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Abstract

Subjectivity detection is a task of natural language processing that aims to re-

move ‘factual’ or ‘neutral’ content, i.e., objective text that does not contain any

opinion, from online product reviews. Such a pre-processing step is crucial to in-

crease the accuracy of sentiment analysis systems, as these are usually optimized

for the binary classification task of distinguishing between positive and negative

content. In this paper, we extend the extreme learning machine (ELM) paradigm

to a novel framework that exploits the features of both Bayesian networks and

fuzzy recurrent neural networks to perform subjectivity detection. In particular,

Bayesian networks are used to build a network of connections among the hidden

neurons of the conventional ELM configuration in order to capture dependencies

in high-dimensional data. Next, a fuzzy recurrent neural network inherits the over-

all structure generated by the Bayesian networks to model temporal features in the

predictor. Experimental results confirmed the ability of the proposed framework

to deal with standard subjectivity detection problems and also proved its capacity

to address portability across languages in translation tasks.
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1. Introduction

In recent years, sentiment analysis of social media data on blogs, online com-

munities, Wikis, microblogging platforms, and other online collaborative media

has become increasingly popular [1]. The distillation of knowledge from such a

big amount of unstructured information, however, is an extremely difficult task,

as the contents of today’s Web are perfectly suitable for human consumption, but

remain hardly accessible to machines. Sentiment analysis is a branch of affec-

tive computing research [2] that aims to classify text (but sometimes also audio

and video [3]) into either positive or negative. Sentiment analysis systems can

be broadly categorized into knowledge-based and statistics-based. While most

works approach it as a simple categorization problem, sentiment analysis is ac-

tually a ‘suitcase’ research problem that requires tackling many natural language

processing (NLP) sub-tasks, including aspect extraction [4], named entity recog-

nition [5], word polarity disambiguation [6], personality recognition [7], sarcasm

detection [8], and subjectivity detection. In the Big Data landscape, in particular,

subjectivity detection is of utmost importance, because it allows for filtering out

the huge amount of objective text, e.g., neutral sentences that are not useful for

polarity detection. For example, objective sentences are often spam or off-topic

questions such as ‘What is the resolution of the Camera?’. Subjective sentences,

instead, are of wishful nature, which indicates purchasing interest [9]. In this pa-

per, we consider two key applications of subjectivity detection namely: summa-

rizing product reviews on dedicated sites like ‘Rotten-tomatoes’ or ‘Amazon’ [10]
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and summarizing multi-perspective news articles [11, 12].

In the above applications, the sentence model has to be very sensitive as users

have different levels of expertise on the topic of discussion and may be from di-

verse economic and educational backgrounds, as well as being often separated

by large geographical distances. Furthermore, subjectivity detection in product

reviews targets the psychology of an investor by breaking down factual infor-

mation, which may imply positive or negative sentiment that is otherwise un-

detected by coarse-grained methods (as these merely focus on detecting explicit

sentiments [13]). Another application is monitoring response of people to differ-

ent crisis situations. This is done by processing microblogging platforms such as

Twitter and Facebook. Here, some of the main challenges are the use of abbrevi-

ations and hashtags. Tweets may also possess dual meanings due to the potential

contexts of discussion. For example, in political tweets the word ‘grun’ - ‘green’

is used for the political party ‘Die Grunen’ - ‘The Greens’, but it is also used in

reference to the color green [14].

In [15], the authors show that subjective sentences in online forums can be

identified by ‘Dialog Acts’ such as ‘Question’, ‘Repeated Question’, ‘Clarifica-

tion’, etc. They also show that subjective sentences are longer than objective

sentences and often contain inappropriate content such as abusive language. Tra-

ditional sentence models extract significant k-gram features and classify them us-

ing a Naı̈ve Bayes model. For example, cloud computing is a bi-gram of two

words frequently used together. Since the number of such features is exponential,

a convolutional neural networks (CNN) is usually adopted to automatically learn

these from large datasets. We have previously proposed the use of a deep CNN to

extract subjectivity features in Spanish and English and combined features from
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different languages multiple kernel learning [16]. Although very promising for

long texts, this model was unable to compute parameters for short tweets and was

dependent on human annotation, which is often inaccurate for long sentences.

For example, in the sentence “Those digging graves for others, get engraved

themselves’, he [Abdullah] said while citing the example of Afghanistan” there is

clearly an objective frame for the writer and a direct subjective frame for Abdullah

with the text anchor “said”. However, it is ambiguous whether the texts anchor

“citing” is objective or subjective in nature [17]. Lastly, subjectivity in tweets is

a temporal phenomenon, e.g., the support for a candidate during elections will

diffuse through a social network from nearby tweets [18]. To overcame these

challenges, in this paper we propose a new version of extreme learning machine

(ELM), termed Bayesian network based ELM (BNELM), which learns non-linear

relationships between the hidden-layer neurons. For the purpose of subjectivity

detection, we first extract k-gram features using a deep CNN and, hence, train

BNELM with the low-dimensional features learnt by the CNN.

The trained BNELMs are efficient compared to traditional ELMs, as they are

able to prune redundant hidden neurons by learning a prior for weights. BNELMs

also outperform sparse Bayesian ELM (SBELM) [19] because they do not need

to compute the Hessian matrix of second-order derivatives that often does not ex-

ist for noisy datasets. Instead, BNELM employs heuristic Markov chain Monte

Carlo (MCMC) sampling with a Gaussian Bayesian network fitness function to

determine the weights between hidden neurons. Another shortcoming of the tra-

ditional ELM is that it does not generalize to non-linear datasets such as a se-

quence of sentences. Hence, we introduce a recurrent layer of hidden neurons

to model temporal features in long tweets. Lastly, since recurrent neurons may

4



become unstable on noisy data, a fuzzy classifier is used to stabilize the model

and predict the output labels. We evaluate our model on three different datasets:

the first is a question-answering corpus from news articles, the second is about

product reviews, and the third is a multi-class Twitter corpus.

2. Contributions

ELMs are single-hidden-layer, feed-forward neural networks. In general, feed-

forward neural networks provide a powerful paradigm for inductive learning;

however, the learning procedure may require one to tackle a few major issues,

such as convergence speed, setting of free parameters, and overfitting. Several

authors have shown that it is possible to exploit randomization in feed-forward

neural network configuration resulting in a simplified training procedure, while

maintaining a notable generalization performance [20, 21, 22, 23, 24]. This is the

peculiar aspect of ELM: the hidden weights are set randomly and can be tuned

using a regularized least squares (RLS) problem in a linear space [25]. However,

in most applications ELM requires a very large number of hidden neurons, re-

sulting in a huge amount of used memory and slow computational performance.

Furthermore, the trained classifier, in general, is not sparse.

To achieve sparsity, SBELM [19, 26] were proposed. In SBELM, one im-

poses a hierarchical independent prior on each weight, also known as automatic

relevance determination (ARD) prior. In this way, several weights are pruned and

the trained predictor only uses a small number of hidden neurons. The common

approach to learning the prior parameters is to maximize the log likelihood of

the dataset after marginalization of the weights. To tackle the intractable integral

required for marginalization, Laplace approximation is used [26]. This involves
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the computation of Hessian matrix, which requires computation of second order

derivatives. The whole process is sensitive to noisy data and could be affected by

numerical instability. Moreover, the optimization process involved in the maxi-

mization of the likelihood relies on a non-convex function.

In contrast, we propose to augment the conventional SBELM model with

Bayesian networks, which employ heuristics to determine the prior parameters

of weights in the output layer [27, 28]. In practice, the resulting BNELM al-

lows one to replace Laplace approximation with a heuristic process. The rationale

behind such a solution is twofold. First, Laplace approximation of SBELM is of-

ten difficult to compute, as the gradient may not exist on several noisy datasets.

Second, by removing Laplace approximation one discards the corresponding non-

convex optimization problem. The heuristic process in Bayesian networks sam-

ples a Markov chain of weights that always converges to the global maximum at

equilibrium, resulting in a higher accuracy of the predictor.

The proposed framework for subjectivity detection integrates CNNs, ELMs,

and Bayesian networks. Each element in the model has a specific role in the

process of classification. First, a deep CNN automatically learns significant k-

gram features from the training sentences. Then, the BNELM model receives

these features as input. The recurrent layer supports BNELM in embedding tem-

poral dynamics. Since the traditional recurrent layer is often unstable, BNELM

employs a layer of fuzzy recurrent neurons to the specific purpose of achieving

stability. A crucial property of this framework is the ability to learn a dictionary

of features that are portable to new languages and domains. Such a characteristic

becomes important when it is difficult and expensive to generate training data in

new languages.
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The experiments are designed to both verify the effectiveness of BNELM in

capturing dependencies in high-dimensional data and to assess the ability of the

framework to address portability in language translation tasks. Hence, first we

considered the multi-perspective question answering (MPQA) corpus of 504 sen-

tences manually annotated for subjectivity in Spanish [29, 30]. Here, we tried to

develop a subjectivity lexicon for the Spanish language using available resources

in English. Next, in order to evaluate the method on a multi-class problem, we

considered the multimodal opinion utterances dataset (MOUD) [31]. This dataset

contains videos of product reviews from YouTube. On average, each video has

6 utterances and each utterance is 5-second long. Each utterance in a video is

annotated separately. Hence, sentiment can change during the course of a prod-

uct review. The dataset contains 498 utterances labeled as ‘positive’, ‘negative’,

or ‘neutral’. In our experiment, only the text transcript of each spoken utterance

was considered. Lastly, to evaluate the method on a very large noisy dataset, we

consider the four-class TASS corpus, which is a collection of Spanish tweets com-

monly used for the evaluation of social media analysis tasks [32]. The classifica-

tion accuracy obtained using the proposed BNELM was shown to outperform the

baseline by over 20% on all three real datasets. The rest of the paper is organized

as follows: Section 3 provides the preliminary concepts necessary to comprehend

the proposed approach; Section 4 introduces the BNELM model for subjectivity

detection; Section 5 validates the model on real-world benchmark datasets; finally,

Section 6 concludes the paper.
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3. Background

This section briefly reviews the theoretical models that support the proposed

framework. First, a description of Bayesian networks for sentences is provided.

Next, we detail the heuristic approach to find the optimal structure of a Bayesian

network, termed MCMC. Finally, the SBELM is described.

3.1. Gaussian Bayesian Networks

A Bayesian network is a graphical model that represents a joint multivariate

probability distribution for a set of random variables [33]. It is a directed acyclic

graph that has a structure s with N nodes and a set of parameters θ, which repre-

sent the strengths of connections by conditional probabilities. Given a set X of Z

samples {xi;x ∈ RN; i = 1, ..,Z}, the Bayesian network decomposes the likeli-

hood of node expressions into a product of conditional probabilities by assuming

the independence of non-descendant nodes, given their parents.

p(x|s,θ) =
∏N

i=1
p(xi|ai, θi,ai

), (1)

where p(xi|ai, θi,ai
) denotes the conditional probability of node expression xi

given its parent node expressions ai, and θi,ai
denotes the maximum likelihood

(ML) estimate of the conditional probabilities. Fig. 1(a) Bayesian network for a

multivariate system with five nodes. Each node is a variable in the state-space of

the system that can be observed or measured. The connections represent causal

dependencies within a single time instance. The observed state of variable i is

denoted as xi and the regulation or conditional probability of variable i given vari-

able j is p(xi|xj).

An example of a Bayesian network representing inter-dependencies between

the words of the sentence “The escalation must end any time soon” is illustrated
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in Fig. 1(b). Once the structure of the Bayesian network is determine heuristically

using the training data, the context (that is, the parents for each word) can be es-

tablished. For example, the context of the word ‘soon’ is ‘must’ and ‘end’. Hence,

our hypothesis is that structurally related words, among all the words within the

sentence, provide the best contextual information for polarity detection.

The vocabulary in most languages is very large, hence, instead of individual

words as shown in Fig. 1(b), we can consider a Bayesian network over N patterns

of maximum length k words, and the corresponding frequency in each training

sentence. Subjectivity patterns can be handcrafted or learnt automatically using a

software like AutoSlog [34]. For example, the pattern ‘< x > was asked’ would

extract ‘he was asked to leave the premises’ and is strongly subjective. On the

other hand, the pattern ‘< x > was expected’ would ‘he was expected to retire’

and is objective as it is a mere fact.

p(x2|x1)

p(x2|x3)

p(x3|x1)

p(x4|x3)

p(x5|x4)

p(x5|x2)

p(x4|x2)

x1

x2 x3

x4 x5
The escalation

must

any

time

end

soon

(a) (b)

Figure 1: (a) Bayesian network for a multivariate system with five nodes. Each node is a variable in

the state-space of the system that can be observed or measured. The connections represent causal

dependencies within a single time instant. (b) Bayesian network representing inter-dependencies

between the words of the sentence ‘The escalation must end any time soon’.
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The optimal structure s∗ is obtained by maximizing the posterior probability

of s given the data X. From Bayes theorem, the optimal structure s∗ is given by

s∗ = arg max
s
p(s|X) = arg max

s
p(s) · p(X|s), (2)

where p(s) is the probability of the network structure and p(X|s) is the likelihood

of the expression data given the network structure.

Given the set of conditional distributions with parameters θ = {θi,ai
}Ni=1, the

likelihood of the data is given by

p(X|s) =

∫
p(X|s,θ) · p(θ|s)dθ, (3)

To find the likelihood in (3), and to obtain the optimal structure as in (2),

we can use the Laplace approximation of integrals [35]. A Gaussian Bayesian

network assumes that the nodes are multivariate Gaussian. The parameters θi,ai

are then defined by the mean µ and the covariance matrix Σ of size N × N [36].

The joint probability of the network can be the product of a set of conditional

probability distributions is then given by:

p(xi|ai, θi,ai
) = N

(
µi +

∑
j∈ai

(xj − µj)β, Σ
′

i

)
, (4)

where Σ
′
i = Σi − Σi,ai

Σ−1ai
ΣT

i,ai
and β denotes the regression coefficient matrix,

Σ
′
i is the conditional variance of xi given its parent set ai, Σi,ai

is the covariance

between observations of xi and the variables in ai, and Σai
is the covariance

matrix of ai.

3.2. Markov Chain Monte Carlo

In order to find the optimal structure, a Markov chain of structures is formed

using a MCMC simulation, which converges to the optimal structure at the equi-

librium. The Metropolis-Hastings method of MCMC is adopted, which associates
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an acceptance mechanism with newly drawn sample structures. The acceptance

of a new structure snew is given by the following equation:

min

{
1,
p(snew)

p(s)
· p(s

new|X)

p(s|X)
· p(s

new|s)
p(s|snew)

}
(5)

where the Metropolis-Hastings acceptance ratio:

α =
p(snew|X)

p(s|X)
· p(s

new|s)
p(s|snew)

. (6)

when adding an edge and the prior ratio is inverted when deleting an edge.

Sampling new structures with the use of the above-listed procedure gener-

ates a Markov chain, which converges in distribution to the approximate posterior

distribution. Taking the average over sampled structures after a burn-in period,

we can compute the integral over parameters in (3). In practice, a new network

structure is proposed by applying one of the elementary operations such as delet-

ing, reversing, or adding an edge, and then discarding structures that violate the

acyclic condition. The first and second term of the acceptance ratio, the ratio of

likelihoods, is computed using (4). The third term, is obtained by

p(snew|s)
p(s|snew)

=
Nn

new

Nn

(7)

where Nn denotes the size of the neighborhood obtained by elementary operations

on structure s as well as counting the valid structures.

3.3. Sparse Bayesian ELM

ELMs are single layer feed-forward neural networks that are trained several

times faster than traditional neural networks. The main idea behind ELM lies in
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the random initialization of hidden-layer input weights and biases. The hidden-

layer output weights are then computed using a Moore-Penrose generalized inver-

sion of an input layer weights and the known target values of training data. In this

section, we provide the details of ELM algorithm.

Let D be a labeled training set {(x, y)i;x ∈ RN; y ∈ {Pos,Neu,Neg}; i =

1, ..,Z}. The hypothesis space of ELM can be formalized as follows

y =
∑N

i=1
wihi(x,βi, bi) (8)

where N is the number of hidden neurons, βi ∈ RN and bi ∈ R are the param-

eters of the ith hidden neuron, wi ∈ R and hi is a non-linear piecewise function

satisfying ELM universal approximation capability theorems [37]. The ELM ran-

domly assigns input weights βi and biases bi. Let H denote a Z × N matrix,

where hi,j = hj(xi) and Z is the number of samples in the training set; then, the

minimization problem can be expressed as:

min
w
||y − Hw||2 + λ||w||2 (9)

The vector of weights w is then obtained as follows:

w = (HTH + λI)−1HTy (10)

Bayesian ELM (BELM) is based on the use of Bayesian linear regression to

optimize the weights of the output layer. The Bayes law states that the poste-

rior distribution of model parameters is proportional to the product of the prior

distribution and the likelihood:

p(w|D) ∝ p(w)· (D|w) (11)
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Next, the output distribution of the model ynew for new input xnew is given by the

integral of the posterior distribution of the parameters w. Therefore, the predictive

distribution for a new input is given by:

p(ynew|xnew, D) =

∫
p(ynew|xnew,w) · p(w|D)dw (12)

where the data is assumed Gaussian, and the maximum likelihood estimate of the

weights maximizes the posterior probability.

The core of SBELM resides in the application of an ARD prior to the linear

weight, formally

p(w|α) = N (w,α) (13)

The training consists of learning the parameters α maximizing:

p(y|α,H) =

∫
p(y|w,H) · p(w|α)dw. (14)

The integral (14) is intractable. However, one can address (14) by using

Laplace approximation, which involves a quadratic Taylor expansion of the log

form of posterior probability. This in turn requires the computation of the Hessian

matrix, which is a matrix of second-order derivatives. Here, we note that presence

of noise in the dataset can heavily affect this approximation.

Finally, the predictive distribution is obtained by

p(ynew|xnew, ŵ) =
1

1 + e−hnewŵ
(15)

where ŵ is the Laplace’s mean and hnew correspond to the activation of the ELM

random layer with input xnew.
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4. BNELM for Subjectivity Detection

In this section, we introduce the novel BNELM, which extends the traditional

ELM to non-linear datasets (e.g., sequence of sentences) by integrating the fea-

tures of Bayesian networks and fuzzy recurrent neural networks (RNNs). In the

proposed model, Bayesian networks provide an effective tool to build a network

of connections among the hidden neurons of the conventional ELM configura-

tion. Such a step relies on unsupervised learning, as labels are not involved in the

process. A fuzzy RNN inherits the overall structure generated by the Bayesian

networks to the purpose of supporting a predictor that can model also temporal

features. In the following sections, we will formalize BNELM and will clarify its

advantages over SBELM (Sec. 4.1) and we will present the framework that uses

BNELM to perform subjectivities detection (Sec. 4.2).

4.1. Bayesian Network Based Extreme Learning Machine

The proposed BNELM augments the standard structure of a RNN to generate a

predictor that can take advantage of two main features. First, the weight matrix of

connections between input nodes and hidden neurons can be learnt by combining

the abilities of ELMs and Bayesian networks. Second, temporal features can be

suitably modeled. In a standard RNN, the output y(t) at time step t is calculated

using the following equation:

y(t) = f(WR · y(t− 1) +W · x(t)) (16)

where WR is the interconnection matrix among hidden neurons, W is the weight

matrix of connections between hidden neurons and the input nodes, and f is a

non-linear activation function. In BNELM, matrixW is learnt by using the ELM’s

hidden neurons outputs h to train a Bayesian network.
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Hence, the number of nodesN of the Bayesian network is equal to the number

of hidden neurons. The computation of the connection matrix is achieved simply

by finding the optimal structure s∗ of dimension N × N defined in (2); accord-

ingly, the hidden neurons outputs of the ELM become the inputs for a Gaussian

Bayesian network. Next, the learnt structure s∗ replaces the W in the recurrent

layer. Algorithm 1 illustrates the complete training procedure for W with a Gaus-

sian Bayesian network fitness function and MCMC simulation.

The new structure for the recurrent layer becomes:

y(t) = f(WR · y(t− 1) + s∗ · h(t)) (17)

Back propagation through time is utilized to learn WR. As recurrent neurons

can prove to be unstable on noisy data, a fuzzy classifier is actually exploited

in this work to stabilize the model. Therefore, y(t) eventually becomes y(t) by

introducing fuzzy membership functions.

The BNELM model has two main advantages with respect to SBELM. Firstly,

training a SBELM involves the computation of second-order derivatives. The per-

formance of this procedure is highly sensitive to noisy data. In BNELM training,

this problem is overcome by using a heuristic MCMC as described in Section 3.1

and Section 3.2. Secondly, SBELM involves a non-convex optimization problem.

On the other hand, the heuristic process in Bayesian networks samples a Markov

chain of weights that always converges to the global maximum at equilibrium,

resulting in a higher accuracy of the predictor.

Moreover, one should consider that determining the number of optimal hidden

neurons is one of the biggest challenges in ELM. The MCMC algorithm will only

consider edges with frequency above a threshold in all samples when determining

the optimal structure s∗. Hence, neurons with no edges are removed from the
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structure. In this way, the Bayesian network is able to determine the optimal

number of hidden neurons, thus pruning redundant neurons.

4.2. A Framework for Subjectivity Detection

In this paper, BNELM provides a suitable tool to support the development of

a framework for subjectivity detection. Figure 2 schematizes the framework by

proposing the whole flowchart.

The BNELM model receives as input a vector x̃, which is the outcome of a

pre-processing step involving a deep CNN model. First, a sentence is transformed

into word vector representation X of dimensions L× d, where L is the maximum

number of words in a sentence, and d is the number of Google word vectors used.

The transformed data is then fed to the deep CNN model, which automatically

performs dimensionality reduction. Deep CNNs are recently being used exten-

sively to extract patterns automatically from large datasets such as Twitter. Such a

model looks for highly activated k-grams in a CNN as our pattern set. For exam-

ple, cloud computing is a bi-gram composed by the words cloud and computing.

Details of such an implementation can be found in [16]. However, the training of

deep models can be very time consuming. To this end, here we use the activations

at the penultimate layer of the deep CNN as a new training data for a fast ELM

model. The first CNN hidden layer contains kernels of size k × d to learn k-gram

patterns. There are several layers of kernels and an output layer of nd sentiment

labels namely ‘positive’, ‘negative’ and ‘neutral’. The features learnt by the deep

CNN are expressed in the penultimate layer and can be used as input x̃ to the

BNELM model.

BNELM in practice tries to learn the context of the k-gram features learnt by

the CNN. Since BNELM embeds a recurrent layer of hidden neurons, it is also
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Algorithm 1 Bayesian Network based Extreme Learning Machine training
Given a labeled training set {(x,y)i;x ∈ RN;y ∈ RP; i = 1, ..,Z};

Procedure:

1: Randomly initialize weights of the input hidden layer, with N neurons

2: Build a Bayesian network with N nodes, one node for each neuron in hidden

layer activation h

3: Initialize topology of s = s0

4: repeat

5: Generate snew by elementary operations

6: Find Nnew and Nold corresponding to snew and s

7: Find acceptance ratio α given by (6)

8: if α ≥ 1 then

9: s = snew

10: else

11: if rand[0, 1] ≥ α then

12: s = snew

13: end if

14: end if

15: until convergence

16: s∗ · h is used to train the final fuzzy recurrent classifier

17



able to model temporal features in long product reviews. In Figure 2, the fuzzy

membership function is designed to tackle a three-class problem. The complete

training procedure is proposed in Algorithm 2. The corresponding state diagram

for BNELM is illustrated in Figure 3. Starting from the bottom, the training of the

model is organized as follows:

• The first two layers starting from the bottom of Figure 3 correspond to the

Bayesian network used in the pre-processing step.

• The significant k-gram features are extracted from sentences using a deep

CNN. In the figure, the CNN corresponds to the third layer. The bold lines

identify the size of the kernel window, which has been set to 4.

• The extracted features are then fed to the random layer of BNELM; in this

figure, the links are represented with dashed lines. The output weights of

the random layer have been learnt using a Bayesian network.

• The ELM output is used to train a layer of recurrent neurons with feedback

connections, marked as “Inter-connected recurrent neurons” in the graph.

• The two fuzzy membership functions are used to facilitate stable conver-

gence of the model.

• The top layer represents the output layer of the network. It has three neu-

rons; one per class.

4.3. Computational Complexity

The computational complexity of a single training epoch for the lth convolu-

tional layer of a CNN is given by O(nl−1.s
2
l .nl.m

2
l ), where nl−1 and nl are the
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Deep CNN On 
Text Sentences

BNELM

ELM Hidden layer

Bayesian Network

Fuzzy Recurrent
Neural Network

𝑋 𝑥̃ s*𝒉(𝑥̃ ) neu

+ve

-ve

Figure 2: Flowchart of the BNELM framework. First, we run a conventional deep CNN on sen-

tences. The extracted features are then fed to an ELM classifier, where the output layer weights are

determined heuristically using Bayesian networks. Features learnt are further evolved by BNELM

using a fuzzy RNN. The output layer has three nodes for classifying sentences as positive, nega-

tive, or neutral.

number of input and output feature maps, respectively; sl = nl−1
x × nl−1

y and

ml = nl
x × nl

y are the dimensions of the input and output feature maps, respec-

tively. This computational cost clearly characterizes the computational complex-

ity of the overall framework. In contrast, the computational complexity of a layer

of recurrent hidden neurons is much lower beingO(2×N2), whereN is the num-

ber of neurons and a single time delay is considered. Similarly, the complexity of

the neuro-fuzzy classifier with two membership functions is also very small being

O(
∑nl−1

i=1 2nl +
∑nl−1

i=1 2) [38].

In general, training a CNN as a classifier is indeed time consuming due to the
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Pooling
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ELM 
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2 Fuzzy Membership 
Functions

S+ O S- Output Class Labels

Bayesian 
Networks

Pittsburgh definitivamente es el equipo ganar

Pittsburgh is definitely the team win

Piratas podían sobresalir pasadoel año

Pirates could excel last year

Figure 3: State space of a BNELM for a subjective sentence in online forums. Features are ex-

tracted from Spanish sentences using a deep CNN. The bold lines correspond to kernels. The

extracted features are then used to train a Bayesian ELM, where output layer weights are deter-

mined using Bayesian networks. The bold dashed arcs correspond to causal edges predicted by

a Bayesian network. The ELM output is subsequently used to train a layer of recurrent neurons

with feedback connections. Lastly, we introduce a layer of fuzzy neurons with two membership

functions in order to achieve stable convergence of the model.

huge number of training iterations required. In the proposed method, however,

the CNN is utilized as a feature extractor; eventually, such features are fed to a

low-dimensional Bayesian ELM model. As a result, in this case, the CNN only

involves a reduced number of epochs; this in turn means a significant reduction
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Algorithm 2 Subjectivity detection framework training
Given a labeled training set {(x, y)i; i = 1, ..,Z} where each x is a sentence of

length L and labels y ∈ {Pos,Neu,Neg}

1: Transform each sentences in vector representation with word vector dimen-

sion d

2: Construct a deep CNN with visible layer as a 2-d vector of L× d input fea-

tures

3: Construct hidden layer with kernels of size k × d to learn k-gram patterns

4: Construct several hidden layers with kernels and output layer with nd neurons

5: The features learnt by the deep CNN are expressed in penultimate layer and

can be used as input layer to the BNELM model

of the computational cost. Lastly, the present framework is designed to exploit a

small number of features learnt by deep learning. Thus, the computational cost

of the MCMC with Bayesian network fitness function also decreases. It is worth

noting that model obtained after the training process is sparse; this is a major dif-

ference with the model one would obtain by exploiting a standard ELM model. As

a consequence, we can improve the computational performance of the predictor.

5. Experiments and Results

The proposed experiments aim at (1) evaluating the generalization perfor-

mance of BNELM and (2) providing a comparison between the proposed method

and two alternative models (namely, a classifier based on the standard regularized

ELM [37] and a classifier based on a SBELM [26]). Three different benchmarks

have been used in the experimental evaluation: MPQA [29, 30], MOUD [39] and

TASS 2015 Corpus. All datasets involve sentences expressed in Spanish. The
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rationale behind this setup is that present research is geared towards assessing the

proposed methods ability to deal with non-English language documents. In all the

experiments, standard model-selection procedures support the setup of the ELM

regularization parameter λ. The following settings have been used:

λ ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104, 105, 106}

5.1. Pre-processing

A pre-processing stage has been applied to all the datasets in the experiments.

The first step consisted in removing the top 50 stopwords and punctuation marks

from the sentences1. Next, a part of speech (POS) tagger was used to determine

the POS tag for each word in a sentence. Words may have different subjectivity

levels when used in different forms such as ‘noun’ or ‘verb’, hence POS tagging

was applied to all the Spanish training sentences.

After POS tagging, subjectivity clue words were identified. The subjectivity

clues dataset [40] contains a list of more than 8,000 clues identified both manually

as well as automatically, using both labeled and unlabeled data. As this dataset

includes only English words, the corresponding Spanish list was created using the

Bing translator API. For each clue word, the number of occurrences in the dataset

was computed. Eventually, the top 50 clue words with highest occurrences in the

subjective sentences were considered [41]. Each sentence was then transformed to

a binary feature vector of length 50, where the presence of a clue word is denoted

as ‘1’ and an absence is denoted as ‘0’.

The resulting binary matrix ‘clue words versus sentences’ has been processed

as a time series. Thus, the sentences have been used as input for a Gaussian

1http://www.ranks.nl/stopwords/
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Bayesian network. The ML probabilities of each word, given up-to three parent

words and up-to two time points delay, was also computed. Such sub-structures

are referred to as network motifs. The top 20% of motifs with the highest ML

were exploited to select the pre-training sentences for the deep CNN, done by

simply selecting the sentences containing these motifs.

The deep CNN was employed to extract features in the form of 3-grams and

4-grams in each language separately. It was configured as follows: three hidden

layers with 100 neurons each, kernels of size 3, 4 and 5, respectively, and one

logistic layer with 300 neurons. The output layer included two neurons for each

class of sentiments. The 300 feature outputs of the deep CNN (from both lan-

guages) were used to train BNELM with an additional fuzzy recurrent layer of 10

hidden neurons and up to 2 time point delays.

5.2. Multi-Perspective Question Answering Dataset

The MPQA corpus is a collection of 504 sentences manually annotated for

subjectivity in Spanish. The annotation resulted in 273 subjective and 231 objec-

tive sentences [42]; the corpus includes sentences of an uncertain nature that were

assigned to a definite class after assessment by multiple annotators. MPQA is a

popular benchmark, which can be used to evaluate the robustness of the proposed

framework when a small training set is involved. The sentences were eventu-

ally machine translated into English to obtain the final dataset, which after pre-

processing lay in a 20-dimensional space. A 5-fold cross validation has been used

to estimate the accuracy of the trained classifier when applied to new sentences,

i.e., sentences not included in the training set. The performance of the three pre-

dictors (BNELM, ELM, and SBELM) was assessed by using the average value

of the accuracy computed over 10 runs, i.e., 10 different randomizations of the

23



mapping layer.

Figures 4 and 5 provide the outcomes of the experiments. Figure 4 assesses

the performances of ELM, SBELM, and BNELM for four different sizes of the

mapping layer: L = {25; 50; 100; 600}, note that SBELM has not been tested for

a random hidden layer of 600 neurons, due to the expensive training phase. All the

experiments were run using a fixed value for the number of iterations, nItr, in the

MCMC procedure. In Figure 4, the x axis gives L, while the y axis gives the clas-

sification accuracy (expressed as the percentage over the size of the test set). The

bar graph compares the performance of the standard ELM (white bar) with the per-

formance of the SBELM (grey bar) and the performance of BNELM (black bar).

On an overall basis, the graphs clearly show that BNELM can improve over stan-

dard ELM and SBELM in terms of classification performance. Figure 5 analyses

the performance of the BNELM for different values of the parameter nItr. Here,

the x axis gives number of iterations nItr, while the y axis gives the classification

accuracy. The experiments refer to a configuration with L = 50; the number of

iterations were allowed to take the following values: nItr = {25; 50; 100}. The

graph shows that the accuracy of the classifier reaches a maximum when the num-

ber of iterations is 25. Nonetheless, it is interesting to note that a good accuracy

can be obtained with all the proposed values of nItr.

5.3. Multimodal Opinion Utterances Dataset

MOUD consists of 498 short video fragments containing one sentence each.

The items are manually tagged for sentiment polarity, which can be positive, neg-

ative, or neutral. The videos are in MP4 format with a resolution of 360 × 480

pixels; the duration of the clips is about 5 seconds on average. About 80% of

the clips involve female speakers. The transcripts of the videos were used as a
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Figure 4: Accuracy of experiments involving MPQA dataset; Average accuracy of the three dif-

ferent classifiers;

dataset. After pre-processing, the patterns lay in a 20-dimensional space. Sim-

ilar to the MPQA experiment, a 5-fold cross validation has been used to es-

timate the performance of the trained classifier. Figures 6 and 7 provide the

outcomes of the experiments by adopting the format of Fig. 4 and Fig. 5, re-

spectively. The experiments showed in Fig. 6 involved the following settings:

L = {25; 50; 100; 600}; nItr = 50. The settings of the experiments showed in

Fig. 7 are: L = 50; nItr = {25; 50; 100}. In general, these results confirm the

tendency identified with the MPQA dataset. This in turn proves that BNELM can

indeed serve as an effective tool to deal with sentiment analysis.

5.4. Sentiment Classification on the TASS 2015 Corpus

In order to evaluate the model on a noisy dataset, we consider the four-class

TASS corpora of Spanish tweets [32]. Each tweet belongs to one of the four

25



30 40 50 60 70 80 90 100
Iterations

0.71

0.72

0.73

0.74

0.75
A

cc
ur

ac
y

Figure 5: Accuracy of experiments involving MPQA dataset; Average accuracy of the gmm-ELM

for different values of the parameters nItr;

categories: positive, neutral, negative, or without opinion. In this paper, we are

using the training set of 7219 tweets and the test set of 1000 tweets.

Table 1 shows the accuracy of different models in classifying sentences in a

document as Positive (subjective), Negative (subjective), Neutral (objective) or

None in TASS test dataset. A simple CNN model for sentences learns features

of two or three words using sliding window kernels. We also compare our ap-

proach with different models evaluated at the TASS workshop (see the overview

paper [32] for a detailed description of all approaches).

In LYS [43], the authors used classical logistic regression with linguistic fea-

tures. Their approach was limited as they heavily relied on polarity lexicons that

are not available in Spanish; in this paper, instead, we use ELMs to automatically

learn features from both English and Spanish. Furthermore, we use Bayesian

heuristics to determine parameters for a large set of noisy tweets and, hence, we
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Figure 6: Accuracy of experiments involving MOUD; average accuracy of the three different

classifiers;

are able to outperform the baselines by over 15% in accuracy.

Table 1: Accuracy of different models in classifying sentences in a document as Positive (subjec-

tive), Negative (subjective), Neutral (objective) or None in TASS dataset.

CNN [44] LYS [43] LIF [32] BNELM

TASS 2015 0.66 0.637 0.692 0.89

6. Conclusion

Subjectivity detection represents a challenging task for sentiment analysis

tools as these are usually optimized for the binary classification task of polarity

detection (positive versus negative). In this paper, we introduce a novel architec-

ture for filtering out neutral content in a time- and resource-effective manner. The

proposed BNELM model augments the standard RNN structure with the purpose
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Figure 7: Accuracy of experiments involving MOUD; Average accuracy of the gmm-ELM for

different values of the parameters nItr;

of generating a predictor that can take advantage of the fruitful properties of ELM

and Bayesian networks.

The BNELM architecture has two main advantages with respect to SBELM:

firstly, training BNELM does not involve the computation of second-order deriva-

tives; secondly, BNELM tackles the optimization problem by exploiting an heuris-

tic procedure that relies on MCMC. As a result, the optimization process con-

verges to the global maximum at the equilibrium, resulting in a higher accuracy

of the predictor. Moreover, the use of Bayesian networks inherently leads to a

model that is able to determine the optimal number of hidden neurons, thus prun-

ing redundant neurons.

The final framework for subjectivity detection relies on the effective integra-

tion of CNNs and BNELM, where the former learns significant features from the

training set and, hence, feeds them to the latter. Experimental results proved that
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this framework has the ability to learn a dictionary of features that are portable to

new languages and domains. Such a characteristic becomes particularly impor-

tant when it is difficult and expensive to generate training data in resource-scarce

languages.
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