Adapted from Geisler et al.
(2001)).

broadly to stand for the input and output of any biological
system or subsystem, from the molecular to the behav-
ioural level.

The value of the Bayesian formulation of natural selec-
tion is that it neatly divides natural selection into its key
components, which are identi� ed in � gure 2. However, it
is important to emphasize at the outset that each compo-
nent of the fundamental equation is highly complex, easily
being a whole science unto itself. Further, the equation
does not constitute a theory or hypothesis, but is simply a
general formalization of the principle of natural selection,
which we assume to be true. Theories or hypotheses are
represented by assumptions concerning the components
of the fundamental equation(s). Failures of prediction are
interpreted as rejection of these assumptions. Later, we
demonstrate with a few simple examples how the Bayesian
formulation of natural selection might be used to formu-
late and test speci� c hypotheses. We now consider the
components of the fundamental equation one at a time.

(a) Prior probability
The prior probability distribution speci� es the prob-

ability of the possible states of the environment relevant
for the evolution of the species under consideration. The
state of the environment is described by a vector,
v = ( v 1,v 2,¼), which could represent any relevant
environmental factors either external or internal to the
organism. The environment vector could represent categ-
orical states of the external environment such as the sub-
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population of conspeci� cs (deme), whether a predator or
prey is nearby, whether the nearby predator or prey is
moving, or the kind of background foliage or background
sound. It could also represent more continuous states of
the external environment such as the geographically
dependent characteristics of conspeci� cs (cline), the 3D
location of a nearby predator or prey, level of local illumi-
nation, direction of the primary light source, temperature,
or intensity and direction of the wind. Similarly, the
environment vector could represent internal states such as
the sex or age of the organism.

Natural selection must ultimately produce substantial
changes in the prior probability distribution, and thus the
prior probability, pa(v;t), must be dependent on time, as
indicated by the parameter t. However, many (perhaps
most) relevant environmental factors will not be affected
by the evolution of the species under consideration. Thus,
in practice it may be possible to simplify the Bayesian
analysis by separating the prior probability distribution
into those factors that vary during the course of evolution
(vt) and those that do not (vn ):

pa(v;t) = pa(vt|vn ;t)p(vn ). (2.3)

Factors likely to vary during the course of evolution
might be, for example, spatial distributions of the species’
predators and prey, camou� age of the species’ predators
and prey, or the age distribution of organisms in the spec-
ies; factors less likely to vary on an evolutionary time-scale
might be distributions of background foliage, background
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Figure 4. Illustration of how alleles, species, and organisms are represented (in haploid species). The alleles carried by an
organism are represented as a vector ajk, where k indexes the species and j indexes the particular allele vector in that species.
(a) In species 1 there are three different allele vectors for the same two gene locations, as indicated by the differently coloured
pairs of boxes (the vector is of length 2). (b) In species 2 there are three different allele vectors for the same single gene
location (the vector is of length 1). The total number of organisms carrying allele vector ajk at time t is given by Oajk

(t). Note
that each box represents a separate organism.

sound, temperature, or light level. Of course, there may
also be long-term variations that have nothing to do with
the evolution of the species under consideration. For
example, some aspect of the auditory or visual background
could change over time owing to the evolution of some
other species that has no direct interaction with the species
under consideration, or there could be infrequent or grad-
ual changes in climate such as an extended drought or an
ice age.

Dynamic change in the prior probability distribution
due to feedback between behaviour and environment is an
important difference between Bayesian natural selection
and other applications of Bayesian statistical decision
theory in perception, which generally assume that there is
no such feedback.

Identifying relevant environmental factors and measur-
ing their prior probability distributions is a dif� cult task,
generally requiring a combination of extensive physical
measurements, computational analyses, and hypothesis
testing. Nonetheless, as the numerous studies measuring
natural scene statistics have demonstrated, it is a task on
which genuine progress is being made.

(b) Stimulus likelihood
The stimulus likelihood, pa(s|v), speci� es the prob-

ability of each possible stimulus arriving at the organism,
given the current state of the environment. The stimulus,
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like the state of the environment, is described by a vector,
s = (s1,s2,¼), which can represent any sort of sensory
information. The possible descriptions of stimuli are more
constrained than the possible descriptions of the state of
the environment: for visual stimuli, the most general
description is light intensity as a function of space, time,
and wavelength; for auditory stimuli, it is sound pressure
as a function of time and frequency; for olfactory stimuli,
it is concentration as a function of time and type of mol-
ecule; and so on.

Nonetheless, stimulus likelihood distributions in the
natural world often have a complex structure. For
example, if the states of the environment (v) are the pres-
ence or absence of a particular kind of material (e.g. a
particular kind of grass), there will still be a great deal of
variation in the stimulus (s) reaching the organism owing
to variation in the spectral re� ectance functions of the tar-
get and background materials, the spectral illumination
function, and the lighting geometry. Some of this variation
is illustrated in � gure 3a, which shows the spectral re� ec-
tance functions of a large sample of materials measured by
Krinov (1947). Maloney (1986) showed that the Krinov
spectra (which are representative of natural environments)
can be described accurately by the weighted sum of three
basis functions that were derived via principal components
analysis. The three basis functions are shown in the inset
plots labelled, b1, b2 and b3. The main � gure shows the
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weights that describe the re� ectance function of each
material; the location of a datapoint indicates the weights
on b2 and b3, and the length of the line segment attached
to a datapoint indicates the weight on b1. The remaining
two inset plots show the weighted sums (i.e. the re� ec-
tance functions) for a sample of grass and for a sample of
red sandstone. As can be seen, the distribution of natural
re� ectance spectra has a complex V-like structure, with a
higher concentration near the base of the V, and a tend-
ency for greater weight on b1 in the upper right of the plot.

Another example of the complex structure of stimulus
likelihood distributions is the edge co-occurrence
measurements of Geisler et al. (2001), described in § 1c.
In that example, the two states of the environment (v)
are whether or not a given pair of edge elements belongs
to the same physical contour, and the stimulus vector (s)
is the geometrical relationship between the elements. Fig-
ure 3b plots the ratio of the stimulus likelihoods for the
two states of the environment, for all possible geometrical
relationships between contour elements. The centre hori-
zontal line segment in the plot represents an arbitrary con-
tour element (taken as the reference) and every other line
segment represents a second contour element in one of
the possible geometrical relationships with that reference.
The six concentric circles represent increasing distance
between the element and the reference, the location of an
element around the circle represents the direction of the
element from the reference, and the orientation of an
element at a given location indicates the orientation of the
element with respect to the reference. The colour of an
element indicates the likelihood ratio. Note that for each
distance and direction there are 36 orientations rep-
resented (one every 5°); hence, it is dif� cult to resolve
individual elements except in cases where the likelihood
ratio is high. As can be seen, edge elements that are co-
circular (consistent with a smooth continuous contour)
are more likely to belong to the same physical contour.

Analysis of stimulus likelihood has long been a major
focus in perception research, and thus techniques for mea-
suring and computing stimulus likelihood are relatively
well developed. As we have seen, stimulus likelihood dis-
tributions can be measured directly from stimuli captured
in the environment (e.g. from natural images). It is also
possible to combine more limited direct measurements
with known facts of physics, such as the laws of sound
propagation and interference, the geometry of perspective
projection, the laws of light re� ectance, transmittance and
refraction, the laws of diffusion, the Poisson noise charac-
teristics of light, and the Brownian noise characteristics of
sound. This is a common approach in the laboratory and
in modelling, and it could be extended to the measure-
ment of stimulus likelihood in natural environments.

At the level of abstraction represented by the fundamen-
tal equation, few constraints are placed on what might
constitute a stimulus. The stimulus could refer to events
that occur instantaneously or events that occur over some
period of time.

It is important to note that there is considerable � exi-
bility in how the environmental statistics are split into
prior probabilities and stimulus likelihoods. If the states
of the environment are de� ned in terms of a few general
categories or variables, then the prior probability distri-
butions are relatively simple and the stimulus likelihood
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distributions are relatively complex; just the reverse holds
if the states of the environment are de� ned in terms of
many categories or variables. The same knowledge of the
world can be represented either way, and thus the choice
is largely pragmatic and part of the art of Bayesian analysis.

(c) Alleles
The alleles carried by an organism are represented by a

list or vector a = (a1,a2,¼). This vector could represent a
single allele or any set of alleles up to and including the
entire genome. Across organisms within a given species,
there are generally variations (i.e. polymorphisms) in the
particular allele vector for the same given set of genes.
To indicate the particular allele vector and the particular
species we can add subscripts j and k, respectively.
Thus, the general notation for a set of alleles is
ajk = (a1 jk,a2 jk,¼). The total number of organisms at time
t carrying the set of alleles is given by Oa jk

(t) (see � gure
4). The total number of organisms of a given species is
the sum across all allele vectors:

Ok(t) = O
nk

j = 1

Oajk
(t), (2.4)

where nk is the number of allele vectors for species k.
In application, a separate fundamental equation is set

up for each relevant allele vector within each species under
consideration (i.e. one equation for each ajk), and all of
these equations are evaluated and iterated in parallel. To
evaluate the equations it is necessary to specify the initial
set of genes, the starting allele vectors for those genes, and
the initial number of organisms carrying each allele vector.
Also note that when Oajk

(t) becomes zero the allele vector
ajk is extinct and when Ok(t) becomes zero then species k
is extinct.

(d) Response likelihood
The response likelihood, pa(r|s), speci� es the prob-

ability of each possible response of the organism given the
organism’s set of alleles and the stimuli arriving at the
organism. An organism’s contact with the external
environment is entirely through proximal stimuli, and so
the response does not depend directly on the value of the
environment vector v.9

The response is described by a list or vector,
r = (r1,r2,¼), which could represent either � xed or facul-
tative responses. The number of possible responses is of
course enormous. The simplest � xed responses include
the passive responses of the surface of the organism, such
as the spatio-chromatic distribution of light re� ected from
the organism, the sound pattern re� ected from the organ-
ism, and the types and concentrations of molecules pass-
ively released from the organism into the surrounding
medium. For example, the stimulus vector might be the
spatio-chromatic distribution of light falling on the organ-
ism, and the response vector might be the spatio-chro-
matic distribution of light re� ected from the organism.
Passive surface responses often determine the signature
stimulus information made available to other organisms
(e.g. they determine the level of camou� age or
attractiveness). Other relatively simple � xed responses
might be those of the sensory systems, including the
optical responses of the eye, the acoustical and mechanical
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responses of the ear, the turbulence responses of the nasal
cavity, the responses of the sensory receptors, and the
responses of various sensory neural circuits. Surface and
sensory responses are often the simplest to study because
the mechanisms are more accessible and hence easier to
measure and analyse. A few other types of response (which
may be either � xed or facultative, depending on the
speci� c response and species) might include stimulus-
dependent changes in the organism’s surface properties,
sensory organs, metabolism, hormone levels, neural rep-
resentations, neural algorithms, and locomotor activities.

As with the stimuli, few constraints are placed on what
might constitute a response. The response could refer to
events that occur instantaneously, or even events that
occur over the lifetime of the organism. The only events
excluded are evolutionary changes in the species due to
natural selection.

(e) Growth factor
The growth factor is one plus the average birth rate

minus the average death rate:

g a(r,v) = 1 + ba(r,v) 2 x a(r,v). (2.5)

The birth and death rate each depend on the response
(r) made within the existing state of the environment (v)
and possibly on the set of alleles under consideration (a).
We allow dependence on the alleles because the alleles
could affect the internal reproductive and ageing mech-
anisms.

Population geneticists often use a growth index based
on age-speci� c birth and death rates. On the one hand,
such an index can readily be incorporated into equation
(2.5) by allowing the state of the environment (v) to
include the age distribution of the population. On the
other hand, if the individual life cycles run largely asyn-
chronously (which will often be the case), then the accu-
racy of the fundamental equation is little improved by this
added complexity. Speci� cally, given a large population of
organisms carrying a given allele vector, the average
growth factor (over the scale of a lifetime) will be constant
even if reproductive ef� ciency and mortality vary over the
lifespan. In the simulations described later, we assume a
simple average birth and death rate per unit time.

The growth factor corresponds to the utility function in
Bayesian statistical decision theory. In previous appli-
cations of Bayesian statistical decision theory to natural
tasks, there has been considerable uncertainty about what
form the utility function should take. An important feature
of Bayesian natural selection is that there can be no doubt
that the growth factor is the proper utility function. Of
course, to evaluate the fundamental equation it is neces-
sary to specify the initial conditions for the growth factor,
but this speci� cation is less open-ended than in most other
applications of Bayesian statistical decision theory to natu-
ral tasks.

As mentioned earlier, the actual number of organisms
at time t + 1 is a random number, which can be obtained
by sampling from appropriate probability distributions.
To describe this probabilistic process, we � rst substitute
equation (2.5) into the fundamental equation and obtain

Ōa(t + 1) = Oa(t) + B̄a(t + 1) 2 D̄a(t + 1), (2.6)

where B̄a(t + 1) is the average number of births and
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D̄a(t + 1) is the average number of deaths in the tth
time-step:

B̄a(t + 1) = Oa(t)O
v

pa(v,t)O
r

ba(r,v)O
s

pa(r|s)pa(s|v),

(2.7)

D̄a(t + 1) = Oa(t)O
v

pa(v,t)O
r

x a(r,v)O
s

pa(r|s)pa(s|v).

(2.8)

A plausible hypothesis is that the actual number of
births, Ba(t + 1), is a random sample from a Poisson distri-
bution with a mean of B̄a(t + 1), and that the actual num-
ber of deaths, Da(t + 1), is a random sample from a
binomial probability distribution with parameters
D̄a(t + 1)/Oa(t) and Oa(t). There are other possibilities, but
whatever the sampling distributions, the number of organ-
isms at time t + 1 is given by

Oa(t + 1) = Oa(t) + Ba(t + 1) 2 Da(t + 1). (2.9)

Note also that when the value of Oa(t + 1) becomes
zero, the allele vector is extinct and its fundamental equa-
tion disappears.

(f) Mutation and sexual reproduction
In order for natural selection to proceed there must be

mechanisms for changing, rearranging, activating, deactiv-
ating or exchanging alleles. Mutation and sexual repro-
duction are the primary mechanisms.

Relevant mutations are those affecting the reproductive
cells, and hence the average number of mutations is pro-
portional to the number of births:

M̄a(t + 1) = maBa(t + 1), (2.10)

where ma is a proportionality constant (the mutation rate)
that may depend upon the particular allele vector. The
actual number of mutations, Ma(t + 1), is plausibly mod-
elled as a random sample from a binomial probability dis-
tribution with parameters ma and Ba(t + 1). For each
individual mutation there will be a new allele vector a9
created. The structure of this new allele vector will also
be probabilistic and is described by another sampling dis-
tribution pa(a9 ). In general, the different possible
mutations are not equally likely. The most likely would be
a single nucleotide mutation in just one of the alleles. Fur-
thermore, the mutation probability will probably vary
across alleles within the allele vector and across sites
within a given allele. For each new allele vector we sub-
tract one from Oa(t + 1) and add one to Oa 9 (t + 1). Obvi-
ously, when a new allele vector is created, it is represented
by a new fundamental equation. To describe the effects
of mutation, one must specify the mutation rates and the
allele sampling distributions.

To characterize sexual recombination it is necessary to
explicitly represent the diploid structure of the genome.
Thus, each allele vector is a list of pairs of alleles, one pair
for each gene location being considered. Like mutation,
sexual recombination is also directly linked to the number
of births. Half of the alleles from each parent are com-
bined in the offspring. Different more or less sophisticated
descriptions of this process are possible. One simple ver-
sion is to select, for each birth associated with allele vector
a, an allele vector â for the mate, where the allele vector
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for the mate is randomly sampled from a probability distri-
bution pa(â|v) that may depend on the allele vector a
and on the current state of the environment (e.g. the deme
to which the organism belongs). The allele vector of an
offspring a9 is then obtained by randomly selecting for
each gene location one allele from a and one from â.

(g) Initial conditions
In order to evaluate the equations of Bayesian natural

selection, one must specify the starting points (initial
conditions) for all the terms in the equations. There is no
general prescription for doing this.

A given species is likely to be near equilibrium with its
environment, and thus the current environment, described
by the prior probabilities and stimulus likelihoods, cannot
be the same as when the species began to diverge from its
ancestors. One tactic for setting the initial conditions of
the environment is to identify through measurement,
experiment and common sense the factors likely to have
changed during recent natural selection for the given spec-
ies (i.e. the factors in vt of equation (2.3)). The prior
probability and stimulus likelihood distributions for the
other factors (i.e. the factors in vn ) could be set to their
current values, and then the effect of different distri-
butions for the dynamic factors could be explored in simu-
lations. The results could provide evidence concerning the
probable starting states, possible ending states, and the
adequacy of the assumed static and dynamic factors.
Another tactic might be to start the simulations with the
current environment and generate predictions for the
future. This could provide evidence concerning whether
the species is in a nearly optimal design state or,
depending on the range of mutations and allele interac-
tions allowed, whether evolution of the species is trapped
at a local maximum. The tactic of predicting the future
might be particularly useful for species that evolve rapidly
and for species where the environment, mutation rate and
reproduction can be manipulated.

It is even more certain that the response likelihood (the
stimulus–response term) for a given species is different
from when the species began to diverge from its ancestors.
Much of perception research has been directed at measur-
ing the anatomy, physiology and biochemistry of the
stimulus–response mechanisms within organisms, as well
as the stimulus–response behaviour of organisms as a
whole. In addition, there is information about the evol-
ution of perceptual systems from comparative studies at
the biochemical, physiological–anatomical and behav-
ioural levels. All of this information can be brought to bear
in specifying plausible initial conditions for the response
likelihood distribution. One tactic is to use current knowl-
edge to form a working model of the perceptual system
under consideration. The initial conditions for the
response likelihood might then be created from this model
by deleting some relevant feature or mechanism. Simula-
tions from such a starting point should provide insight into
the evolution of the deleted mechanism and its relation-
ship to the statistics of the environment. For example, one
might start from the assumption that the earliest Old
World primates were dichromatic (like other mammals).
Starting with an appropriate characterization of the pri-
mate retina, the relevant statistics of the natural environ-
ment, the possible photopigment alleles, and the effect of
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successful foraging and mating on the growth factor, one
could, in principle, simulate the evolution of trichromatic
vision. Another tactic would be to start with the working
model and then generate predictions for the future.

This completes a general description of the Bayesian
framework. We now demonstrate with some examples
how the concepts of Bayesian natural selection might be
used to formulate and test speci� c hypotheses via simul-
ation.

3. SIMULATION OF BAYESIAN NATURAL
SELECTION

We have seen how the Bayesian framework divides
natural selection into its key components. Thus, the
framework offers a potential simpli� cation because each
of the components can be measured and characterized
individually and then combined, via the fundamental equ-
ation, to describe the evolutionary process as a whole.
However, as noted earlier, each component is highly com-
plex, easily being a whole science unto itself. In the face
of this complexity, how does one begin translating the
Bayesian formalization of natural selection into concrete
testable models of the evolutionary process in particular
situations? Formulating testable models will be easiest for
simple organisms living in simple environments, but even
then a number of detailed technical issues must be con-
sidered for each term of the fundamental equation(s).

Here we describe simulations for three common evol-
utionary scenarios: (i) evolution of a species whose initial
polymorphism is transient; (ii) coevolution of two species
whose initial polymorphisms are transient; and (iii) evol-
ution of a species that maintains a stable polymorphism.
In each case, there are at least two interacting species liv-
ing in a hypothetical environment (see � gure 5). One of
the species is actively searching for one or more other
species, which are its only food source. The other species
are assumed to be passive, like plants. Although the
responses of the active species are simple, its perceptual
system is reasonably complex and the search task fairly
realistic. For convenience we assumed that both species
reproduce asexually. These are admittedly simple cases,
but they suf� ce to illustrate the � exibility of the Bayes-
ian approach.

The present simulations are generic, in the sense that
we deliberately avoid making detailed assumptions about
the stimulus dimensions, stimulus likelihoods and
response likelihoods. As it turns out, there are some inter-
esting general conclusions that can be drawn from these
generic simulations. Nonetheless, our real aim here is not
to formulate or test hypotheses concerning evolution but
to demonstrate the Bayesian approach, and to describe
three simulation templates into which speci� c measure-
ments or assumptions could be substituted in order to test
speci� c hypotheses.

Before proceeding, a few words should be said about
the value and feasibility of simulation in the study of evol-
ution. Its value arises largely because evolution is so com-
plex. In any natural environment there are a vast number
of factors that could affect the course of evolution. It will
never be possible to measure all of these factors, and even
if they could all be measured, their simultaneous effect on
evolution could never be evaluated experimentally. Simul-
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species 2
(prey)

species 3
(prey)
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(predator)

Figure 5. Hypothetical environment and interacting species
for the simulations of Bayesian natural selection. In the
simulations of transient polymorphism and coevolution,
there were two species, an active predator species with a
sensory system (species 1) and a passive prey species with
some surface characteristic (species 2). In the simulation of
stable polymorphism, there was a second prey species with a
different surface characteristic (species 3). The surface
characteristic of the background is not illustrated in this
diagram. The maximum number of organisms for a species
was de� ned by the minimum space it requires for
reproduction (the dashed circles). Species 2 and 3 were
assumed to compete for the same space. Species 1 was
assumed to have a sensory system with a limited range
indicated by the solid circle; the probability of detecting a
prey outside of this range was zero.

ations can be used to determine which factors are likely
to be important in a particular situation, and hence where
one should concentrate effort in making further physical
measurements and in conducting experiments. Once some
of the important factors have been identi� ed, simulations
are necessary to understand how they work together. For
example, simulations can be used to identify those factors
that are likely to in� uence evolution relatively indepen-
dently and those likely to in� uence evolution in a highly
interactive fashion. Simulations can also be used to
explore conditions under which natural selection produces
optimal or nearly optimal solutions (in the ideal observer
sense). Finally, for well-controlled laboratory environ-
ments, simulations can generate quantitative predictions
for the course of evolution, thereby providing a basis for
rigorous hypothesis testing.

Obviously, a Bayesian model will be useful only if it is
computationally tractable. There are reasons to be cau-
tiously optimistic. Bayesian models have been successfully
developed and evaluated in a number of complex domains
including perception, signal processing, computational
neuroscience, and economics. Many of the mathematical
techniques and theorems used to make these models trac-
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table should transfer to the domain of Bayesian natural
selection. There are some aspects of Bayesian natural
selection that may appear at � rst glance to raise compu-
tational dif� culties. One is that a separate fundamental
equation must be evaluated for each allele vector. How-
ever, the total number of separate fundamental equations
that must be evaluated at each time-step of the simulation
tends to be relatively small because mutation rates are lim-
ited and un� t alleles soon become extinct. Also, adding
new allele vectors has only a linear effect on computation
time. Another apparent complicating factor is the poten-
tial length of allele vectors. In practice, however, hypoth-
eses will tend to be focused on those limited subsets of
genes assumed to be most relevant for the adaptation
under study.

(At this point, readers not interested in the details of
the simulations may wish to skip to the simulation results
(§ 4).)

(a) Transient polymorphism
In this example, we consider evolutionary transitions in

which multiple allele vectors in a population are eventually
replaced by a single allele vector or a cluster of nearly equi-
valent allele vectors. This situation might arise, for
example, when a polymorphic species moves into a new
environment that favours just one allele vector. In this � rst
example, we assume that the environment contains just
two interacting species, where species 2 (prey) is a passive
organism such as a plant, and species 1 (predator) is an
active organism that moves around the environment in
search of species 2 (see � gure 5). We assume that species
2 is not evolving or is doing so on a time-scale that is large
relative to species 1. We further assume that there is no
signi� cant polymorphism in species 2; thus we can let
a1 2 = (a1 1 2) represent a single allele vector (of length one)
that determines the stimulus signature of species 2 rel-
evant for detection by species 1. In this case there is just
one fundamental equation for species 2.

Species 1 is assumed to be evolving rapidly relative to
species 2 and to have some initial polymorphism in those
genes that are relevant for detecting and responding to
species 1. This polymorphism is represented by a collec-
tion of different allele vectors, a1 1,a2 1,a3 1,¼. There is a
separate fundamental equation for each of these allele vec-
tors.

(i) Prior probability
To specify the prior probability distributions relevant

for a species, one must � rst decide how to represent the
possible states of the environment. We suppose here that
two general states of the environment are important for
the survival and reproduction of species 2: (i) whether
species 2 is within range of possible detection by an indi-
vidual of species 1 and (ii) whether species 2 has the
opportunity to reproduce. Thus, the environment vector
for species 2 is in two dimensions (2D), v2 = (v 1 2, v 2 2).
The � rst dimension has n2 + 1 possible values: not within
detection range of species 1 ( v 1 2 = 0), within detection
range of an individual of species 1 having the allele vector
aj1 (v 1 2 = j). The second dimension has two possible
values: having space to reproduce ( v 2 2 = 1), or not having
space to reproduce (v 2 2 = 0). Similarly, we suppose that
the same two general states of the environment are
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important for the survival and reproduction of species 1:
(i) whether species 1 is within range to possibly detect
species 2 and (ii) whether species 1 has the opportunity
to reproduce. Thus, the environmental vector for species
1 is also in 2D, v1 = (v 1 1,v 21). For both species we assume
that the prior probabilities do not depend on the value of
the allele vector.

Assuming that the probability of being within detection
range is independent of having space to reproduce, the
prior probability distribution for the different states of the
environment is the product of the probability distributions
for the two components:

pa(v1;t) = p( v 1 1;t)p(v 2 1;t),

pa(v2;t) = p( v 1 2;t)p(v 2 2;t).

First, consider the probability of having space to repro-
duce. Even under the best of circumstances, a species can
only reach a certain maximum density that is allowed by
the available space and properties of the species. In � gure
5, the dotted circle around each species indicates the mini-
mum amount of space (the reproduction space) required
for each individual of that species. Dividing each of these
areas into the total available area determines the
maximum number of organisms for each species, om ax1

and om ax2
. We assume that the probability of not having a

space to reproduce is equal to the fraction of the total
space occupied at time t, which is the fraction of the
maximum possible number of organisms:

p(v 2 1 = 0;t) =
O1(t)
om ax1

, (3.1)

p(v 2 2 = 0;t) =
O2(t)
om ax2

. (3.2)

The probability of having space to reproduce is just one
minus the probability of not having space to reproduce.
Notice that the prior probabilities change over time in
direct proportion to the population of the species.

Now consider the probability of being within detection
range. The perceptual system of a species collects infor-
mation over a limited range. The solid circle in � gure 5
indicates this range for the perceptual system of species 1.
If species 2 were to reach its maximum density, then the
probability of a given individual of species 1 being within
range to detect any individual of species 2 would reach its
maximum. If we let this maximum probability be pr an ge2

,
then the probability of an individual of species 1 being
within range to detect an individual of species 2 at time
t is

p(v 1 1 = 1;t) = pran ge2

Oa112
(t)

om ax2

, (3.3)

and the probability of not being within range,
p(v 1 1 = 0;t), is one minus the probability of being within
range.

Conversely, if species 1 were to reach its maximum den-
sity, then the probability that a given individual of species
2 is within range of possible detection by any individual
of species 1 would also reach its maximum. If we let this
maximum probability be pr an ge1

, then the probability of an
individual of species 2 being within range of an individual
of species 1 with allele vector aj1 at time t is
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p(v 1 2 = j;t) = pran ge1

Oaj1
(t)

om ax1

, (3.4)

and the probability of not being in range, p(v 1 2 = 0;t), is
one minus the sum of all the probabilities of being
within range.

This completes the speci� cation of the prior probability
distributions. However, there are a couple of � nal points
to make. First, these formulae implicitly assume that the
probability of two or more individuals of species 1 being
within range of the same individual of species 2 is negli-
gible. This assumption holds if pr an ge1

is suf� ciently small.
Second, it may appear from equations (3.1)–(3.4) that the
prior probability distribution is de� ned by four para-
meters: om ax1

, om ax2
, pran ge1

and pran ge2
. However, there are

in fact only three independent parameters because of a
constraint that follows from consideration of � gure 5;
thus, prang e2

is completely determined from the other
three parameters.

(ii) Stimulus likelihood
To specify the stimulus likelihood one must identify the

relevant stimulus dimensions. Here we assume that the
stimulus dimensions for the two species consist of energy
distributions (see left panels in � gures 6 and 7). The
stimulus might, for example, be the wavelength spectrum
of the light reaching the organism. Because of variation
in the environment there will be variation in the energy
distribution; three examples are shown on the left in � g-
ures 6 and 7. For the present generic simulations, we do
not make particular assumptions about the form of these
stimulus probability distributions. However, in general,
the precise form of these distributions will be critical in
speci� c applications.

(iii) Response likelihood
To specify the response likelihood one must identify the

relevant properties of the organism and how they depend
upon the stimuli and the allele vector. For species 2, the
relevant property is the characteristic of the organism’s
surface, for example its spectral re� ectance function. As
illustrated in � gure 6, this surface characteristic is determ-
ined by the allele a1 1 2. The response from the surface is a
joint function (e.g. the product) of the stimulus energy
distribution and the surface characteristic. Because of vari-
ation in the stimulus (and possibly in the surface
characteristic), there will be individual variation in the sur-
face response. Again, for the present generic simulations,
we do not make particular assumptions about the form of
the surface response characteristic of species 2, although
the precise form will be critical in speci� c applications.

For species 1 the relevant properties of the organism are
the characteristics of the receptors, the form of the recep-
tor response integration, and the form of the behavioural
decision process. We assume that there are two receptors,
a � xed receptor a, and a variable receptor b. The sensi-
tivity function of the � xed receptor is shown as the dashed
curve in the middle panel of � gure 7, and the variable
receptor as the solid curve. The sensitivity function for
receptor b is controlled by the � rst allele of an allele vector
aj1 = (a1 j1,a2 j1). The activation level of each receptor is a
scalar quantity, such as the integral of the product of the
stimulus energy distribution or the receptor sensitivity
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Figure 6. Hypothetical stimuli, surface characteristic, and surface responses for the passive prey species (species 2). The
stimuli for species 2 are energy distributions along some arbitrary wavelength dimension; the possible energy distributions and
their probabilities are described by a stimulus likelihood distribution p(s2|v2). The surface characteristic describes how the
surface of the organism responds to the stimuli; although it is determined by some allele a112, there may still be random
variation from one individual to another. The surface responses are also energy distributions that are a joint function of the
stimulus and the surface characteristic (e.g. the product). The possible surface responses and their probabilities are described
by a response likelihood distribution pa112

(r2|s2), which depends on the stimulus and the allele.
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Figure 7. Hypothetical stimuli, receptor sensitivity functions, and receptor activations for the active predator species (species
1). The stimuli for species 1 are energy distributions along some arbitrary wavelength dimension; the possible energy
distributions and their probabilities are described by a stimulus likelihood distribution p(s1|v1). There are two receptors, a
� xed receptor a that does not evolve (dashed curve), and a variable receptor b that does evolve (solid curve); the receptor
sensitivity function of receptor b is determined by the polymorphic allele a1j1. The activation level of each receptor class is a
function of the particular stimulus and the receptor sensitivity function (e.g. the integral of the product).

function. Thus, receptor activation can be described by a
two-valued vector (za,zb), as shown in the right panel of
� gure 7.

As illustrated in � gure 8a, we assume that za and zb

represent the combined (e.g. summed) responses of the
two classes of receptor within a cluster. For simplicity, we
assume that za and zb are then combined into a single
response, z (e.g. their difference), which represents the
output of a cluster.

On the one hand, if a receptor cluster is receiving a
stimulus from the surface of species 2, then the stimulus
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will be a sample of the surface response from species 2
(e.g. one of the functions on the left in � gure 6). On the
other hand, if a cluster of receptors is receiving a stimulus
from the background environment, then the stimulus will
be a sample from one of the possible surfaces in the back-
ground.1 0 Thus, there will be a different probability distri-
bution for z depending upon whether the cluster of
receptors is receiving a stimulus from the surface of spec-
ies 2 or from the background. When an individual of spec-
ies 2 is not within range (v 1 1 = 0), then all of the receptor
clusters will receive a stimulus from the background.
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receptor clusters

zmax

if zmax > ca2j1 then ‘approach’

(a) (b)

stimuli and responses for predator species

Figure 8. Example of a sensory circuit and its stimulation for the active predator species (species 1). (a) Receptor outputs are
processed in clusters (one of which is circled) that may consist of anything from a single receptor to the whole receptor array.
Within each cluster, the activities of the a receptors are combined into a signal za and those of the b receptors into a signal zb;
these two signals are then combined (e.g. subtracted) to obtain the cluster response z. The maximum of the z responses
across all clusters is a value zmax. The predator approaches a potential target if the value zmax exceeds some criterion
determined by the polymorphic allele a2j1. (b) One example is receptor clusters consisting of photoreceptors and stimuli
consisting either of background foliage alone or background foliage plus a prey (as in this illustration). If receptor b is well
matched to the prey and receptor a to the background foliage, then (as shown) zmax might occur in the cluster stimulated by
the prey. Note that high values of zmax might occur by chance even when no prey is present.

When an individual of species 2 is within detection range
( v 1 1 = 1), then some of the receptor clusters will receive a
stimulus from the surface of species 2 and the remainder
will receive a stimulus from the background. For example,
� gure 8b illustrates the situation assuming that the back-
ground is foliage and the receptors are photoreceptors: the
central receptor cluster is receiving a stimulus from the
surface of species 2, and the rest are receiving a stimulus
from the surfaces of the background foliage.

We assume two possible behavioural responses of spec-
ies 1, represented by a response vector of length one,
r1 = (r1 1): ‘approach’ (r1 1 = 1) and ‘avoid’ (r1 1 = 0). The
behavioural decision process is assumed to be a threshold
criterion on the value of z from each cluster of receptors.
If the maximum of all the z’s (zm ax) exceeds this criterion,
then species 1 approaches an object within its range;
otherwise, it avoids all the objects within its range and
moves to another location. We assume that the value of
the criterion is controlled by the second component of the
allele vector aj1 = (a1 j1,a2j1).

As shown in � gure 9, the behaviour of species 1 is
characterized ultimately by two probability functions,
fa1j1

(zm ax| v 1 1 = 0) and fa1j1,a112
(zm ax| v 1 1 = 1), and a cri-

terion, ca2j1
. The function on the left of � gure 9 shows the

probability of each possible value of zm ax given that no
individual of species 2 is within detection range. The func-
tion on the right of the � gure shows the probability of each
possible value of zm ax given that some individual of species
2 is within detection range. The function on the right
depends on a1 1 2 because when species 2 is within detec-
tion range its surface response is part of the stimulus.

From � gure 9 it follows that the probability of an avoid-
ance response given that no individual of species 2 is
within range (a correct rejection), paj1

(r1 1 = 0| v 1 1 = 0), is
the area under the left function to the left of the criterion.
The probability of an approach response given that no
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individual of species 2 is within range (a false alarm),
paj1

(r1 1 = 1| v 1 1 = 0), is the area under the left function to
the right of the criterion. The probability of an avoidance
response given that an individual of species 2 is within
range (a miss), paj1

(r1 1 = 0| v 1 1 = 1), is the area under the
right function to the left of the criterion. Finally, the prob-
ability of an approach response given that an individual of
species 2 is within range (a hit), paj2

(r1 1 = 1| v 1 1 = 1), is the
area under the right function to the right of the criterion.
These four probabilities describe the behaviour of species
1 given any state of the environment. In the fundamental
equation (see � gure 2), they specify all the possible
values of

O
s1

paj1
(r1|s1)p(s1|v1).

In a speci� c application, the two probability distri-
butions in � gure 9 would be determined by calculations
from statistics of the surface characteristics of the back-
ground and of species 2, and from appropriate assump-
tions about the receptor sensitivity functions and sensory
circuits of species 1. In our generic simulations we simply
took the two probability functions to be equal-variance
normal density functions whose means shifted in the
intuitively appropriate fashion with changes in the alleles
of the two species.

(iv) Growth factor
To specify the growth factor, one must describe how it

depends upon the state of the environment and the organ-
ism’s response. First consider species 2. If species 1 is not
within range for detecting species 2, then the average
growth factor for species 2 is some nominal value de� ned
by a � xed death rate, x 2, and birth rate, b2. If species 1 is
within range and makes an approach response, then the
individual of species 2 dies and does not give birth in that
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Figure 9. Decision process and response likelihoods for the active predator species (species 1). The predator is assumed to
have two possible responses: approach and avoid. The response is to approach if the maximum of the cluster responses, zmax,
exceeds a criterion value, ca2j1

, which is determined by the polymorphic allele a2j1. When the state of the environment is such
that no prey is present, then the probability function for zmax depends only on the allele controlling the predator’s receptors.
When the state of the environment is such that a prey is present, then the probability function for zmax depends on the allele
controlling the predator’s receptors and on the allele controlling the prey’s surface characteristic. For each state of the
environment, the probability of an approach response is the area under the corresponding probability function to the right of
the criterion, and the probability of an avoidance response is the area to the left of the criterion.

time-step. If species 1 is within range but makes an avoid-
ance response, then the birth and death rates for species
2 are their nominal values.

Next consider species 1. On the assumption that repro-
duction requires consumption of individuals from species
2, the birth rate is assumed to be zero unless there are
hits. When there is a hit the birth rate has the value b1 h.
The death rate will in general be different for each differ-
ent combination of state of the environment and response;
thus we allow a different death rate for hits ( x 1 h), correct
rejections ( x 1 cr), misses (x 1 m ) and false alarms (x 1 fa). (In
the present simulations, we assumed that the death rates
were the same for correct rejections and misses.)

(v) Mutation
In this example, we assume that mutations can occur

only in species 1, and that reproduction is asexual. We
further assume that the mutation rate is the same for all
alleles of species 1. In our generic simulation, allele vectors
are hypothetical and are represented by a value on some
dimension (e.g. the location of the peak of the variable
receptor’s sensitivity function or the location of the
decision criterion). When mutations occur, the value of
the new allele is obtained by sampling uniformly from a
small range around the value of the allele before the
mutation occurred (± 10% of the full range possible for
that allele). Thus, every mutation results in a phenotypic
change (i.e. there are no ‘silent’ mutations).

(vi) Parameters
The subsections above de� ne all aspects of Bayesian

natural selection needed for the simulations, except the
starting values of the parameters.

The � rst set of parameters concerns the allele vectors.
Speci� cally, we must select the starting number of allele
vectors (n1) for species 1, and the values of those vectors
(aj1). In the present simulations, each vector component
represents a speci� c phenotypic property of the organism.
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The � rst component (a1 j1) represents the location of the
sensitivity function of the variable receptor. The second
component (a2 j1) represents the location of the decision
criterion.

The second set of parameters concerns the numbers of
organisms. We must specify the numbers of organisms
carrying each allele vector at the beginning of the simul-
ation (t = 0) for species 1 (Oaj1

(0)) and for species 2
(Oa112

(0)). We must also specify the maximum number of
organisms in species 1 (om ax1

) and species 2 (om ax2
) that

can exist in the environment.
The third set of parameters concerns the growth rates.

We must specify the birth and death rates for the active
species 1 (b1h , x 1 h, x 1 fa, x 1 m , x 1 cr) and for the passive spec-
ies 2 (b2,x 2).

The fourth set of parameters concerns mutation. We
must specify the mutation rate for species 1 (m1) and the
range of possible mutations for each of the allele vector
components (D a11

, D a21
). We assume that the mutation

rate is very small and that mutations occur independently
in each allele.

The � nal parameter is the maximum probability that a
given individual of species 2 is within detection range of
any individual of species 1 (pran ge1

).

(b) Coevolution
In this example, we generalize the previous example to

allow for simultaneous evolution of species 2 (prey).
Speci� cally, we now assume that there is an initial poly-
morphism in the allele vector that determines the stimulus
signature of species 2 relevant for detection by species 1
(predator). This polymorphism is represented by a collec-
tion of different alleles, a1 12,a1 2 2,a1 3 2,¼, and thus we now
have a different fundamental equation for each of these
alleles. We also allow mutations in the allele vectors of
both species 1 and 2.

With respect to the prior probabilities, the state of the
environment for species 1 now depends not only on
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whether an individual of species 2 is within detection
range but also on what allele it carries. Thus, there are
now n2 + 1 possible values along the � rst dimension of the
prior probability distribution for species 1: v 11 = 0 (no
individual of species 2 within detection range), v 1 1 = i (an
individual of species 2 with allele a1 i2 within detection
range). Thus, the prior probability distribution for v 1 1

becomes

p(v 1 1 = i;t) = prang e2

Oa1i2
(t)

om ax2

; (3.5)

cf. equation (3.3).
With respect to the response likelihoods for species 1,

recall that z is the integrated response from a cluster of
� xed and variable receptors, and that zm ax represents the
maximum value of z across all clusters of receptors. Also
recall that the probability function for zm ax, when an indi-
vidual of species 2 is within detection range, depends on
the allele of that individual. Because there is now a differ-
ent probability function, fa1j1,a1i2

(zm ax| v 1 1 = i), for each dif-
ferent allele a1 i2 in species 2, the probabilities of hits and
misses now vary with a1 i2. Note that the probabilities of
correct rejections and false alarms do not vary because in
these cases no individual of species 2 is within detection
range.

Speci� cation of the initial conditions is nearly the same
as for the case of transient polymorphism. The only differ-
ence is that now we must also specify the alleles and
mutation parameters for species 2.

(c) Stable polymorphism
Here we generalize the � rst example to three species

(see � gure 5), one active predator (species 1) and two
passive prey (species 2 and 3). We assume that both spec-
ies 2 and 3 are food sources for species 1, and that species
2 and 3 are competing for space to reproduce. As in the
� rst example, we assume that the passive species are not
evolving or are doing so on a time-scale that is large rela-
tive to species 1. We further assume that there is no sig-
ni� cant polymorphism in either species 2 or 3 that is, we
can let a11 2 and a1 1 3 represent the alleles that determine
the surface characteristic of species 2 and species 3,
respectively. Thus, there is just one fundamental equation
for species 2 and one for species 3. Different alleles in
species 2 and 3 can lead to a stable polymorphism in spec-
ies 1.

The prior probability distributions for species 2 and 3
are essentially the same as for species 2 in the � rst
example. The environment vector for each species is two-
dimensional, v2 = (v 1 2, v 2 2) and v3 = (v 1 3, v 2 3). The � rst
dimension represents whether or not an individual of spec-
ies 1 is within range and, if so, which allele vector it car-
ries. The second dimension represents whether or not
there is space to reproduce. The prior probability for spec-
ies 1 is slightly different from the � rst example. The
environment vector is still two-dimensional, but the � rst
dimension represents whether a food source is within
range and, if so, which food source: no food source
( v 1 1 = 0), species 2 (v 1 1 = 2) or species 3 (v 1 1 = 3).

First, consider the probability of having space to repro-
duce. Species 2 and 3, although passive, are in compe-
tition for space. We assume that the space required for
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reproduction is the same for the two species, and thus the
maximum number of organisms is the same, om ax2+3

. As
before, the probability of not having space to reproduce is
equal to the fraction of the total space occupied at time t:

p(v 2 2 = 0;t) = p(v 2 3 = 0;t) =
O2(t) + O3(t)

om ax2+3

. (3.6)

Of course, the probability of having space to reproduce
is just one minus the probability of not having space to
reproduce. For species 1 the probability of having space
to reproduce is the same as in the � rst example.

Next, consider the probability of being within range of
possible detection. For species 1, the probabilities of an
individual of species 2 and 3 being within detection
range are

p(v 1 1 = 2;t) = pr an ge2+3

O2(t)
om ax2+3

, (3.7)

p(v 1 1 = 3;t) = pr an ge2+3

O3(t)
om ax2+3

. (3.8)

For species 2 and 3, the probability of being within
range of possible detection by an individual of species 1
with allele vector aj1 is given by

p(v 1 2 = j;t) = p(v 13 = j;t) = pran ge1

Oaj1
(t)

om ax1

, (3.9)

cf. equation (3.4), and the probability of not being within
range is one minus the sum of all the probabilities being
within range.

With respect to the response likelihoods for species 1,
we note that the probability function for zm ax, when a food
source is within detection range, depends on the species
of the food source. Hence, the probabilities of hits and
misses will also differ depending on the species of the
food source.

Speci� cation of the initial conditions is nearly the same
as for the case of transient polymorphism. The only differ-
ence is that now we must also specify the allele, the initial
number of organisms, and the growth parameters for spec-
ies 3.

4. SIMULATION RESULTS

As described above, we carried out simulations of
Bayesian natural selection for three cases: transient poly-
morphism, coevolution and stable polymorphism. In all
three cases, we assumed that there was an active predator
species (species 1) foraging for a passive prey species
(species 2 or species 2 and 3). Species 1 was assumed to
have a two-receptor sensory system, where the location of
one of the receptors along the stimulus axis and the
location of the response decision criterion were free to
evolve. We also assumed that individuals within each
species were competing for space to reproduce. See � gure
5 for a schematic of the hypothetical environment.
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In the � rst simulation (transient polymorphism) there
were just two species, and species 2 was assumed to have
a � xed surface characteristic that was not free to evolve.
In the second simulation (coevolution) there were also two
species, but now species 2 was assumed to have a surface
characteristic that was free to evolve. In the third simul-
ation (stable polymorphism) there were three species, and
species 2 and 3 were assumed to have � xed (but different)
surface characteristics that were not free to evolve.

The speci� c assumptions for each of the three cases are
described in the previous section. The computational � ow
was the same in each case.

(i) Set the initial conditions; create a separate funda-
mental equation for each allele vector in each spec-
ies; set t = 0.

(ii) Evaluate the fundamental equation for each allele
vector to determine the expected number of births
and deaths at time t + 1.

(iii) For each allele vector, randomly sample from a Pois-
son probability distribution to obtain the actual
number of births and from a binomial probability
distribution to obtain the actual number of deaths.

(iv) For each allele vector, randomly sample from the
actual number of births to obtain the number of
mutations; for each mutation randomly sample from
the mutation range to obtain a new allele vector; for
each new allele add a new fundamental equation.

(v) For each allele vector, update the count of the num-
ber of organisms; for each allele vector with a count
of zero, eliminate its fundamental equation.

(vi) Set t = t + 1; go to step (ii).

These simulation steps are straightforward except for step
(ii), which is described in more detail in Appendix A.

For each simulation we also computed the maximum
� tness ideal observer for species 1, under the assumption
that all properties of the organism are � xed, except for the
location of the variable receptor and the location of the
decision criterion (see Appendix A). In other words, we
determined the locations of the variable receptor and
decision criterion that maximized � tness (average growth
factor). The maximum � tness ideal observer is useful for
interpreting the results of simulations and provides a
check on their validity. It is important to note that
maximum � tness ideal observers typically change during
the course of evolution because of changes in the prior
probability distributions.

(a) Transient polymorphism
Representative results from the simulation of transient

polymorphism are displayed as needle diagrams in � gure
10. Figure 10a shows the states of species 1 (lower panel)
and species 2 (upper panel) after one step of the simul-
ation, � gure 10d shows the asymptotic (equilibrium)
states, and � gure 10b,c show intermediate steps. Each
small square in the plots indicates a particular allele vec-
tor, and the length of the vertical line attached to a square
indicates the relative number of organisms carrying that
allele vector. For species 1 (predator), the horizontal axis
represents the location of the variable receptor’s sensitivity
function, and the vertical axis represents the location of
the decision criterion. For species 2 (prey), the horizontal
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axis represents the location of the surface characteristic.
Stars show the optimal allele vector as given by the
maximum � tness ideal observer.

We chose an initial state in which species 1 is a relatively
small population containing a diverse set of allele vectors
(chosen at random), and species 2 is a relatively large
population containing a single allele vector. As can be
seen, the allele vectors for species 1 converge over time to
the values predicted by the maximum � tness ideal
observer. There is a fast initial pruning of non-optimal
allele vectors followed by a slow convergence limited by
the rate and range of mutations. As species 1 evolves,
there is a decline in the number of organisms in species
2, especially in earlier stages.

It is important to note that the optimal allele vector
changes continuously during the course of evolution.
These changes occur only in the optimal location of the
decision criterion; the optimal location for the receptor’s
sensitivity function does not change. Two factors are
responsible for the changes in the optimal location of the
criterion. First, as the number of organisms in species 2
declines, the prior probability that an individual of species
1 will be within detection range of an individual of species
2 also declines. Second, as the number of organisms in
species 1 increases, the prior probability of � nding space
to reproduce decreases. This simple example illustrates
the dynamic character of prior probability functions in
Bayesian natural selection.

The pattern of results in � gure 10 is representative of
those we obtained using a variety of different initial para-
meter values. We found that under most conditions, the
simulations converge to the optimum given by the
maximum � tness ideal observer. The only exceptions
involved parameter values that led to extinction of one
species or the other. As expected, varying the location of
the surface characteristic of species 2 led to equivalent
changes in the equilibrium location of the receptor sensi-
tivity function of species 1. Varying the other relevant
parameters—detection range of species 1, birth and death
rates of species 1 and 2, and maximum numbers of the
two species—led to changes in the equilibrium location of
the decision criterion. Surprisingly, some of these changes
were small relative to what would be expected given the
magnitude of changes in the prior probability distributions.

For example, � gure 11 shows the effect on the optimal
decision criterion of varying the birth rate parameter
(b1 h) of species 1. As birth rate increases, the population
of species 2 decreases, and hence the prior probability that
an individual of species 1 will have a target within range
decreases (see � gure 11a). According to classical ideal
observer theory, as the prior probability of the target
decreases, the decision criterion that maximizes detection
accuracy increases (see the dashed curve in � gure 11b).
Thus, when the birth rate is 10 the target prior probability
is 0.05 and optimal criterion is 2.5, whereas when the
birth rate is near zero the target prior probability is 0.8
and the optimal criterion is an order of magnitude smaller.
By contrast, when � tness rather than accuracy is maxim-
ized, the optimal criterion value changes only slightly (see
the solid curve in � gure 11b). This result occurs because
the increase in birth rate and the resulting decrease in tar-
get prior probability have opposite effects on optimal cri-
terion placement. The higher birth rate increases the
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Figure 10. Results from simulation of transient polymorphism. These needle diagrams show the alleles and the number of
organisms carrying those alleles at four times during the course of evolution. Each allele is represented by a small square; the
length of the line attached to the square indicates the number of organisms carrying that allele. Stars indicate the optimal
allele vector according to the maximum � tness ideal observer. (a) After the � rst step (t = 1), with randomly chosen alleles for
species 1. (b,c) Intermediate steps (t = 100 and t = 1000). (d) Asymptotic/equilibrium state (t = 20 000).

reproductive payoff for � nding a target, pushing the cri-
terion down, while the simultaneous lowering of the target
prior probability decreases the probability of reproductive
payoff, pushing the criterion up.

The relatively invariant decision criteria (at equilibrium)
revealed in this simulation might re� ect a general prin-
ciple. Species having similar receptor systems—but differ-
ent reproductive ef� ciencies—might be expected to have
almost the same sensory decision criteria. Similarly, evol-
ution of the genes controlling reproductive ef� ciency within
a species might be expected to require little or no coevol-
ution of the genes controlling sensory decision criteria.

(b) Coevolution
The simulation for coevolution was the same as in the

previous case, except that we allowed evolution in the sur-

Phil. Trans. R. Soc. Lond. B (2002)

face characteristic of species 2 (prey). The population of
species 2 was relatively large and contained an initial poly-
morphism. The mutation rate and maximum mutation
step size for species 2 were the same as for species 1
(predator). We assumed that the surface characteristic for
species 2 could approach but not reach the location of the
surface characteristic of the background, which was at the
centre of the horizontal axis (i.e. we did not allow per-
fect camou� age).

Representative results from the simulation are shown in
� gure 12. Stars indicate the optimal allele values according
to the maximum � tness ideal observer. As can be seen,
the allele populations for both species evolved over time.
The alleles for species 2 migrated to be as close to the
background surface characteristic as possible, and the
alleles for species 1 followed along. As in the � rst simul-
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Figure 11. Effect of variations in reproductive ef� ciency on the equilibrium values of the decision criterion in the predator
species (species 1). (a) This plot shows the effect on the prior probability (at equilibrium) of a prey (a target) being within
detection range of an individual predator, as a function of the birth rate parameter of the predator. (b) On the one hand, if
the goal is to maximize prey detection accuracy, then the optimal decision criterion should increase by more than an order of
magnitude over the range of birth rates (dashed curve), because of the decline in the target prior probability. On the other
hand, if the goal is to maximize � tness, then the decision criterion should be relatively invariant with birth rate (solid curve),
because the decrease in target prior probability is balanced by the increase in payoff when a prey is captured. The solid curve
is predicted both by the maximum � tness ideal observer and by the simulation of natural selection.

ation, the alleles for the predator species generally
migrated to the optimal values. Also, the optimal values
de� ned by the maximum � tness ideal observer again
changed during the course of evolution but even more
dramatically than in the previous case.

The coevolutionary trajectories sampled in � gure 12 are
represented in a more continuous fashion in � gure 13a,b.
Figure 13a plots the mean value of the allele determining
the surface characteristic of species 2 on the vertical axis
and the mean value of the allele determining the location
of the receptor sensitivity function of species 1 on the hori-
zontal axis. (Note that the mean value of the allele
determining the location of the decision criterion is not
represented in the � gure.) Figure 13b plots the number of
organisms in species 2 on the vertical axis and the number
of organisms in species 1 on the horizontal axis. In both
plots, the arrowheads indicate the direction of the coevol-
utionary trajectory. The four arrowheads have been placed
in � gure 13a,b so that they represent corresponding points
in time in the two � gure parts. The black circles indicate
the stable asymptotic endpoint of the coevolution.
Initially, the receptor location in species 1 evolves rapidly
to match the wavelength location of the surface character-
istic of species 2. During this period, the population of
species 1 increases while that of species 2 decreases. Once
the population of species 2 declines suf� ciently, its surface
characteristic begins to evolve towards an optimal match
with the background environment. During this period, the
population of species 2 increases while that of species 1
decreases. Finally, after the surface characteristic of spec-
ies 2 has reached the optimal match with the background,
the receptor location of species 1 continues to evolve
towards its optimum. During this period the population
of species 2 decreases while that of species 1 increases.

Figures 12 and 13a,b illustrate one pattern of coevol-
utionary trajectory. There are two other stable patterns,
which are illustrated in � gure 13c–f. Figure 13c,d show a
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typical coevolutionary trajectory if the initial population of
alleles in species 2 is located further to the right than in
� gure 12a. In this case, the surface characteristic for spec-
ies 2 initially shifts away from an optimal match with the
background environment. Given the relatively small
mutation step size, shifts towards the background increase
the probability of detection by species 1 (i.e. decrease the
� tness of species 2). However, once the receptor location
of species 1 evolves to match the surface characteristic of
species 2, mutations towards the background in species 2
produce increases in � tness. Thus, the surface character-
istic of species 2 and the receptor location of species 1
eventually reach the same endpoints as in the � rst coevol-
utionary simulation (� gure 13a,b). Interestingly, this does
not occur if the range of possible receptor locations in
species 1 is substantially less than the range of possible
surface characteristics in species 2 (see � gure 13e, f). In
this case, species 2 becomes trapped with a surface charac-
teristic that is far from an optimal match with the back-
ground, and its population size is permanently depressed
relative to the other coevolutionary trajectories.

(c) Stable polymorphism
The simulation for stable polymorphism was the same

as for transient polymorphism, except that there were two
prey species with different surface characteristics. All other
aspects of the two prey species were initially the same. As
mentioned earlier, the two prey species competed for the
same reproduction space. Representative results from the
simulation are shown in � gure 14. As before, stars show
the optimal allele vectors for species 1 according to the
maximum � tness ideal observer. As can be seen, the allele
vectors for species 1 evolve towards the two locally optimal
vectors, resulting in a stable polymorphism. However,
notice that throughout the course of evolution, even in the
equilibrium state, there are oscillations in the numbers of
organisms in species 2 and 3, and corresponding oscil-
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Figure 12. Results from simulation of coevolution. Each allele vector is represented by a small square; the length of the line
attached to the square indicates the number of organisms carrying that allele vector. Stars indicate the optimal allele vector
according to the maximum � tness ideal observer. (a) After the � rst step (t = 1). (b,c) Intermediate steps (t = 100 and t = 1000).
(d ) Asymptotic/equilibrium state (t = 20 000).

lations in the numbers of organisms in species 1 that carry
the alleles matched to these two species. This can be
understood as follows. When, by chance, the individuals
of species 1 carrying an allele vector matched to one of
the prey species, say species 2, is particularly successful in
foraging and/or reproduction, the competition for repro-
duction space drives down the number of individuals with
the allele vector matched to species 3. All things being
equal, fewer individuals means fewer offspring, and hence
the disparity in numbers between individuals carrying the
two alleles grows larger. However, when this happens, the
number of individuals in species 2 is driven down, increas-
ing the reproduction space available for species 3 and
hence increasing their number. This inevitably leads to
recovery in the number of individuals of species 1 whose
alleles are matched to species 3. This alternation continues
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inde� nitely, although the periods and amplitudes of the
successive cycles vary randomly.

Corresponding to the alternations in numbers of indi-
viduals among the three species, there are alternations in
the globally optimal allele vector. When the prior prob-
ability of being within detection range is higher for species
2 than for species 3, then the globally optimal allele vector
is the one matched to species 2, and vice versa.

5. DISCUSSION

There has been a great deal of interest recently in meas-
uring the statistical properties of natural stimuli. This
interest has been motivated in part by the intuition that
statistical properties of the environment drive the design
of perceptual systems through evolution and learning. As
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predator species evolves to match the surface characteristic of the prey. (e,f ) Prey species evolves away from an optimal match
with the background and becomes trapped because of a limited range in the evolution of the predator’s receptor location.

described in § 1, some evidence in support of this intuition
has been gained by comparing the processing of natural
stimuli by real perceptual systems with that of ideal
observers derived within the framework of Bayesian stat-
istical decision theory. These ideal observer analyses have
not only provided evidence for the importance of natural
stimulus statistics in determining the design of perceptual
systems, they have also provided a deeper understanding
of the information contained in natural stimuli as well as
of the computational principles employed in perceptual
systems.

Formulating a Bayesian ideal observer requires selecting
a utility function. In the past, the utility function has been
selected by intuition or from the goals of some laboratory
task (e.g. maximizing categorization or estimation
accuracy). However, when ideal observers are considered
from the viewpoint of natural selection, it is clear that the
appropriate utility function is � tness (i.e. the birth and
death rates for the species). Therefore, we propose that a
maximum � tness ideal observer is generally more appro-
priate when considering the design and performance of
perceptual systems.
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Although appropriate ideal observer analyses can pro-
vide insight into how natural tasks and stimuli contribute
to the design of a perceptual system, there are many other
factors, including the incremental process of natural selec-
tion, which also make important contributions. To rep-
resent all of these factors in a coherent theoretical
framework, we have proposed a formal version of natural
selection based upon Bayesian statistical decision theory.
The heart of our proposal is that each allele vector in each
species under consideration is represented by a fundamen-
tal equation, which describes how the number of organ-
isms carrying the allele vector at time t + 1 is related to
the number of organisms carrying that allele vector at time
t, the prior probability of a state of the environment at
time t, the likelihood of a stimulus given the state of the
environment, the likelihood of a response given the stimu-
lus, and the growth factor given the response and the state
of the environment. The process of natural selection is
represented by iterating these fundamental equations in
parallel over time, whilst updating the allele vectors using
appropriate probability distributions for mutation and sex-
ual recombination.
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Following the general description of Bayesian natural
selection, we demonstrated how it might be applied in spe-
ci� c cases by developing generic simulations of transient
polymorphism, coevolution and stable polymorphism.
The primary purpose of these simulations was to demon-
strate some of the � exibility of the Bayesian approach and
to provide a few simulation templates into which speci� c
measurements or assumptions might later be substituted.

Even our generic simulations provided some new
insights into the design and evolution of perceptual sys-
tems. One interesting result is that for all three of our
simulations, under all initial conditions tested, the alleles
of the predator species converged to those corresponding
to the maximum � tness ideal observer. Apparently, opti-
mal perceptual mechanisms should evolve in situations
where the assumptions in our generic simulations are sat-
is� ed.
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Another insight from the simulations concerns the effect
of reproductive ef� ciency on sensory decision criteria. As
expected, we found that as the birth rate of a predator
species increases, there is a decrease in the population of
the prey species. According to classical ideal observer
theory, where the utility function involves maximizing
detection accuracy, this decrease in prey population
should lead to a more conservative decision criterion for
expending the energy required to make an approach
response. However, our simulations suggest that, in fact,
natural selection should pick a decision criterion that is
relatively invariant across changes in reproductive
ef� ciency of the predator species. This result, which is pre-
dicted by the maximum � tness ideal observer, occurs
because the reduced probability of detecting prey is largely
offset by the increased reproductive payoff of � nding prey.
Although in these trade-off situations we found a relative
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invariance of the decision criterion, this will not always be
the case. In general, decision criteria (e.g. categorization
boundaries and estimation biases) are strongly dependent
on the prior probability functions.

Most efforts to understand the evolution of perceptual
systems have been directed at physical and physiological
properties of the sensory organs. Relatively little effort has
been directed at perceptual decision criteria, even though
they play a critical role in determining perceptual perform-
ance. One reason may be the high likelihood that most
properties of sensory organs are � xed adaptations, which
are easier to study, whereas most properties of decision
mechanisms are facultative adaptations, which are harder
to study. Certainly in humans, and probably in most
mammals, many perceptual decision criteria are adjusted
via neural learning mechanisms to match the particular
prior probabilities and stimuli that occur during the organ-
ism’s lifetime. On the other hand, in lower organisms
many decision criteria are � xed adaptations. For example,
in reptiles, amphibians and birds, decisions as fundamen-
tal as which direction to strike, move or peck are often
� xed adaptations, in that even newborns never learn to
compensate for changes in visual direction produced by
rotations or displacements of the visual image (Sperry
1951, 1956; Hess 1956). Thus, in lower organisms it may
often be reasonable to regard both sensory organs and
decision mechanisms as � xed adaptations, as we have
done in our generic simulations.

In general, it is not obvious how to apply the equations
of Bayesian natural selection to the study of facultative
adaptations in perception. However, one possible place to
start would be the evolution of habituation. Even in our
simple generic simulations, it is possible to envision how
habituation mechanisms might evolve. For example, prey
targets that are within detection range of a predator may
not be equally accessible; access could be blocked by elev-
ation off the ground or by some intervening object such
as a body of water. If the prey target is highly detectable,
it may take a long time before a chance movement of the
predator would result in a failure to detect the target,
allowing the predator to move on to another location. This
scenario could easily create a strong selection pressure for
a habituation response in the decision mechanism. In
other words, � tness could be substantially improved by
temporarily raising the decision criterion, if the criterion
has been exceeded for some extended period of time with-
out acquisition of the prey.

Further insights from the simulations concern the effect
of starting point and range of possible allele values on the
pattern of coevolution between a predator’s perceptual
system and a prey’s camou� age. If the predator’s percep-
tual system is initially tuned to detect a surface character-
istic more dissimilar from the background than the prey’s
surface characteristic, then the prey’s surface characteristic
will evolve towards a match with the background and the
predator’s perceptual system will evolve towards a match
with the prey’s surface characteristic. If the predator’s per-
ceptual system is initially tuned to detect a surface charac-
teristic more similar to the background than the prey’s
surface characteristic, then the prey’s surface characteristic
will evolve away from a match to the background. How-
ever, as long as the evolvable range of the predator’s per-
ceptual system is greater than the evolvable range of the
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prey’s surface characteristic, then the prey’s surface
characteristic will eventually begin evolving towards the
background after the predator’s perceptual system
becomes well matched to the prey’s surface characteristic.
On the other hand, if the evolvable range of the predator’s
perceptual system is less than that of the prey’s surface
characteristic, then the prey’s surface characteristic
becomes trapped in a poor match to the background. In
general, there is no reason to think that the evolvable
ranges for perceptual systems and surface characteristics
should be equal and thus such evolutionary traps should
not be uncommon in nature. From knowledge of the
background stimulus statistics and the range of possible
alleles in the predator and prey species, it should be poss-
ible to predict the pattern of coevolutionary trajectory.

It is useful to consider the relationship between the
present proposal and other formal approaches to evol-
utionary biology and population genetics. Optimization
theory has played an important role in evolutionary
biology over the past three decades (see, for example,
Maynard Smith & Price 1973; Alexander 1982; Maynard
Smith 1982; Parker & Maynard Smith 1990). The aim of
optimization theory has been to calculate physically,
physiologically or behaviourally optimal solutions to
adaptive problems that may serve as a benchmark in eval-
uating actual biological adaptations. Thus, ideal observer
theory can be regarded as a special case of optimization
theory that is well suited to analysing perceptual systems.
However, there are some signi� cant differences. Optimiz-
ation theory has typically been expressed in the form of
deterministic equations. By contrast, ideal observer theory
emphasizes the statistical properties of the signals and sys-
tem being optimized. These statistical properties are indis-
pensable for determining the correct optimization in most
perceptual tasks. A second difference is that ideal observer
theory makes explicit the prior probabilities, thus forcing
one to consider explicitly the context within which the
optimization occurs.

Both classical ideal observer theory and optimization
theory make use of indirect measures (proxies) for � tness,
such as categorization accuracy or energy ef� ciency, in
determining optimal design. Using a proxy is valid if it is
monotonically related to � tness (Parker & Maynard Smith
1990). The dif� culty is knowing whether monotonicity
holds in particular cases. Intuition would suggest, for
example, that in foraging animals, � tness is monotonically
related to accuracy of detecting food sources. However,
all three of our simulations demonstrated that this proxy
leads to incorrect predictions for optimal criterion place-
ment. As can be inferred from � gure 11, detection accu-
racy and � tness are monotonically related at only one birth
rate (the point of intersection of the solid and dashed
curves). Thus, it is safest to use a maximum � tness ideal
observer, whenever possible, in assessing optimal design.

Theories in population genetics have been concerned
with modelling actual evolutionary trajectories rather than
describing optimal solutions (see, for example, Dobzhansky
1970; Lewontin 1974; Crow 1986; Maynard Smith 1989;
Hartl & Clark 1997),11 and hence Bayesian natural selec-
tion can be regarded as a particular approach to popu-
lation genetics. In population genetics, the emphasis is on
the statistics of genetic variation within and across species
and how those statistics change over time. Although
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Bayesian natural selection also focuses on the statistics of
genes, its unique contributions are to place a correspond-
ing emphasis on the statistics of natural environments and
to provide a formal representation of the environment–
genome interaction. The approach is potentially valuable
because of the critical role that complex statistical regu-
larities of natural environments must play in natural selec-
tion. The sophistication and diversity of the organisms
created through natural selection would surely be imposs-
ible without highly complex environments interacting with
a highly complex organic chemistry.

Focusing on environmental statistics is useful, for
example, in predicting when adaptations are likely to be
� xed versus facultative. All things being equal, facultative
adaptations generally require more resources than � xed
adaptations (Williams 1966). Therefore, if the relevant
statistical properties of a species’s environment are such
that a facultative adaptation would not perform any better
than a � xed adaptation, then the adaptation is likely to be
� xed. By incorporating measured environmental statistics
into simulations of Bayesian natural selection, it may be
possible to determine when variation in the environment
is small enough to allow � xed adaptations and when it is
large enough to promote facultative adaptations.

As might be expected, our Bayesian formulation of
natural selection is compatible with many of the standard
formulae in population genetics. Consider, for example,
the fundamental equations for the simple case of two
alleles competing for reproduction space in the world of
our simulations, but otherwise having no effect on the
prior probabilities in the environment. To simplify the
notation, let x be the mean number of organisms carrying
one allele and let y be the mean number carrying the other
allele. The fundamental equations are probabilistic differ-
ence equations that can be approximated by deterministic
differential equations. For this example, these differential
equations take the form

dx
dt

= bxx(1 2 (x + y)/om axx+y
) 2 x xx

dy
dt

= byy(1 2 (x + y)/om axx+y
) 2 x yy,

where bx, by, x x and x y are the birth and death rates aver-
aged over responses and stimuli. Inspection of these equa-
tions shows that population y will eventually drive
population x to extinction if by/ x y . bx/ x x. These equa-
tions are consistent with the so-called logistic equation,
which is widely used in theoretical ecology (see, for
example, Maynard Smith 1989). Speci� cally, in the case
of a single population with a single allele, the size of the
population is described by a logistic growth curve with an
‘intrinsic rate of growth’ of bx 2 x x and a ‘carrying
capacity’ of (1 2 bx/ x x)om axx

. As Maynard Smith (1989)
notes, in population genetics the logistic equation is
derived in an ad hoc fashion. By contrast, our version fol-
lows from � rst principles.

A shortcoming of existing approaches to evolutionary
biology has been the lack of an explicit link between opti-
mization theory and the formulae describing natural selec-
tion. In the Bayesian approach proposed here, such a link
becomes feasible because the optimization theory
(maximum � tness ideal observers) and the representation
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of evolution (Bayesian natural selection) are cast in exactly
the same terms—the same prior probability, stimulus like-
lihood and growth factor functions. Thus, the Bayesian
approach should make it easier to grasp the relationship
between optimal and actual design.

The aim of this paper has been to present a Bayesian
framework for analysing the evolution of perceptual sys-
tems. Although the framework provides some conceptual
coherence in thinking about perceptual systems, the real
payoff will come if it proves useful in speci� c applications.
Bayesian natural selection is most likely to be valuable in
applications where measurements are available for many
of the factors in the fundamental equations, or where there
is a reasonable prospect of measuring many of the factors.
For example, it may be possible to test hypotheses about
the evolution (or coevolution) of colour vision in some
species by incorporating actual measurements of relevant
surface characteristics, surface pigment alleles, photore-
ceptor response characteristics, photopigment alleles,
nominal birth and death rates, and the consequences of
detection on these nominal rates. As reviewed by Regan
et al. (2001), colour vision is an area where many of these
measurements are being made in a rigorous fashion, and
hence it may be an area where simulations based on
Bayesian natural selection could usefully be applied in the
near future. Other areas of potential application in the
near future might involve perceptual systems in certain
lower organisms that have a preponderance of � xed adap-
tations, well-characterized genetics and physiology, and
measurable or controllable environments (e.g. Drosophila,
zebra � sh, Aplysia, and various bacteria).

It is important to note that focusing on � xed adap-
tations in lower organisms does not preclude the study of
sophisticated perceptual mechanisms. For example,
Gestalt perceptual grouping rules may well involve facul-
tative adaptations in humans and other primates, but they
are so important for object identi� cation that similar rules
must have evolved as � xed adaptations in lower organ-
isms. Thus, it seems likely that the co-occurrence statistics
of contour elements in natural images (like those in � gure
3b) have led to the evolution of � xed contour grouping
rules in the visual systems of many lower organisms.

Finally, we note that the Bayesian approach as outlined
here is quite � exible. In the simulation examples, we left
out many of the complexities that would be required in
particular applications: the stimulus likelihood distri-
butions, realistic anatomical and physiological constraints,
realistic probability distributions for possible mutations
and for sexual inheritance of alleles, and so on. However,
the framework allows direct incorporation of these com-
plexities once estimates of the relevant information are
available. Also, the Bayesian approach is not restricted to
perceptual systems. It applies to any biological system that
can be characterized in terms of an input and an output.
For example, species 2 in our simulations did not possess
a perceptual system but a surface characteristic whose
input (stimulus) was an energy distribution from the
environment and whose output (response) was another
energy distribution emitted back into the environment.
Thus, the stimulus and response in Bayesian natural selec-
tion could represent just about anything from the input
and output of a transcription enzyme, to the input and



Bayesian natural selection W. S. Geisler and R. L. Diehl 445

output of a cell membrane, to the input and output of an
organ, to the input and output of an organism.

We thank John Loehlin, Robert Sekuler, David Buss and
Dennis McFadden for many helpful comments and sugges-
tions. Supported by NIH grants EY02688 and EY11747 to
W.S.G. and by NIH grant DC00427 to R.L.D.

ENDNOTES
1In the case of ties at the highest probability, one can pick arbitrarily from
those tied categories.
2Throughout this paper we adopt the standard convention that capital
letters refer to random quantities, and boldface letters refer to vector
quantities. Throughout this paper, ‘vector’ refers to an ordered list of
properties (generally, integer- or real-valued quantities).
3Bayes theorem follows directly from the de� nition of conditional prob-
ability:

p(ci&S) = p(ci|S)p(S) = p(S|ci)p(ci).

4Marr characterized the notion of a computational theory in the context
of information processing. A computational theory de� nes an information
processing problem, the constraints that apply in solving the problem,
and the formal solution to the problem given the constraints. The solution
is speci� ed abstractly (i.e. independently of a particular algorithm or
implementation).
5In many standard treatments of Bayesian statistical decision theory, the
utility function is referred to as the ‘loss function’, and the expected utility
as the ‘risk’. We have chosen the terminology that is more common in
economics and psychology in order to avoid representing bene� ts as nega-
tive numbers.
6The method of extracting edge elements was different from any tested
by Konishi et al. (2002), but it accurately determined location and orien-
tation of the edge elements.
7The examples in this section are cases in which certain aspects of system
design (e.g. photoreceptor placement) approach optimality. However,
overall performance in a perceptual task will typically fall short of ideal
because of neural noise or inef� ciency in other aspects of the system.
8Equation (2.1) is actually the more general version of the fundamental
equation. Equation (2.2) is appropriate for cases in which the relationship
between environment states and responses is mediated by stimulus vec-
tors.
9If the environment vector includes some internal factors, then the
response likelihood is pa(r|s,vI), where vI is a vector representing the
internal factors.
10Here we do not make any assumptions about the surface characteristics
of the background other than to assume that the � xed receptor a is well
matched to the average background stimulus.
11This includes game theoretic models of evolution. Some applications of
game theory can be regarded as an optimization theory because they
describe the rational (optimal) strategy given the rules of a particular
game. However, most applications in evolutionary biology include the
hill-climbing constraints of natural selection.

APPENDIX A

(a) Constrained maximum � tness ideal observers
To be useful, maximum � tness ideal observers must

often incorporate some biological constraints. For
example, to be of value in interpreting the present simula-
tions, the ideal observer was constrained to include only
two classes of receptor. Here, we brie� y describe the for-
mal structure of constrained maximum � tness ideal
observers.

Constraints can be represented by a function g that
maps the stimulus S into an intermediate signal Z. This
intermediate signal could represent the output of any sub-
system of the organism. Further, the properties of the sub-
system that are allowed to vary in optimizing � tness can
be represented by a parameter vector u . Thus, we have

Z = g u (S).

Phil. Trans. R. Soc. Lond. B (2002)

Given these subsystem constraints, the average growth
factor across all states of the environment is

g u (r|Z) = O
v

g (r,v)pu (Z|v)p(v),

where the signal likelihood, pu (Z|v), is calculated from
the subsystem function, gu (S), and the stimulus likeli-
hood, p(S|v). This equation is the same as equation (1.4)
in the text, except that the stimulus S is replaced by the
intermediate signal Z and the likelihood depends on u.

Now, the optimum response for particular values of Z
and u is the one that maximizes the average growth factor
across all states of the environment:

rop t(Z,u) = arg max[ g u (r|Z)],

where arg max is an operator that yields the argument cor-
responding to the maximum value of a function. For any
particular value of the parameter vector, the average
growth factor of the ideal observer across all states of the
environment and all stimuli is

g (u) = O
v

p(v)O
z

g (ro p t(z,u),v)p u (z|v),

or equivalently,

g (u) = O
z

max
r

[O
v

g (r,v)pu (z|v)p(v)].

The optimum value of the parameter vector is the one that
maximizes this average growth factor:

uop t = arg max[ g (u)].

We see then that the constrained maximum � tness ideal
observer will pick the response that satis� es the equation

rop t(Z) = arg max[ g uopt
(r|Z)].

In other words, natural selection will have achieved the
optimal solution (given the assumed subsystem
constraints) if it converges simultaneously on the optimal
parameter vector for the subsystem and on the optimal
processing of the intermediate signals.

(b) Evaluation of fundamental equations
Here we describe in more detail how the fundamental

equations were evaluated in the simulations. We describe
only the calculations for the case of coevolution, but the
others are very similar.

First, consider the calculations for species 1. The funda-
mental equation for a particular allele vector of species 1
is as follows:

Ōaj1
(t + 1) = Oaj1

(t) O
v 11,v 21

p(v 1 1,v 2 1;t) ´

O
r11

g (r1 1,v 1 1, v 2 1)O
s1

paj1
(r1 1|s1)p(s1| v 1 1).

To evaluate the summation over the possible stimuli,
recall that, by de� nition,

paj1
(r1 1|v 1 1) = O

s1

paj1
(r1 1|s1)p(s1| v 1 1).

There are just two possible responses that species 1 can
make, approach (r1 1 = 1) or avoid (r1 1 = 0). Also, the poss-
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ible states of the environment relevant to the summation
over possible stimuli are: no individual of species 2 is
within detection range ( v 1 1 = 0), or an individual of spec-
ies 2 with allele vector i is within detection range
( v 1 1 = i). As described in the text (see � gure 9), the sum-
mation across the possible stimuli reduces to an integral
of a probability distribution for the maximum response
(zm ax) from the receptor clusters in the sensory system.
Thus, the probabilities of correct rejection, false alarm,
miss and hit are, respectively,

paj1
(r1 1 = 0|v 11 = 0) = ga1j1

(ca2j1
) = E

ca2j1

2 `

fa1j1
(zm ax)dzm ax,

paj1
(r1 1 = 1|v 11 = 0) = 1 2 ga1j1

(ca2j1
),

paj1
(r1 1 = 0|v 11 = i) = ga1j1,a1i2

(ca2j1
) = E

ca2j1

2 `

fa1j1,a1i2
(zm ax)dzm ax,

paj1
(r1 1 = 1|v 11 = i) = 1 2 ga1j1,a1i2

(ca2j1
).

Because we assumed that the probability distributions
are normal, each of these integrals could be evaluated
using the standard cumulative normal integral function.

To compute the sum over the possible responses, note
that the average growth factor for each possible state of
the environment is

g aj1
( v 1 1,v 2 1) = O

r11

g (r1 1, v 1 1,v 2 1)paj1
(r1 1| v 1 1).

Using the de� nitions of the birth and death rate para-
meters for species 1, we have

g aj1
( v 1 1 = 0, v 2 1 = 0) = 1 2 x 1 crga1j1

(ca2j1
) 2

x 1 fa[1 2 ga1j1
(ca2j1

)],

g aj1
( v 1 1 = i,v 21 = 0) = 1 2 x 1m ga1j1,a1i2

(ca2j1
) 2

x 1 h[1 2 ga1j1,a1i2
(ca2j1

)],

g aj1
( v 1 1 = 0, v 2 1 = 1) = 1 2 x 1 crga1j1

(ca2j1
) 2

x 1 fa[1 2 ga1j1
(ca2j1

)],

g aj1
( v 1 1 = i,v 21 = 1) = 1 2 x 1m ga1j1,a1i2

(ca2j1
) +

[b1 h 2 x 1h][1 2 ga1j1,a1i2
(ca2j1

)].

Finally, to compute the sum over the possible states of
the environment, we note that the average growth factor is

g aj1
= O

v 11,v 21

p(v 11, v 2 1;t)g aj1
(v 1 1, v 2 1).

From our assumptions about the prior probabilities,

p(v 1 1 = i, v 2 1 = 0;t) = prang e2

Oa1i2
(t)

om ax2

O1(t)
om ax1

,

p(v 1 1 = i, v 2 1 = 1;t) = prang e2

Oa1i2
(t)

om ax2

F1 2
O1(t)
om ax1

G ,

p(v 1 1 = 0, v 2 1 = 0;t) =
O1(t)
om ax1

F1 2 O
n2

i = 1

pr an ge2

Oa1i2
(t)

om ax2

G ,

p(v 1 1 = 0, v 2 1 = 1;t) = F1 2
O1(t)
om ax1

G F1 2 O
n2

i = 1

pran ge2

Oa1i2
(t)

om ax2

G .
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Next, consider the calculations for species 2. Because
all relevant aspects of the responses of species 2 are rep-
resented in the behaviour of species 1, we can begin with
the calculation of the average growth factor of species 2
for each possible state of the environment. If species 1 is
not within range for detecting species 2 (v 1 2 = 0), then the
average growth factors for species 2 are the nominal val-
ues:

g a1i2
(v 1 2 = 0, v 2 2 = 0) = 1 2 x 2,

g a1i2
(v 1 2 = 0, v 2 2 = 1) = 1 2 x 2 + b2.

If species 1 is within range, then the growth factors are
scaled by the probability that species 1 does not approach:

g a12
( v 1 2 = j, v 2 2 = 0) = (1 2 x 2)ga1j1,a1i2

(ca2j1
),

g a12
( v 1 2 = j, v 2 2 = 1) = (1 2 x 2 + b2)ga1j1,a1i2

(ca2j1
).

In other words, we assume that if species 1 approaches,
then the growth factors are zero; otherwise, they are the
nominal values.

To compute the sum over the possible states of the
environment, we note that the average growth factor is

g a1i2
= O

v 12,v 22

p(v 1 2,v 2 2;t)g a1i2
( v 1 2, v 2 2).

From our assumptions about the prior probabilities,

p(v 1 2 = j, v 2 2 = 0;t) = prang e1

Oa1j1
(t)

om ax1

O2(t)
om ax2

,

p(v 1 2 = j, v 2 2 = 1;t) = prang e1

Oa1j1
(t)

om ax1

F1 2
O2(t)
om ax2

G ,

p(v 1 2 = 0, v 2 2 = 0;t) =
O2(t)
om ax2

F1 2 O
n1

i = 1

prang e1

Oa1j1
(t)

om ax1

G ,

p(v 1 2 = 0, v 2 2 = 1;t) = F1 2
O2(t)
om ax2

G F1 2 O
n1

i = 1

prang e1

Oa1j1
(t)

om ax1

G .
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