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Abstract

We propose a new statistical method for constructing a
genetic network from microarray gene expression data by
using a Bayesian network. An essential point of Bayesian
network construction is in the estimation of the conditional
distribution of each random variable. We consider fitting
nonparametric regression models with heterogeneous error
variances to the microarray gene expression data to cap-
ture the nonlinear structures between genes. A problem still
remains to be solved in selecting an optimal graph, which
gives the best representation of the system among genes.
We theoretically derive a new graph selection criterion from
Bayes approach in general situations. The proposed method
includes previous methods based on Bayesian networks.
We demonstrate the effectiveness of the proposed method
through the analysis of Saccharomyces cerevisiae gene ex-
pression data newly obtained by disrupting 100 genes.

1. Introduction

Due to the development of the microarray technology,
constructing genetic network receives a large amount of at-
tention in the fields of molecular biology and bioinformatics
[3, 4, 5, 14, 15, 17, 22, 28]. However, the dimensionality
and complexity of the data disturb the progress of the mi-
croarray gene expression data analysis. That is to say, the
information that we want is buried in a huge amount of the
data with noise. In this paper, we propose a new statistical
method for constructing a genetic network that can capture

even the nonlinear relationships between genes clearer.
A Bayesian network [7, 23] is an effective method in

modeling phenomena through the joint distribution of a
large number of random variables. In recent years, some
interesting works have been established in constructing ge-
netic networks from microarray gene expression data by us-
ing Bayesian networks. Friedman and Goldszmidt [12, 13,
14] discretized the expression values and assumed multino-
mial distributions as the candidate statistical models. Pe’er
et al. [28] investigated the threshold value for discretizing.
On the other hand, Friedmanet al. [15] pointed out that the
discretizing probably loses information of the data. In fact,
the number of discretizing values and the thresholds are un-
known parameters, which have to be estimated from the
data. The resulted network strongly depends on their values.
Then Friedmanet al. [15] considered fitting linear regres-
sion models, which analyze the data in the continuous (see
also [20]). However, the assumption that the parent genes
depend linearly on the objective gene is not always guaran-
teed. Imotoet al. [22] proposed the use of nonparametric
additive regression models (see also [16, 18]) for capturing
not only linear dependencies but also nonlinear structures
between genes. In this paper, we propose a method for con-
structing the genetic network by using Bayesian networks
and the nonparametric heteroscedastic regression, which is
more resistant to the effect of outliers.

Once we set the graph, we have to evaluate its good-
ness or closeness to the true graph, which is completely un-
known. Hence, the construction of a suitable criterion be-
comes the center of attention of statistical genetic network
modeling. Friedman and Goldszmidt [14] used the BDe
criterion, which was originally derived by [21] for choos-
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ing a graph. The BDe criterion only evaluates the Bayesian
network based on the multinomial distribution model and
Dirichlet priors. However, Friedman and Goldszmidt [14]
kept the unknown hyper parameters in Dirichlet priors and
we only set up the values experimentally. We investigate
the graph selection problem as a statistical model selection
or evaluation problem and theoretically derive a new cri-
terion for choosing a graph using the Bayes approach (see
[6]). The proposed criterion automatically optimizes all pa-
rameters in the model and gives the optimal graph. In addi-
tion, our proposed method includes the previous methods
for constructing genetic network based on Bayesian net-
work. To show the effectiveness of the proposed method,
we analyze gene expression data ofSaccharomyces cere-
visiaenewly obtained by disrupting 100 genes.

2. Bayesian Network and Nonparametric Het-
eroscedastic Regression Model

2.1. Nonlinear Bayesian network model

Suppose that we haven sets of array data{x1, ..., xn}
of p genes, wherexi = (xi1, ..., xip)T andxT denotes the
transpose ofx. In the Bayesian network framework, we
consider a directed acyclic graphG and Markov assumption
between nodes. The joint density function is then decom-
posed into the conditional density of each variable, that is,

f(xi1, . . . , xip) =
p∏

j=1

fj(xij |pij), (1)

wherepij = (p(j)
i1 , ..., p

(j)
iqj

)T areqj-dimensional parent ob-
servation vectors ofxij in the graphG. When gene2 and
gene3 are parent genes of gene1, we seepi1 = (xi2, xi3)T ,
(i = 1, ..., n). Through formula (1), the focus of interest
in statistical modeling by Bayesian networks is how we can
construct the conditional densities,fj . We assume that the
conditional densities,fj , are parameterized by the parame-
ter vectorsθj , and the information is extracted from these
probabilistic models.

Imoto et al. [22] proposed the use of nonparametric re-
gression strategy for capturing the nonlinear relationships
betweenxij and pij and suggested that there are many
nonlinear relationships between genes and the linear model
hardly achieves a sufficient result. In many cases, this
method can capture the objective relationships very well.
When the data, however, contain outliers especially near the
boundary of the domain{pij}, nonparametric regression
models sometimes lead to unsuitable smoothed estimates,
i.e., the estimated curve exhibits some spurious waviness
due to the effects of the outliers. Since what is estimated

is the system of a living nature, a too complicated relation-
ship is unsuitable. In fact, this inappropriate case unfor-
tunately sometimes occurs in the analysis of real data. To
avoid this problem, we consider fitting a nonparametric re-
gression model with heterogeneous error variances

xij = mj1(p
(j)
i1 ) + · · ·+ mjqj

(p(j)
iqj

) + εij , (2)

whereεij depends independently and normally on mean
0 and varianceσ2

ij andmjk(·) is a smooth function from
R to R. Here R denotes a set of real numbers. This
model includes Imotoet al. [22]’s model and, clearly,
the linear regression model as special cases. In general,
each smooth functionmjk(·) is characterized by then val-

uesmjk(p(j)
1k ), ...,mjk(p(j)

nk ) and the system (2) contains
(n×qj +n) parameters. Then the number of the parameters
in the model is much larger than the number of observations
and it has a tendency toward unstable parameter estimates.
In this paper, we construct the smooth functionmjk(·) by
the basis functions approach

mjk(p(j)
ik ) =

Mjk∑
m=1

γ
(j)
mkb

(j)
mk(p(j)

ik ), k = 1, . . . , qj ,

whereγ
(j)
1k , ..., γ

(j)
Mjkk are unknown coefficient parameters

and b
(j)
1k (·), ..., b(j)

Mjkk(·) are basis functions. From this

representation, then parametersmjk(p(j)
1k ), ..., mjk(p(j)

nk )
are reparameterized by theMjk coefficient parameters

γ
(j)
1k , ..., γ

(j)
Mjkk.

We strongly recommend the use of nonparametric re-
gression instead of linear regression, because linear regres-
sion cannot decide the direction of the Bayes causality or
leads to the wrong direction in many cases. We show the
advantage of the proposed model compared with linear re-
gression through a simple example. Suppose that we have
data of gene1 and gene2 in Figure 1 (a). We consider the
two models gene1 → gene2 and gene2 → gene1, and obtain
the smoothed estimates shown in Figure 1 (b) and (c), re-
spectively. We decide that the model (b: gene1 → gene2)
is better that (c: gene2 → gene1) by the proposed criterion,
which is derived in a later section (the scores of the models
are (b) 120.6 (c) 134.8). Since we generated this data from
the true graph gene1 → gene2, our method yields the cor-
rect result. However, if we fit the linear regression model to
this data, the model (c) is chosen (the scores are (b) 156.0
(c) 135.8). The method, which is based on linear regression,
yields an incorrect result in this case.

Consider the case that the relationship is almost linear.
Our method and linear regression can fit the data appropri-
ately. However, it is clearly difficult to decide the direction
of Bayes causality. In such a case, the direction is not strict.

220



-2 -1 2

-1
3

gene1

ge
ne

2

0 1

0
1

2

(a)

-2 -1 2
-1

3
gene1

ge
ne

2
0 1

0
1

2

(b)

-2
-1

2

-1 3

ge
ne

1

gene2

0
1

0 1 2

(c)

Figure 1. Simulated data: The true causality is gene 1 → gene2. (a) Scatter plot of the simulated data.
(b) Smoothed curve of the graph gene 1 → gene2. (c) Smoothed curve of the graph gene 2 → gene1.
These curves are obtained by the proposed method.

In the error variances,σ2
ij , we assume the structures,

σ2
ij = w−1

ij σ2
j , i = 1, ..., n; j = 1, ..., p, (3)

wherew1j , ..., wnj are constants andσ2
j is an unknown pa-

rameter. By setting up the constantsw1j , ..., wnj in re-
flecting the feature of the error variances, we can represent
the heteroscedasticity of the data. Combining (2) and (3),
we obtain a nonparametric regression model with heteroge-
neous error variances

fj(xij |pij ; γj , σ
2
j ) =

(
wij

2πσ2
j

)1/2

exp

[
−wij

2σ2
j

{xij

−
qj∑

k=1

γT
jkbjk(p(j)

ik )}2
]

, (4)

where γjk and bjk(p(j)
ik ) are Mjk-dimensional vectors

given by, respectively,γjk = (γ(j)
1k , ..., γ

(j)
Mjkk)T and

bjk(p(j)
ik ) = (b(j)

1k (p(j)
ik ), ..., b(j)

Mjkk(p(j)
ik ))T . If the j-th gene

has no parent genes in the graph, we specify the model
based on the normal distribution with meanµj and vari-
anceσ2

j . Hence, we define the nonlinear Bayesian network
model

f(xi;θG) =
p∏

j=1

fj(xij |pij ; θj), (5)

whereθG = (θT
1 , ..., θT

p )T is the parameter vector included
in the graphG andθj is the parameter vector in the con-
ditional densityfj , that is, we seeθj = (γT

j , σ2
j )T or

θj = (µj , σ
2
j )T .

2.2. Criterion for choosing graph

Once we set a graph, the statistical model (5) based on
the Bayesian network and nonparametric regression can be
constructed and be estimated by a suitable procedure. How-
ever, the problem that still remains to be solved is how we
can choose the optimal graph, which gives a best approx-
imation of the system underlying the data. Notice that we
cannot use the likelihood function as a model selection cri-
terion, because the value of likelihood becomes large in a
more complicated model. Hence, we need to consider the
statistical approach based on the generalized or predictive
error, Kullback-Leibler information, Bayes approach and so
on (see e.g., [1, 24, 25] for the statistical model selection
problem). In this section, we construct a criterion for evalu-
ating a graph based on our model (5) from Bayes approach.

The posterior probability of the graph is obtained by the
product of the prior probability of the graph,πG, and the
marginal probability of the data. By removing the standard-
izing constant, the posterior probability of the graph is pro-
portional to

π(G|Xn) = πG

∫ n∏

i=1

f(xi; θG)π(θG|λ)dθG, (6)

whereXn = (x1, ..., xn)T is ann× p gene profile matrix,
π(θG|λ) is the prior distribution on the parameterθG sat-
isfying log π(θG|λ) = O(n) andλ is the hyper parameter
vector. Under Bayes approach, we can choose the optimal
graph such thatπ(G|Xn) is maximum. A crucial problem
for constructing a criterion based on the posterior probabil-
ity of the graph is the computation of the high dimensional
integration (6). Heckerman and Geiger [20] used the conju-
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gate priors for solving the integral and gave a closed-form
solution. To compute this high dimensional integration, we
use Laplace’s approximation [9, 19, 31] for integrals

∫ n∏

i=1

f(xi; θG)π(θG|λ)dθG

=
(2π/n)r/2

|Jλ(θ̂G)|1/2
exp{nlλ(θ̂G|Xn)}{1 + Op(n−1)},

where r is the dimension of θG, lλ(θG|Xn) =∑n
i=1 log f(xi;θG)/n + log π(θG| λ)/n, Jλ(θG) =

−∂2{lλ(θG|Xn)}/∂θG∂θT
G and θ̂G is the mode of

lλ(θG|Xn). Then we define the Bayesian network and
nonparametric heteroscedastic regression criterion, named
BNRChetero , for selecting a graph

BNRChetero(G)

= −2 log

{
πG

∫ n∏

i=1

f(xi;θG)π(θG|λ)dθG

}

≈ −2 log πG − r log(2π/n) + log |Jλ(θ̂G)|
−2nlλ(θ̂G|Xn). (7)

The optimal graph is chosen such that the criterion
BNRChetero (7) is minimal. The merit of the use of the
Laplace method is that it is not necessary to consider the
use of the conjugate prior distribution. Hence the modeling
in the larger classes of distributions of the model and prior
is attained.

Suppose that the parameter vectorsθj are independent
one another, the prior distribution can be decomposed into
π(θG|λ) =

∏p
j=1 πj(θj |λj). Therefore,log |Jλ(θG|Xn)|

andnlλ(θG|Xn) in (7) result in, respectively,

log |Jλ(θG|Xn)| =
p∑

j=1

log

∣∣∣∣∣−
∂2lλj (θj |Xn)

∂θj∂θT
j

∣∣∣∣∣ ,

lλ(θG|Xn) =
p∑

j=1

lλj (θj |Xn),

where lλj (θj |Xn) = log fj(xij |pij ; θj)/n +
log πj(θj |λj)/n. Here λj is the hyper parameter
vector. Hence by defining

BNRC(j)
hetero

= −2 log

{∫
πLj

n∏

i=1

fj(xij |pij ; θj)πj(θj |λj)dθj

}
,

where πLj are prior probabilities satisfying∑p
j=1 log πLj = log πG, the BNRChetero score is

given by the sum of the local scores

BNRChetero =
p∑

j=1

BNRC(j)
hetero. (8)
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Figure 2. The fitted curve to simulated
data: The thin curves are B-splines that are
weighted by coefficients and the thick curve
is the smoothed estimate that is otained by
the linear combination of weighted B-splines.

The smoothed estimates based on nonparametric het-
eroscedastic regression are obtained by replacing the pa-
rametersγj by γ̂j . Noticed that we derive the criterion,
BNRChetero, under the assumptionlog π(θG|λ) = O(n).
If we use the prior density satisfyinglog π(θG|λ) = O(1),
the BNRChetero score results in Schwarz’s criterion known
as BIC or SIC [30]. In such case, the modeθ̂G is equivalent
to the maximum likelihood estimate.

3. Estimating Genetic Network

3.1. Nonparametric regression

In this section we present the method for constructing
genetic network in practice based on the proposed method
described above. First we would like to mention the non-
parametric regression model. In the additive model, we con-
struct each smooth functionmjk(·) by B-splines [10, 22].
Figure 2 is an example ofB-splines smoothed curve. The
thin curves areB-splines that are weighted by coefficients
and thick line is a smoothed curve that is obtained by the
linear combination of weightedB-splines.

In the error variances, we consider the heteroscedastic
regression model and assume the structure (3). Choosing
constantsw1j , ..., wnj is an important problem for captur-
ing the heteroscedasticity of the data. In this paper, we set
the weights

wij = g(pij ; ρj) = exp{−ρj ||pij − p̄j ||2/2s2
j}, (9)

where ρj is a hyper parameter,̄pj =
∑n

i=1 pij/n and
s2

j =
∑n

i=1 ||pij− p̄j ||2/nqj . If we setρj = 0, the weights
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arew1j = · · · = wnj = 1 and the model has homoge-
neous error variances. If we use a large value ofρj , the
error variances of the data, which exist near the boundary
on the domain of the parent variables, are large. Hence, if
there are outliers near the boundary, we can reduce their ef-
fect and gain the suitable smoothed estimates by using the
appropriate value ofρj .

3.2. Priors

Suppose that the prior distributionπj(θj |λj) is factor-
ized asπj(θj |λj) =

∏qj

k=1 πjk(γjk|λjk), whereλjk are
hyper parameters. We use a singularMjk variate normal
distribution as the prior distribution onγjk,

πjk(γjk|λjk) =
(

2π

nλjk

)−(Mjk−2)/2

|Kjk|1/2
+

× exp
(
−nλjk

2
γT

jkKjkγjk

)
, (10)

whereKjk is anMjk × Mjk symmetric positive semidef-

inite matrix satisfying γT
jkKjkγjk =

∑Mjk

α=3(γ
(j)
αk −

2γ
(j)
α−1,k + γ

(j)
α−2,k)2.

Next we consider the prior probability of the graphπG.
Friedman and Goldszmit [14] employed the prior based
on the MDL encoding of the graph. In our context, the
marginal probability of the data is equivalent to the type
II likelihood adjusted by the hyper parameters. Thus we set
the prior probability of the graph,πG,

πG = exp{−(No. of hyper parameters)}

=
p∏

j=1

exp{−(qj + 1)} =
p∏

j=1

πLj .

The justification of this prior is based on Akaike’s Bayesian
information criterion, known as ABIC [2], and Akaike’s in-
formation criterion, AIC [1].

3.3. Criterion

We derived the criterion, BNRChetero, for choosing the
graph in a general framework. By using the equation (8), the
BNRChetero score of the graph can be obtained by the sum
of the local scores, BNRC(j)hetero. The result is summarized
in the following theorem.
Theorem 1.Let f(xi; θG) be a Bayesian network and non-
parametric heteroscedastic regression model given by (5),
and letπ(γjk|λjk) be the prior densities on the parameters
γjk defined by (10). Then a criterion for evaluating graph

is given byBNRChetero =
∑p

j=1 BNRC(j)
hetero, where

BNRC(j)
hetero = 2(qj + 1)− (

qj∑

k=1

Mjk + 1) log(2π/n)

−
n∑

i=1

log wij + n log(2πσ̂2
j ) + n

+
qj∑

k=1

{log |Λjk| −Mjk log(nσ̂2
j )} − log(2σ̂2

j )

+
qj∑

k=1

{(Mjk − 2) log
(
2πσ̂2

j /nβjk

)− log |Kjk|+

+nβjkγ̂T
jkKjkγ̂jk/σ̂2

j },

with

Λjk = BT
jkWjBjk + nβjkKjk; (Mjk ×Mjk),

Bjk = (b(j)
1k (p(j)

1k ), ..., b(j)
Mjkk(p(j)

nk ))T ; (n×Mjk),

Wj = diag(w1j , ..., wnj); (n× n)

σ̂2
j =

n∑

i=1

wij{xij −
qj∑

k=1

γ̂T
jkbjk(p(j)

ik )}2/n.

Here we approximate the Hessian matrix by

log

∣∣∣∣∣−
∂2lλj (θj |Xn)

∂θj∂θT
j

∣∣∣∣∣ ≈
qj∑

k=1

log

∣∣∣∣∣−
∂2lλj (θj |Xn)

∂γjk∂γT
jk

∣∣∣∣∣

+ log

∣∣∣∣∣−
∂2lλj (θj |Xn)

∂(σ2
j )2

∣∣∣∣∣ .

2

3.4. Learning network

In the Bayesian network literature, it is shown that de-
termining the optimal network is an NP-hard problem. In
this paper, we use the greedy hill-climbing algorithm for
learnign network as follows:
Step1:Make the score matrix whose(i, j)-th element is the
BNRC(j)

hetero score of the graph genei → genej .
Step2: For each gene, implement one of three procedures
for an edge: “add”, “remove”, “reverse”, which gives the
smallest BNRChetero.
Step3:Repeat Step2 until the BNRChetero does not reduce.

Generally, the greedy hill-climbing algorithm has many
local minima and the result depends on the computational
order of variables. To avoid this problem, we permute the
computational order of genes and make many candidate
learning orders in Step3. Another problem of the learning
network is that the search space of the parent genes is enor-
mously wide, when the number of genes is large. Then we
restrict the set of the candidate parent genes based on the
score matrix, which is given by Step1.
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Imoto et al. [22] used this learning strategy for learn-
ing genetic network and showed the effectiveness of their
method by the Monte Carlo simulation method. We also
check the efficiencies of our new model through the same
Monte Carlo simulations and find improvements due to the
nonparametric heteroscedastic regression model, which is
newly introduced. We show the effectiveness of the het-
eroscedastic regression model in the next subsection.

3.5. Hyper parameters

Consider the nonparametric regression model defined in
(4). The estimatêθj is a mode oflλj (θj |Xn) and depends
on the hyper parameters. In fact, the hyper parameter plays
an essential role for estimating the smoothed curve.

In our model, we construct the nonparametric regres-
sion model by 20B-splines. We confirmed that the differ-
ences of the smoothed estimates against the various num-
ber of the basis functions cannot be found visually. Be-
cause when we use a somewhat large number of the basis
functions, the hyper parameters control the smoothness of
the fitted curves. Figure 3 (a1) shows the scatter plot of
YGL237C and YEL071W with smoothed estimates for 3
different values of the hyper parameters. The details of the
data are shown in later section. Clearly, the smoothed esti-
mate strongly depends on the values of the hyper parame-
ters. Figure 3 (a2) is the behavior of the BNRChetero crite-
rion of the two genes in Figure 3 (a1). We can choose the
optimal value of the hyper parameter as the minimizer of
the BNRChetero and the optimal smoothed estimate (solid
curve in Figure 3 (a1)) can capture the structure between
these genes well. The dashed and dotted curves are near the
maximum likelihood estimate and the parametric linear fit,
respectively.

The effect of the weight constantsw1j , ..., wnj is shown
in Figure 3 (b1) and (c1). If we use the nonparametric ho-
moscedastic regression model [22], we obtain the dashed
curve, which exhibits some spurious waviness due to the
effect of the data in the upper-left corner (b1). By adjusting
the hyper parameterρj in (9), the estimated curve results
in the solid curve. The optimal value ofρj is also chosen
by minimizing the BNRChetero criterion (see Figure 3 (b2)
and (c2)). Of course, when the smoothed estimate is prop-
erly obtained, the optimal value ofρj tends to zero.

Finally, we show the algorithm for estimating the
smoothed curve and optimizing the hyper parameters.
Step1: Fix the hyper parameterρj .
Step2: Initialize: γjk = 0, k = 1, ..., qj .
Step3: Find the optimalβjk by repeating Step3-1 and
Step3-2
Step3-1:Compute:

γjk = (BT
jkWjkBjk + nβjkKjk)−1BT

jkWjk

×(x(j) −
∑

k′ 6=k

Bjk′γjk′),

for fixedβjk.
Step3-2: Evaluate: Repeat Step3-1 against the candidate
value ofβjk, and choose the optimal value ofβjk, which

minimizes the BNRC(j)hetero.
Step4: Convergence: Repeat Step3 fork =
1, ..., qj , 1, ..., qj , 1, ... until a suitable convergence
criterion is satisfied.
Step5: Repeat Step1 to Step4 against the candidate value
of ρj , and choose the optimal value ofρj , which minimizes

the BNRC(j)
hetero.

4. Real Data Analysis

In this section we show the effectiveness of our proposed
method through the analysis ofSaccharomyces cerevisiae
gene expression data, which is newly obtained by disrupting
100 genes. Our research group has installed a systematic ex-
perimental method, which observes changes in the expres-
sion levels of genes on a microarray by gene disruption. By
using this method, we have launched a project whose pur-
pose is to reveal the gene regulatory networks between the
5871 genes ofSaccharomyces cerevisiae. Many laborato-
ries have also reported similar projects. We have already
collected a large number of expression profiles from gene
disruption experiments to evaluate genetic regulatory net-
works. Over 400 mutants are stocked and gene expression
profiles are accumulating.

We monitored the transcriptional level of 5871 genes
spotted on a microarray by a scanner. The expression pro-
files of over 400 disruptants were stored in our database.
The standard deviation (SD) of the levels of all genes on
a microarray was evaluated. The value of SD represents
roughly the experimental error. In our data, we estimated
the value of 0.5 as the critical point of the accuracy of ex-
periments. We have evaluated the accuracy of those profiles
on the base of the standard deviation of the expression ratio
of all genes. 107 disruptants including 68 mutants where the
transcription factors were disrupted could be selected from
400 profiles.

We used 100 microarrays and constructed a genetic net-
work of 521 genes from the above data. The 94 transcription
factors whose regulating genes have been clearly identified
were found. The profiles of the 521 genes in control by
those 94 factors were selected from 5871 profiles.

Bas1p and Bas2p also activate expression of three genes
in the histidine biosynthesis pathway. In a gcn4 gack-
ground, mutations that abolish theBAS1or BAS2function
lead to a histidine auxotrophy. Previous investigation indi-
cated that Bas1p and Bas2p are DNA binding proteins re-
quired for transcription ofHIS4 and theseADE genes like
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Figure 3. The smoothed estimates by the various values of the hyper parameters. (a1): The effect
of hyperparameter βjk in the prior distribution of the coefficients of B-splines. This parameter can
control the smoothness of the fited curve. (b1) and (c1): The effect of hyperparamter ρj in the
parameter of the error variances. This parameter can capture the heteroscedastisity of the data and
can reduce the effects of outliers.

GCN4[8, 11, 29]. In this paper, we made clear that both ge-
netic relation. Figure 4 indicates that thoseADE genes and
histidine biosynethesis genes are related withBAS1more
directly thanGCN4. The ribose component of purine ri-
bonucleotides is derived from ribose 5-P, an inter mediate
of the pentose phosphate cycle. The atoms of the base moi-
ety are contributed by many compounds. They are added
step wise to the preformed ribose. There exist striking in-
terrelationships with the pathway for histidine synthesis.

Studies on the regulation of the purine biosiynthesis
pathway inSaccharomyces cerevisiaerevealed that all the
genes encoding enzymes required for AMP de novo biosyn-
thesis are repressed at transcriptional level by the presence
of extracellular purines.ADEgenes are transcriptionally ac-
tivated as well as some histidine biosynthesis genes. Espe-
cially the fact that expression ofHIS4 is related withADE
genes were known. In our regulated network,HIS4 were
related with someADE genes closely, and someHIS genes
are related withADE genes likeHIS4. The biosynthesis of

the essential amino acid histidine shows inSaccharomyces
cerevisiaeshows close connection to purine metabolism,
and our result satisfied this fact.

5. Conclusion

In this paper we proposed a new statistical method for
estimating a genetic network from microarray gene expres-
sion data by using a Bayesian network and nonparametric
regression. The key idea of our method is the use of non-
parametric heteroscedastic regression models for capturing
nonlinear relationships between genes and heteroscedastic-
ity of the expression data. If we have a network that repre-
sents the causal relationship among genes, we can simulate
the genetic system on the computer, e.g., Genomic Object
Net [26, 27]. In this stage, it is required that the relation-
ships between genes are suitably estimated. In this sense,
the proposed heteroscedastic model can give an essential
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Figure 4. The resulting partial network of the analysis of 521 Saccharomyces cerevisiaegenes.
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improvement, because the previous models sometimes lead
to unsuitable estimates of the systems. We consider the sim-
ulation of biological system as a future work.

An essential problem for network construction is the
evaluation of the graph. We investigated this problem as
a statistical model selection or evaluation problem and de-
rived the new criterion for selecting graph from Bayes
approach. Our method covers the previous methods for
constructing genetic networks by using Bayesian networks
and improves them in the theoretical and methodological
senses. The proposed method successfully extracts the ef-
fective information and we can find these information in
the resulting genetic network visually. We use the simple
greedy algorithm for learning network. However, this algo-
rithm needs much time for determining the optimal graph.
Hence, the development of a better algorithm is one of the
important problems and we would like to discuss it in a fu-
ture paper.

We showed the effectiveness of our method through the
analysis ofSaccharomyces cerevisiaegene expression data
and evaluated the resulting network by comparing with bio-
logical knowledge. We construct the genetic network with-
out using biological information. Nevertheless, the result-
ing network includes many important connections, which
agree with the biological knowledge. Hence, we expect that
our method can demonstrate its power in the analysis of a
completely unknown system, like the human genome.
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