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Abstract

The task of learning models for many real-world problems requires incorporating do-
main knowledge into learning algorithms, to enable accurate learning from a realistic vol-
ume of training data. This paper considers a variety of types of domain knowledge for
constraining parameter estimates when learning Bayesian Networks. In particular, we
consider domain knowledge that constrains the values or relationships among subsets of
parameters in a Bayesian Network with known structure.

We incorporate a wide variety of parameter constraints into learning procedures for
Bayesian Networks, by formulating this task as a constrained optimization problem. The
assumptions made in Module Networks, Dynamic Bayes Nets and Context Specific Inde-
pendence models can be viewed as particular cases of such parameter constraints. We
present closed form solutions or fast iterative algorithms for estimating parameters subject
to several specific classes of parameter constraints, including equalities and inequalities
among parameters, constraints on individual parameters, and constraints on sums and ra-
tios of parameters, for discrete and continuous variables. Our methods cover learning from
both frequentist and Bayesian points of view, from both complete and incomplete data.

We present formal guarantees for our estimators, as well as methods for automatically
learning useful parameter constraints from data. To validate our approach, we apply it to
the domain of fMRI brain image analysis. Here we demonstrate the ability of our system
to first learn useful relationships among parameters, and then to use them to constrain
the training of the Bayesian Network, resulting in improved cross-validated accuracy of the
learned model. Experiments on synthetic data are also presented.
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1. Introduction

Probabilistic models have become increasingly popular in the last decade because of their
ability to capture non-deterministic relationships among variables describing many real
world domains. Among these models, Graphical Models have received significant attention
because of their ability to compactly encode conditional independence assumptions over
random variables and because of the development of effective algorithms for inference and
learning based on these representations.

A Bayesian Network (Heckerman, 1999) is a particular case of a Graphical Model that
compactly represents the joint probability distribution over a set of random variables. It
consists of two components: a structure and a set of parameters. The structure is a Di-
rected Acyclic Graph with one node per variable. This structure encodes the Local Markov
Assumption: a variable is conditionally independent of its non-descendants in the network,
given the value of its parents. The parameters describe how each variable relates probabilis-
tically to its parents. A Bayesian Network encodes a unique joint probability distribution,
which can be easily computed using the chain rule.

When learning Bayesian networks, the correctness of the learned network of course de-
pends on the amount of training data available. When training data is scarce, it is useful
to employ various forms of prior knowledge about the domain to improve the accuracy
of learned models. For example, a domain expert might provide prior knowledge specify-
ing conditional independencies among variables, constraining or even fully specifying the
network structure of the Bayesian Network. In addition to helping specify the network
structure, the domain expert might also provide prior knowledge about the values of cer-
tain parameters in the conditional probability tables (CPTs) of the network, or knowledge
in the form of prior distributions over these parameters. While previous research has exam-
ined a number of approaches to representing and utilizing prior knowledge about Bayesian
Network parameters, the type of prior knowledge that can be utilized by current learning
methods remains limited, and is insufficient to capture many types of knowledge that may
be readily available from experts.

One contribution of our previous work (Niculescu, 2005) was the development of a
general framework to perform parameter estimation in Bayesian Networks in the presence
of any parameter constraints that obey certain differentiability assumptions, by formulating
this as a constrained maximization problem. In this framework, algorithms were developed
from both a frequentist and a Bayesian point of view, for both complete and incomplete
data. The optimization methods used by our algorithms are not new and therefore this
general learning approach has serious limitations given by these methods, especially given
arbitrary constraints. However, this approach constitutes the basis for the efficient learning
procedures for specific classes of parameter constraints described in this paper. Applying
these efficient methods allows us to take advantage of parameter constraints provided by
experts or learned by the program, to perform more accurate learning of very large Bayesian
Networks (thousands of variables) based on very few (tens) examples, as we will see later
in the paper.

The main contribution of our paper consists of efficient algorithms (closed form solu-
tions, fast iterative algorithms) for several classes of parameter constraints which current
methods can not accommodate. We show how widely used models including Hidden Markov
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Models, Dynamic Bayesian Networks, Module Networks and Context Specific Independence
are special cases of one of our constraint types, described in subsection 4.3. Our framework
is able to represent parameter sharing assumptions at the level of granularity of individual
parameters. While prior work on parameter sharing and Dirichlet Priors can only accom-
modate simple equality constraints between parameters, our work extends to provide closed
form solutions for classes of parameter constraints that involve relationships between groups
of parameters (sum sharing, ratio sharing). Moreover, we provide closed form Maximum
Likelihood estimators when constraints come in the form of several types of inequality con-
straints. With our estimators come a series of formal guarantees: we formally prove the
benefits of taking advantage of parameter constraints to reduce the variance in parameter
estimators and we also study the performance in the case when the domain knowledge rep-
resented by the parameter constraints might not be entirely accurate. Finally, we present a
method for automatically learning parameter constraints, which we illustrate on a complex
task of modelling the fMRI brain image signal during a cognitive task.

The next section of the paper describes related research on constraining parameter esti-
mates for Bayesian Networks. Section 3 presents the problem and describes our prior work
on a framework for incorporating parameter constraints to perform estimation of parameters
of Bayesian Networks. Section 4 presents the main contribution of this paper: very efficient
ways (closed form solutions, fast iterative algorithms) to compute parameter estimates for
several important classes of parameter constraints. There we show how learning in current
models that use parameter sharing assumptions can be viewed as a special case of our ap-
proach. In section 5, experiments on both real world and synthetic data demonstrate the
benefits of taking advantage of parameter constraints when compared to baseline models.
Some formal guarantees about our estimators are presented in section 6. We conclude with
a brief summary of this research along with several directions for future work.

2. Related Work

The main methods to represent relationships among parameters fall into two main cate-
gories: Dirichlet Priors and their variants (including smoothing techniques) and Parameter
Sharing of several kinds.

In Geiger and Heckerman (1997), it is shown that Dirichlet Priors are the only possible
priors for discrete Bayes Nets, provided certain assumptions hold. One can think of a Dirich-
let Prior as an expert’s guess for the parameters in a discrete Bayes Net, allowing room for
some variance around the guess. One of the main problems with Dirichlet Priors and related
models is that it is impossible to represent even simple equality constraints between parame-
ters (for example the constraint: θ111 = θ121 where θijk = P (Xi = xij |Parents(Xi) = paik))
without using priors on the hyperparameters of the Dirichelet Prior, in which case the
marginal likelihood can no longer be computed in closed form, and expensive approximate
methods are required to perform parameter estimation. A second problem is that it is often
beyond the expert’s ability to specify a full Dirichlet Prior over the parameters of a Bayesian
Network.

Extensions of Dirichlet Priors include Dirichlet Tree Priors (Minka, 1999) and Dependent
Dirichlet Priors (Hooper, 2004). Although these priors allow for more correlation between
the parameters of the model than standard Dirichlet Priors, essentially they face the same
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issues. Moreover, in the case of Dependent Dirichlet Priors, parameter estimators can
not be computed in closed form, although Hooper (2004) presents a method to compute
approximate estimators, which are linear rational fractions of the observed counts and
Dirichlet parameters, by minimizing a certain mean square error measure. Dirichlet Priors
can be considered to be part of a broader category of methods that employ parameter
domain knowledge, called smoothing methods. A comparison of several smoothing methods
can be found in Zhai and Lafferty (2001).

A widely used form of parameter constraints employed by Bayesian Networks is Pa-
rameter Sharing. Models that use different types of Parameter Sharing include: Dynamic
Bayesian Networks (Murphy, 2002) and their special case Hidden Markov Models (Ra-
biner, 1989), Module Networks (Segal et al., 2003), Context Specific Independence models
(Boutilier et al., 1996) such as Bayesian Multinetworks, Recursive Multinetworks and Dy-
namic Multinetworks (Geiger and Heckerman, 1996; Pena et al., 2002; Bilmes, 2000), Prob-
abilistic Relational Models (Friedman et al., 1999), Object Oriented Bayes Nets (Koller
and Pfeffer, 1997), Kalman Filters (Welch and Bishop, 1995) and Bilinear Models (Tenen-
baum and Freeman, 2000). Parameter Sharing methods constrain parameters to share the
same value, but do not capture more complicated constraints among parameters such as
inequality constraints or constraints on sums of parameter values. The above methods
are restricted to sharing parameters at either the level of sharing a conditional probability
table (CPT) (Module Networks, HMMs), at the level of sharing a conditional probability
distribution within a single CPT (Context Specific Independence), at the level of sharing
a state-to-state transition matrix (Kalman Filters) or at the level of sharing a style matrix
(Bilinear Models). None of the prior models allow sharing at the level of granularity of
individual parameters.

One additional type of parameter constraints is described by Probabilistic Rules. This
kind of domain knowledge was used in Rao et al. (2003) to assign values to certain param-
eters of a Bayesian Network. We are not aware of Probabilistic Rules being used beyond
that purpose for estimating the parameters of a Bayesian Network.

3. Problem Definition and Approach

Here we define the problem and describe our previous work on a general optimization
based approach to solve it. This approach has serious limitations when the constraints are
arbitrary. However, it constitutes the basis for the very efficient learning procedures for the
classes of parameter constraints described in section 4. While the optimization methods we
use are not new, applying them to our task allows us to take advantage of expert parameter
constraints to perform more accurate learning of very large Bayesian Networks (thousands
of variables) based on very few (tens) examples, as we will see in subsection 5.2. We begin
by describing the problem and state several assumptions that we make when deriving our
estimators.

3.1 The Problem

Our task here is to perform parameter estimation in a Bayesian Network where the structure
is known in advance. To accomplish this task, we assume a dataset of examples is available.
In addition, a set of parameter equality and/or inequality constraints is provided by a
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domain expert. The equality constraints are of the form gi(θ) = 0 for 1 ≤ i ≤ m and the
inequality constraints are of the form hj(θ) ≤ 0 for 1 ≤ j ≤ k, where θ represents the set
of parameters of the Bayesian Network.

Initially we will assume the domain knowledge provided by the expert is correct. Later,
we investigate what happens if this knowledge is not completely correct. Next we enumerate
several assumptions that must be satisfied for our methods to work. These are similar to
common assumptions made when learning parameters in standard Bayesian Networks.

First, we assume that the examples in the training dataset are drawn independently
from the underlying distribution. In other words, examples are conditionally independent
given the parameters of the Graphical Model.

Second, we assume that all the variables in the Bayesian Network can take on at least
two different values. This is a safe assumption since there is no uncertainty in a random
variable with only one possible value. Any such variables in our Bayesian Network can be
deleted, along with all arcs into and out of the nodes corresponding to those variables.

When computing parameter estimators in the discrete case, we additionally assume
that all observed counts corresponding to parameters in the Bayesian Network are strictly
positive. We enforce this condition in order to avoid potential divisions by zero, which may
impact inference negatively. In the real world it is expected there will be observed counts
which are zero. This problem can be solved by using priors on parameters, that essentially
have the effect of adding a positive quantity to the observed counts and essentially create
strictly positive virtual counts.

Finally, the functions g1, . . . , gm and h1, . . . , hk must be twice differentiable, with con-
tinuous second derivatives. This assumption justifies the formulation of our problem as a
constrained maximization problem that can be solved using standard optimization methods.

3.2 A General Approach

In order to solve the problem described above, here we briefly mention our previous ap-
proach (Niculescu, 2005) based on already existing optimization techniques. The idea is to
formulate our problem as a constrained maximization problem where the objective function
is either the data log-likelihood log P (D|θ) (for Maximum Likelihood estimation) or the log-
posterior log P (θ|D) (for Maximum Aposteriori estimation) and the constraints are given
by gi(θ) = 0 for 1 ≤ i ≤ m and hj(θ) ≤ 0 for 1 ≤ j ≤ k. It is easy to see that, applying
the Karush-Kuhn-Tucker conditions theorem (Kuhn and Tucker, 1951), the maximum must
satisfy a system with the same number of equations as variables. To solve this system, one
can use any of several already existing methods (for example the Newton-Raphson method
(Press et al., 1993)).

Based on this approach, in Niculescu (2005) we develop methods to perform learning
from both a frequentist and a Bayesian point of view, from both fully and partially observ-
able data (via an extended EM algorithm). While it is well known that finding a solution
for the system given by the KKT conditions is not enough to determine the optimum point,
in Niculescu (2005) we also discuss when our estimators meet the sufficiency criteria to be
optimum solutions for the learning problem. There we also describe how to use Constrained
Conjugate Parameter Priors for the MAP estimation and Bayesian Model Averaging. A
sampling algorithm was devised to address the challenging issue of computing the normal-
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ization constant for these priors. Furthermore, procedures that allow the automatic learning
of useful parameter constraints were also derived.

Unfortunately, the above methods have a very serious shortcoming in the general case.
With a large number of parameters in the Bayesian Network, they can be extremely ex-
pensive because they involve potentially multiple runs of the Newton-Raphson method and
each such run requires several expensive matrix inversions. Other methods for finding the
solutions of a system of equations can be employed, but, as noted in Press et al. (1993), all
these methods have limitations in the case when the constraints are arbitrary, non-linear
functions. The worst case happens when there exists a constraint that explicitly uses all
parameters in the Bayesian Network.

Because of this shortcoming and because the optimization methods we use to derive our
algorithms are not new, we choose not to go into details here. We mention them to show how
learning in the presence of parameter constraints can be formulated as a general constrained
maximization problem. This general framework also provides the starting point for the
efficient learning methods for the particular classes of parameter constraints presented in
the next section.

4. Parameter Constraints Classes

In the previous section we mentioned the existence of general methods to perform parameter
learning in Bayesian Networks given a set of parameter constraints. While these methods
can deal with arbitrary parameter constraints that obey several smoothness assumptions,
they can be very slow since they involve expensive iterative and sampling procedures.

Fortunately, in practice, parameter constraints usually involve only a small fraction of
the total number of parameters. Also, the data log-likelihood can be nicely decomposed
over examples, variables and values of the parents of each variable (in the case of discrete
variables). Therefore, the Maximum Likelihood optimization problem can be split into a
set of many independent, more manageable, optimization subproblems, which can either be
solved in closed form or for which very efficient algorithms can be derived. For example, in
standard Maximum Likelihood estimation of the parameters of a Bayesian Network, each
such subproblem is defined over one single conditional probability distribution. In general,
in the discrete case, each optimization subproblem will span its own set of conditional
probability distributions. The set of Maximum Likelihood parameters will be the union of
the solutions of these subproblems.

This section shows that for several classes of parameter constraints the system of equa-
tions given by the Karush-Kuhn-Tucker theorem can be solved in an efficient way (closed
form or fast iterative algorithm). In some of these cases we are also able to find a closed
form formula for the normalization constant of the corresponding Constrained Parameter
Prior.
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4.1 Parameter Sharing within One Distribution

This class of parameter constraints allows asserting that specific user-selected parameters
within a single conditional probability distribution must be shared. This type of constraint
allows representing statements such as: “Given this combination of causes, several effects
are equally likely”. Since the scope of this constraint type does not go beyond the level of a
single conditional probability distribution within a single CPT, the problem of maximizing
the data likelihood can be split into a set of independent optimization subproblems, one for
each such conditional probability distribution. Let us consider one of these subproblems
(for a variable X and a specific value PA(X) = pa of the parents). Assume the parameter
constraint asserts that several parameters are equal by asserting that the parameter θi

appears in ki different positions in the conditional distribution. Denote by Ni the cumulative
observed count corresponding to θi. The cumulative observed count is the sum of all the
observed counts corresponding to the ki positions where θi appears in the distribution. Let
N =

∑
i Ni be the sum of all observed counts in this conditional probability distribution

i.e. the total number of observed cases with PA(X) = pa.

At first it may appear that we can develop Maximum Likelihood estimates for θi and
the other network parameters using standard methods, by introducing new variables that
capture the groups of shared parameters. To see that this is not the case, consider the
following example. Assume a variable X with values {1, 2, 3, 4} depends on Y . Moreover,
assume the parameter constraint states that P (X = 1|Y = 0) = P (X = 2|Y = 0) and
P (X = 3|Y = 0) = P (X = 4|Y = 0). Then one can introduce variable X12 which is 1
if X ∈ {1, 2} and 0 otherwise. This variable is assumed dependent on Y and added as a
parent of X. It is easy to see that P (X|X12 = 0, Y = 0) must be equal to the distribution
on {1, 2, 3, 4} that assigns half probability to each of 3 and 4. Therefore, if Y takes only
one value, the task of finding Maximum Likelihood estimators with Parameter Sharing is
reduced to the one of finding standard Maximum Likelihood estimators for X12|Y = 0.
However, if Y takes only one value, then we can safely remove it as a parent of X. When
Y can take two values, 0 and 1, assume the expert states the additional assumption that
P (X = 1|Y = 1) = P (X = 3|Y = 1) = P (X = 4|Y = 1). Now we need to introduce a
new variable X134 that depends on Y and add it as a parent of X. There must be an edge
between X12 and X134 because, otherwise, the structural assumption that X12 and X134 are
conditionally independent given Y is obviously not true. Assuming X12 is the parent of X134,
the constraints given by the expert need to be modelled in the distribution P (X134|X12, Y )
instead. Not only did we fail to encode the constraints in the new structure, but we also
complicated the problem by adding two nodes in our network. A similar argument holds
for all discrete types of parameter constraints presented in this section.

Below we present closed form solutions for the Maximum Likelihood estimators from
complete data and for the normalization constant for the corresponding Constrained Dirich-
let Priors used to perform Maximum Aposteriori estimation. These priors are similar to the
standard Dirichlet Priors, but they assign zero probability over the space where the expert’s
constraints are not satisfied. The normalization constant for the Constrained Dirichlet Prior
can be computed over the scope of a certain constraint and then all such constants are mul-
tiplied to obtain the normalization constant for the prior over the whole set of parameters
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of the Bayesian Network. We also present an EM algorithm to approach learning from
incomplete data under this type of parameter sharing.

4.1.1 Maximum Likelihood Estimation from Complete Data

Theorem 1 The Maximum Likelihood Estimators for the parameters in the above condi-
tional probability distribution are given by:

θ̂i =
Ni

ki ·N
Proof The problem of maximizing the data log-likelihood subject to the parameter shar-
ing constraints can be broken down in subproblems, one for each conditional probability
distribution. One such subproblem can be restated as:

P : argmax {h(θ) | g(θ) = 0}

where h(θ) =
∑

i Ni log θi and g(θ) = (
∑

i ki · θi)− 1 = 0

When all counts are positive, it can be easily proved that P has a global maximum
which is achieved in the interior of the region determined by the constraints. In this case
the solution of P can be found using Lagrange Multipliers. Introduce Lagrange Multiplier
λ for the constraint in P . Let LM(θ, λ) = h(θ)−λ · g(θ). Then the point which maximizes
P is among the solutions of the system ∇LM(θ, λ) = 0. Let (θ̂, λ) be a solution of this
system. We have: 0 = ∂LM

∂θi
= Ni

θi
− λ · ki for all i. Therefore, ki · θ̂i = Ni

λ . Summing up for
all values of i, we obtain:

0 =
∂LM

∂λ
= (

∑

i

ki · θ̂i)− 1 = (
∑

i

Ni

λ
)− 1 =

N

λ
− 1

From the last equation we compute the value of λ = N . This gives us: θ̂i = Ni
ki·N .

The fact that θ̂ is the set of Maximum Likelihood estimators follows because the objective
function is concave and because the constraint is a linear equality.

4.1.2 Constrained Dirichlet Priors

From a Bayesian point of view, each choice of parameters can occur with a certain proba-
bility. To make learning easier, for this type of parameter constraints, we employ conjugate
Constrained Dirichlet Priors that have the following form for a given conditional probability
distribution in the Bayesian Network:

P (θ) =
{

1
Z

∏n
i=1 θαi−1

i if θ ≥ 0,
∑

ki · θi = 1
0 otherwise

Maximum Aposteriori estimation can be now performed in exactly the same way as
Maximum Likelihood estimation (see Theorem 1), with the only difference that the objective
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function becomes P (θ|D) ∝ P (D|θ) ·P (θ). The normalization constant Z can be computed
by integration and depends on the elimination order. If θn is eliminated first, we obtain:

Zn =
kn∏n

i=1 kαi
i

·
∏n

i=1 Γ(αi)
Γ(

∑n
i=1 αi)

The above normalization should be thought of as corresponding to P (θ1, . . . , θn−1).
If we eliminate a different parameter first when computing the integral, then we obtain a
different normalization constant which corresponds to a different (n−1)-tuple of parameters.
Note that having different constants is not an inconsistency, because the corresponding
probability distributions over n− 1 remaining parameters can be obtained from each other
by a variable substitution based on the constraint

∑
ki · θi = 1. It is easy to see (Niculescu,

2005) that learning procedures are not affected in any way by which parameter is eliminated.
In the case of no parameter sharing (that is ki = 1 for all i), all these normalization constants
are equal and we obtain the standard Dirichlet Prior.

4.1.3 Maximum Likelihood Estimation from Incomplete Data

It can be easily proved that learning with incomplete data can be achieved via a modified
version of the standard Expectation Maximization algorithm used to train Bayesian Net-
works, where in the E-Step the expected counts are estimated and in the M-Step parameters
are re-estimated using these expected counts based on Theorem 1.

Algorithm 1 (Expectation Maximization for discrete Bayesian Networks) Ran-
domly initialize the network parameters with a value θ̂0. Repeat the following two steps until
convergence is reached:

E-Step: At iteration t+1, use any inference algorithm to compute expected counts E[Ni|θ̂t]
and E[N |θ̂t] for each distribution in the network under the current parameter estimates θ̂t.

M-Step: Re-estimate the parameters θ̂t+1 using Theorem 1, assuming that the observed
counts are equal to the expected counts given by the E-Step.

4.2 Parameter Sharing in Hidden Process Models

A Hidden Process Model (HPM) is a probabilistic framework for modelling time series data
(Hutchinson et al., 2005, 2006) which predicts the value of a target variable X at a given
point in time as the sum of the values of certain Hidden Processes that are active. The HPM
model is inspired by our interest in modelling hidden cognitive processes in the brain, given
a time series of observed fMRI images of brain activation. One can think of the observed
image feature X as the value of the fMRI signal in one small cube inside the brain (also
called a voxel). A hidden process may be thought of as a mental process that generates
fMRI activity at various locations in the brain, in response to an external stimulus. For
example, a “ComprehendPicture” process may describe the fMRI signal that happens in
the brain starting when the subject is presented with a picture. A “ComprehendSentence”
process may provide the same characterization for the situation when a subject is reading a
sentence. HPMs assume several cognitive processes may be active at the some point in time,
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and assume in such cases the observed fMRI signal is the sum of the corresponding processes,
translated according to their starting times. Hidden Process Models can be viewed as a
subclass of Dynamic Bayesian networks, as described in Hutchinson et al. (2006).

Formally, a Hidden Process Model is defined by a collection of time series (also called
hidden processes): P1, . . . , PK . For each process Pk with 1 ≤ k ≤ K, denote by Pkt the
value of its corresponding time series at time t after the process starts. Also, let Xt be the
value of the target variable X at time t. If process Pk starts at time tk, then a Hidden
Process Model predicts the random variable Xt will follow the distribution:

Xt ∼ N(
∑

k

Pk(t−tk+1), σ
2)

where σ2 is considered to be the variance in the measurement and is kept constant across
time. For the above formula to make sense, we consider Pkt = 0 if t < 0. Figure 1 shows
an example of a Hidden Process Model for the fMRI activity in a voxel in the brain during
a cognitive task involving reading a sentence and looking at a picture.

In general HPMs allow modeling uncertainty about the timing of hidden processes, allow
uncertainty about the types of the processes, and allow for multiple instances of the same
process to be active simultaneously (Hutchinson et al., 2006). However, in the treatment
and experiments in this paper we make three simplifying assumptions. We assume the times
at which the hidden processes occur are known, that the types of the processes are known,
and that two instances of the same types of process may not be active simultaneously.
These three simplifying assumptions lead to a formulation of HPMs that is equivalent to
the analysis approach of Dale (1999) based on multivariate regression within the General
Linear Model.

In a typical fMRI experiment, the subject often performs the same cognitive task mul-
tiple times, on multiple trials, providing multiple observation sequences of the variable X.
In our framework we denote by Xnt the value of Xt during trial n, and by tnk the starting
point of process Pk during trial n. Let N be the total number of observations. We can now
write:

Xnt ∼ N(
∑

k

Pk(t−tnk+1), σ
2)

While not entirely necessary for our method to work, we assume that X is tracked for
the same length of time in each trial. Let T be the length of every such trial (observation).
Since we are not modelling what happens when t > T , we can also assume that each process
has length T .

The natural constraints of this domain lead to an opportunity to specify prior knowledge
in the form of parameter constraints, as follows: an external stimulus will typically influence
the activity in multiple voxels of the brain during one cognitive task. For example, looking
at a picture may activate many voxels in the visual cortex. The activation in these voxels
may be different at each given point in time. Intuitively, that means the same stimulus may
produce different hidden processes in different voxels. However, certain groups of voxels that
are close together often have similarly shaped time series, but with different amplitude.
In this case, we believe it is reasonable to assume that the underlying hidden processes
corresponding to these voxels are proportional to one another. Experiments performed in
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Figure 1: A Hidden Process Model to model a human subject who is asked to read a sentence and
to look at a picture. In half of the observations, the sentence is presented first, then
the picture is shown. In the other half of the observations, the picture is presented first.
The activity in a given voxel X in the brain is modelled as a Hidden Process Model
with two processes: ”Sentence” (P1) and ”Picture” (P2). Each observation has length
T = 32 fMRI snapshots (16 seconds) and the same holds for both processes. This figure
shows an observation where the sentence is presented at time t1 = 1 and the picture is
shown at t2 = 17 (8 seconds after t1). After time t2, the two processes overlap and the
fMRI signal Xt′ is the sum of the corresponding values of the two processes plus N(0, σ2)
measurement variance. The blue dotted line represents the fMRI activity that would
happen after time T .
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Section 5 will prove that this assumption will help learn better models than the ones that
choose to ignore it.

In the above paragraph we explained intuitively that sometimes it makes sense to share
the same base processes across several time-varying random variables, but allow for different
scaling factors. Formally, we say that time-varying random variables X1, . . . , XV share their
corresponding Hidden Process Models if there exist base processes P1, . . . , PK and constants
cv
k for 1 ≤ v ≤ V such that:

Xv
nt ∼ N(

∑

k

cv
k · Pk(t−tvnk+1), σ

2)

and the values of different variables Xv are independent given the parameters of the model.
Here σ2 represents the variance in measurement which is also shared across these variables.

We now consider how to efficiently perform Maximum Likelihood estimation of the pa-
rameters of the variables X1, . . . , XV , assuming that they share their corresponding Hidden
Process Model parameters as described above. The parameters to be estimated are the base
process parameters Pkt where 1 ≤ k ≤ K and 1 ≤ t ≤ T , the scaling constants cv

k (one for
each variable V and process k) where 1 ≤ v ≤ V and the common measurement variance
σ2. Let P = {Pkt | 1 ≤ k ≤ K, 1 ≤ t ≤ T} be the set of all parameters involved in the base
processes and let C = {cv

k | 1 ≤ k ≤ K, 1 ≤ v ≤ V } be the set of scaling constants. Subse-
quently, we will think of these sets as column vectors. Recall that N represents the number
of observations. After incorporating the parameter sharing constraints in the log-likelihood
function, our optimization problem becomes:

P : argmax l(P, C, σ)

where

l(P, C, σ) = −NTV

2
· log(2π)−NTV · log(σ)− 1

2 · σ2
·
∑
n,t,v

(xv
nt −

∑

k

cv
k · Pk(t−tvnk+1))

2

It is easy to see that the value of (P, C) that maximizes l is the same for all values of σ.
Therefore, to maximize l, we can first minimize l′(P, C) =

∑
n,t,v(x

v
nt−

∑
k cv

k ·Pk(t−tvnk+1))2

with respect to (P, C) and then maximize l with respect to σ based on the minimum point
for l′. One may notice that l′ is a sum of squares, where the quantity inside each square
can be seen as a linear function in both P and C. Therefore one can imagine an iterative
procedure that first minimizes with respect to P , then with respect to C using the Least
Squares method. Once we find M = min l′(P, C) = l′(P̂ , Ĉ), the value of σ that maximizes
l is given by σ̂2 = M

NV T . This can be derived in a straightforward fashion by enforcing
∂l
∂σ (P̂ , Ĉ, σ̂) = 0. With these considerations, we are now ready to present an algorithm to
compute Maximum Likelihood estimators (P̂ , Ĉ, σ̂) of the parameters in the shared Hidden
Process Model:

12
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Algorithm 2 (Maximum Likelihood Estimators in a Shared Hidden Process
Model) Let X̄ be the column vector of values xv

nt. Start with a random guess (P̂ , Ĉ)
and then repeat Steps 1 and 2 until they converge to the minimum of the function l′(P,C).

STEP 1. Write l′(P̂ , Ĉ) = ||A · P̂ −X̄||2 where A is a NTV by KT matrix that depends on
the current estimate Ĉ of the scaling constants. More specifically, each row of A corresponds
to one of the squares from l′ and each column corresponds to one of the KT parameters of
the base processes (the column number associated with such a parameter must coincide with
its position in column vector P ). Minimize with respect to P̂ using ordinary Least Squares
to get a new estimate P̂ = (AT ·A)−1 ·AT · X̄.

STEP 2.Write l′(P̂ , Ĉ) = ||B · Ĉ− X̄||2 where B is a NTV by KV matrix that depends on
the current estimate P̂ of the base processes. More specifically, each row of B corresponds
to one of the squares from l′ and each column corresponds to one of the KV scaling con-
stants (the column number associated with such a constant must coincide with its position
in column vector C). Minimize with respect to Ĉ using ordinary Least Squares to get a new
estimate Ĉ = (BT ·B)−1 ·BT · X̄.

STEP 3. Once convergence is reached by repeating the above two steps, let σ̂2 = l′(P̂ ,Ĉ)
NV T .

It might seem that this is a very expensive algorithm because it is an iterative method.
However, we found that when applied to fMRI data in our experiments, it usually converges
in 3-5 repetitions of Steps 1 and 2. We believe that the main reason why this happens is
because at each partial step during the iteration we compute a closed form global minimizer
on either P̂ or Ĉ instead of using a potentially expensive gradient descent algorithm. In
Section 5 we will experimentally prove the benefits of this algorithm over methods that do
not take advantage of parameter sharing assumptions.

One may suspect that it is easy to learn the parameters of the above model because
it is a particular case of bilinear model. However, this is not the case. In the bilinear
model representation (Tenenbaum and Freeman, 2000), the style matrices will correspond
to process parameters P and the content vectors will correspond to scaling constants. It is
easy to see that in our case the style matrices have common pieces, depending on when the
processes started in each example. Therefore, the SVD method presented in Tenenbaum
and Freeman (2000) that assumes independence of these style matrices is not appropriate
in our problem.

4.3 Other Classes of Parameter Constraints

In the above subsections we discussed efficient methods to perform parameter estimation
for two types of parameter constraints: one for discrete variables and one for continuous
variables. These methods bypass the need for the potentially expensive use of methods
such as Newton-Raphson. There are a number of additional types of Parameter Constraints
for which we have developed closed form Maximum Likelihood and Maximum Aposteriori
estimators: equality and inequality constraints, on individual parameters as well as on
sums and ratios of parameters, for discrete and continuous variables. Moreover, in some
of these cases, we were able to compute the normalization constant in closed form for the
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corresponding constrained priors, which allows us to perform parameter learning from a
Bayesian point of view. All these results can be found in Niculescu (2005). We briefly
describe these types of parameter constraints below, and provide real-world examples of
prior knowledge that can be expressed by each form of constraint.

• Constraint Type 1: Known Parameter values, Discrete. Example: If a patient has a
heart attack (Disease = “Heart Attack”), then there is a 90% probability that the
patient will experience chest pain.

• Constraint Type 2: Parameter Sharing, One Distribution, Discrete. Example: Given
a combination of risk factors, several diseases are equally likely.

• Constraint Type 3: Proportionality Constants, One Distribution, Discrete. Example:
Given a combination of risk factors, disease A is twice as likely to occur as disease B.

• Constraint Type 4: Sum Sharing, One Distribution, Discrete. Example: A patient
who is a smoker has the same chance of having a Heart Disease (Heart Attack or
Congestive Heart Failure) as having a Pulmonary Disease (Lung Cancer or Chronic
Obstructive Pulmonary Disease).

• Constraint Type 5: Ratio Sharing, One Distribution, Discrete. Example: In a bilin-
gual corpus, the relative frequencies of certain groups of words are the same, even
though the aggregate frequencies of these groups may be different. Such groups of
words can be: “words about computers” (“computer”, “mouse”, “monitor”, “key-
board” in both languages) or “words about business”, etc. In some countries computer
use is more extensive than in others and one would expect the aggregate probability
of “words about computers” to be different. However, it would be natural to assume
that the relative proportions of the “words about computers” are the same within the
different languages.

• Constraint Type 6: General Parameter Sharing, Multiple Distributions, Discrete. Ex-
ample: The probability that a person will have a heart attack given that he is a smoker
with a family history of heart attack is the same whether or not the patient lives in a
polluted area.

• Constraint Type 7: Hierarchical Parameter Sharing, Multiple Distributions, Discrete.
Example: The frequency of several international words (for instance “computer”)
may be shared across both Latin languages (Spanish, Italian) and Slavic languages
(Russian, Bulgarian). Other Latin words will have the same frequency only across
Latin languages and the same holds for Slavic Languages. Finally, other words will be
language specific (for example names of country specific objects) and their frequencies
will not be shared with any other language.

• Constraint Type 8: Sum Sharing, Multiple Distributions, Discrete. Example: The
frequency of nouns in Italian is the same as the frequency of nouns in Spanish.

• Constraint Type 9: Ratio Sharing, Multiple Distributions, Discrete. Example: In
two different countries (A and B), the relative frequency of Heart Attack to Angina
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Pectoris as the main diagnosis is the same, even though the the aggregate probability
of Heart Disease (Heart Attack and Angina Pectoris) may be different because of
differences in lifestyle in these countries.

• Constraint Type 10: Inequalities between Sums of Parameters, One Distribution, Dis-
crete. Example: The aggregate probability mass of adverbs is no greater than the
aggregate probability mass of the verbs in a given language.

• Constraint Type 11: Upper Bounds on Sums of Parameters, One Distribution, Dis-
crete. Example: The aggregate probability of nouns in English is no greater than
0.4.

• Constraint Type 12: Parameter Sharing, One Distribution, Continuous. Example:
The stock of computer maker DELL as a Gaussian whose mean is a weighted sum
of the stocks of software maker Microsoft (MSFT) and chip maker Intel (INTL).
Parameter sharing corresponds to the statement that MSFT and INTL have the same
importance (weight) for predicting the value of stock DELL.

• Constraint Type 13: Proportionality Constants, One Distribution, Continuous. Ex-
ample: Suppose we also throw in the stock of a Power Supply maker (PSUPPLY) in
the linear mix in the above example. The expert may give equal weights to INTL and
MSFT, but five times lower to PSUPPLY.

• Constraint Type 14: Parameter Sharing for Hidden Process Models. Example: Several
neighboring voxels in the brain exhibit similar activation patterns, but with different
amplitudes when a subject is presented with a given stimulus.

Note that general parameter sharing (Constraint Type 6) encompasses models including
HMMs, Dynamic Bayesian Networks, Module Networks and Context Specific Independence
as particular cases, but allows for much finer grained sharing, at the level of individual
parameters, across different variables and across distributions of different lengths. Briefly,
this general parameter sharing allows for a group of conditional probability distributions to
share some parameters across all distributions in the group, but not share the remaining
parameters. This type of parameter constraint is described in more detail in Niculescu
et al. (2005) where we demonstrate our estimators on a task of modelling synthetic emails
generated by different subpopulations.

It is also important to note that different types of parameter constraints can be mixed
together when learning the parameters of a Bayesian Network as long as the scopes of these
constraints do not overlap.

5. Experiments

In this section we present experiments on both synthetic and real world data. Our experi-
ments demonstrate that Bayesian Network models that take advantage of prior knowledge
in the form of parameter constraints outperform similar models which choose to ignore this
kind of knowledge.
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5.1 Synthetic Data - Estimating Parameters of a Discrete Variable

This section describes experiments involving one of the simplest forms of parameter con-
straint: Parameter Sharing within One Distribution, presented in subsection 4.1. The
purpose of these experiments is purely demonstrative and a more complicated scenario, on
real world data, will be presented in subsection 5.2.

5.1.1 Experimental Setup

Here, our task is to estimate the set of parameters of a Bayesian Network which consists of
one discrete variable X. We assume that prior knowledge is available that the distribution
of X shares certain parameters. Without loss of generality, we consider that the parameter
constraint states that the parameters to estimate are given by θ = {θ1, . . . , θn} where θi

appears in ki ≥ 1 known places in the distribution of X.
Our synthetic dataset was created as follows: first, we randomly generated a distribution

T (the ”true distribution”) that exhibits parameter sharing. This distribution described
a variable X with 50 values, which had a total of roughly 50% shared parameters i.e.∑

ki>1 ki ≈
∑

ki=1 ki. Each distinct parameter appeared at most 5 times. We start with
an empty distribution and generate a uniformly random parameter v between 0 and 1.
Then we generate a random integer s between 2 and 5 and share v in the first s places of
the distribution. We continue to generate shared parameters until we reach 25 (50% of 50
parameters). After that, we generate the rest of parameters uniformly randomly between 0
and 1. After all 50 parameters are obtained using this procedure, we normalize to yield a
valid probability distribution. Once this distribution was generated, we sampled it to obtain
a dataset of 1000 examples which were used subsequently to perform parameter estimation.

In our experiments we compare two models that estimate the parameters of distribution
T over X. One is a standard Bayesian Network (STBN) that is learned using standard
Bayesian Networks Maximum Likelihood estimators with no parameter sharing. The second
model (PDKBN) is a Bayesian Network that is learned using the results in 4.1 assuming the
correct parameter sharing was specified by an oracle. While STBN needs to estimate

∑n
i=1 ki

parameters, PDKBN only needs to estimate n parameters. To deal with potentially zero
observed counts, we used priors on the parameters of the two models and then performed
Maximum Aposteriori estimation. For STBN we introduced a Dirichlet count of 2 for each
parameter while for PDKBN we used a Constrained Dirichlet count of ki+1 for each distinct
parameter θi in the network. The role of these priors is simply to assure strictly positive
counts.

5.1.2 Results and Discussion

We performed parameter estimation for the STBN and PDKBN models, varying the number
of examples in the training set from 1 to 1000. Since we were using synthetic data, we
were able to assess performance by computing KL(T,STBN) and KL(T,PDKBN), the KL
divergence from the true distribution T .

Figure 2 shows a graphical comparison of the performance of the two models. It can be
seen that our model (PDKBN) that takes advantage of parameter constraints consistently
outperforms the standard Bayesian Network model which does not employ such constraints.
The difference between the two models is greatest when the training data is most sparse.
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Figure 2: KL divergence of PDKBN and STBN with respect to correct model T.

The highest observed difference between KL(T,STBN) and KL(T,PDKBN) was 0.05, which
was observed when the two models were trained using 30 examples. As expected, when the
amount of training data increases, the difference in performance between the two models
decreases dramatically.

Training Examples KL(T,PDKBN) Examples needed by STBN
5 0.191 16
40 0.094 103
200 0.034 516
600 0.018 905
650 0.017 > 1000

Table 1: Equivalent training set size so that STBN achieves the same performance as PDKBN.

To get a better idea of how beneficial the prior knowledge in these parameter constraints
can be in this case, let us examine “how far STBN is behind PDKBN”. For a model PDKBN
learned from a dataset of a given size, this can be measured by the number of examples that
STBN requires in order to achieve the same performance. Table 1 provides these numbers
for several training set sizes for PDKBN. For example, STBN uses 16 examples to achieve
the same KL divergence as PDKBN at 5 examples, which is a factor of 3.2 (the maximum
observed) increase in the number of training samples required by STNB. On average, STBN
needs 1.86 times more examples to perform as well as PDKBN.

As mentioned previously, this subsection was intended to be only a proof of concept.
We next provide experimental results on a very complex task involving several thousand
random variables and prior knowledge in the form of parameter constraints across many
conditional probability distributions.

17



Niculescu, Mitchell and Rao

5.2 Real World Data - fMRI Experiments

As noted earlier, functional Magnetic Resonance Imaging (fMRI) is a technique for obtaining
three-dimensional images of activity in the brain, over time. Typically, there are ten to
fifteen thousand voxels (three dimensional pixels) in each image, where each voxel covers a
few tens of millimeters of brain tissue. Due to the nature of the signal, the fMRI activation
observable due to neural activity extends for approximately 10 seconds after the neural
activity, resulting in a temporally blurred response (see Mitchell et al. (2004) for a brief
overview of machine learning approaches to fMRI analysis).

This section presents a generative model of the activity in the brain while a human sub-
ject performs a cognitive task, based on the Hidden Process Model and parameter sharing
approach discussed in section 4.2. In this experiment involving real fMRI data and a com-
plex cognitive task, domain experts were unable to provide parameter sharing assumptions
in advance. Therefore, we have developed an algorithm to automatically discover clusters of
voxels that can be more accurately learned with shared parameters. This section describes
the algorithm for discovering these parameter sharing constraints, and shows that training
under these parameter constraints leads to Hidden Process Models that far outperform the
baseline Hidden Process Models learned in the absence of such parameter constraints.

5.2.1 Experimental Setup

The experiments reported here are based on fMRI data collected in a study of sentence and
picture comprehension (Carpenter et al., 1999). Subjects in this study were presented with
a sequence of 40 trials. In 20 of these trials, the subject was first presented with a sentence
for 4 seconds, such as “The plus sign is above the star sign.”, then a blank screen for 4
seconds, and finally a picture such as

+
*

for another 4 seconds. During each trial, the subject was required to press a “yes” or
“no” button to indicate whether the sentence correctly described the picture. During the
remaining 20 trials the picture was presented first and the sentence presented second, using
the same timing.

In this dataset, the voxels were grouped into 24 anatomically defined spatial regions of
interest (ROIs), each voxel having a resolution of 3 by 3 by 5 millimeters. An image of the
brain was taken every half second. For each trial, we considered only the first 32 images
(16 seconds) of brain activity. The results reported in this section are based on data from a
single human subject (04847). For this particular subject, our dataset tracked the activity
of 4698 different voxels.

We model the activity in each voxel by a Hidden Process Model with two processes,
corresponding to the cognitive processes of comprehending a Sentence or a Picture. The
start time of each processes is assumed to be known in advance (i.e., we assume the process
begins immediately upon seeing the sentence or picture stimulus). We further assume that
the activity in different voxels is independent given the hidden processes corresponding to
these voxels. Since the true underlying distribution of voxel activation is not known, we use
the Average Log-Likelihood Score (the log-likelihood of the test data divided by the number
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of test examples) to assess performance of the trained HPMs. Because data is scarce, we
can not afford to keep a large held-out test set. Instead, we employ a leave-two-out cross-
validation approach to estimate the performance of our models.

In our experiments we compare three HPM models. The first model StHPM, which we
consider a baseline, consists of a standard Hidden Process Model learned independently
for each voxel. The second model ShHPM is a Hidden Process Model, shared for all the
voxels within an ROI. In other words, all voxels in a specific ROI share the same shape
hidden processes, but with different amplitudes (see Section 4.2 for more details). ShHPM
is learned using Algorithm 2. The third model (HieHPM) also learns a set of Shared Hidden
Process Models, but instead of assuming a priori that a particular set of voxels should be
grouped together, it chooses these voxel groupings itself, using a nested cross-validation
hierarchical approach to both come up with a partition of the voxels in clusters that form
a Shared Hidden Process Model. The algorithm is as follows:

Algorithm 3 (Hierarchical Partitioning and Hidden Process Models learning)

STEP 1. Split the 40 examples into a set containing 20 folds F = {F1, . . . , F20}, each fold
containing one example where the sentence is presented first and one example where the
picture is presented first.

STEP 2. For all 1 ≤ k ≤ 20, keep fold Fk aside and learn a model from the remaining
folds using Steps 3-5.

STEP 3. Start with a partition of all voxels in the brain by their ROIs and mark all subsets
as Not Final.

STEP 4. While there are subsets in the partition that are Not Final, take any such subset
and try to split it using equally spaced hyperplanes in all three directions (in our experi-
ments we split each subset into 4 (2 by 2) smaller subsets. If the cross-validation Average
Log Score of the model learned from these new subsets using Algorithm 2 (based on folds
F \Fk) is lower than the cross-validation Average Log Score of the initial subset for folds in
F \ Fk, then mark the initial subset as Final and discard its subsets. Otherwise remove the
initial subset from the partition and replace it with its subsets which then mark as Not Final.

STEP 5. Given the partition computed by STEPS 3 and 4, based on the 38 data points in
F \ Fk, learn a Hidden Process Model that is shared for all voxels inside each subset of the
partition. Use this model to compute the log score for the examples/trials in Fk.

STEP 6. In Steps 2-4 we came up with a partition for each fold Fk. To come up with one
single model, compute a partition using STEPS 3 and 4 based on all 20 folds, then, based
on this partition learn a model as in STEP 5 using all 40 examples. The Average Log Score
of this last model can be estimated by averaging the numbers obtained in STEP 5.
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5.2.2 Results and Discussion

We estimated the performance of our three models using the Average Log Score, based on
a leave two out cross-validation approach, where each fold contains one example in which
the sentence is presented first, and one example in which the picture is presented first.

Training No Sharing All Shared Hierarchical Cells
Trials (StHPM) (ShHPM) (HieHPM) (HieHPM)

6 -30497 -24020 -24020 1
8 -26631 -23983 -23983 1
10 -25548 -24018 -24018 1
12 -25085 -24079 -24084 1
14 -24817 -24172 -24081 21
16 -24658 -24287 -24048 36
18 -24554 -24329 -24061 37
20 -24474 -24359 -24073 37
22 -24393 -24365 -24062 38
24 -24326 -24351 -24047 40
26 -24268 -24337 -24032 44
28 -24212 -24307 -24012 50
30 -24164 -24274 -23984 60
32 -24121 -24246 -23958 58
34 -24097 -24237 -23952 61
36 -24063 -24207 -23931 59
38 -24035 -24188 -23921 59
40 -24024 -24182 -23918 59

Table 2: The effect of training set size on the Average Log Score of the three models in the Visual
Cortex (CALC) region.

Our first set of experiments, summarized in Table 2, compared the three models based
on their performance in the Visual Cortex (CALC). This is one of the ROIs actively involved
in this cognitive task and it contains 318 voxels. The training set size was varied from 6
examples to all 40 examples, in multiples of two. Sharing the parameters of Hidden Process
Models proved very beneficial and the impact was observed best when the training set size
was the smallest. With an increase in the number of examples, the performance of ShHPM
starts to degrade because it makes the biased assumption that all voxels in CALC can be
described by a single Shared Hidden Process Model. While this assumption paid off with
small training set size because of the reduction in variance, it definitely hurt in terms of
bias with larger sample size. Even though the bias was obvious in CALC, we will see in
other experiments that in certain ROIs, this assumption holds and in those cases the gains
in performance may be quite large.

As expected, the hierarchical model HieHPM performed better than both StHPM and
ShHPM because it takes advantage of Shared Hidden Process Models while not making the
restrictive assumption of sharing across entire ROIs. The largest difference in performance
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between HieHPM and StHPM is observed at 6 examples, in which case StHPM basically
fails to learn a reasonable model while the highest difference between HieHPM and ShHPM
occurs at the maximum number of examples, presumably when the bias of ShHPM is most
harmful. As the number of training examples increases, both StHPM and HieHPM tend to
perform better and better and one can see that the marginal improvement in performance
obtained by the addition of two new examples tends to shrink as both models approach con-
vergence. While with an infinite amount of data, one would expect StHPM and HieHPM
to converge to the true model, at 40 examples, HieHPM still outperforms the baseline model
StHPM by a difference of 106 in terms of Average Log Score, which is an improvement of
e106 in terms of data likelihood.

Probably the measure that shows best the improvement of HieHPM over the baseline
StHPM is the number of examples needed by StHPM to achieve the same performance
as HieHPM. It turns out that on average, StHPM needs roughly 2.9 times the number of
examples needed by HieHPM in order to achieve the same level of performance in the Visual
Cortex (CALC).

The last column of Table 2 displays the number of clusters of voxels in which HieHPM
partitioned CALC. As can be seen, at small sample size HieHPM draws its performance
from reductions in variance by using only one cluster of voxels. However, as the number
of examples increases, HieHPM improves by finding more and more refined partitions.
This number of shared voxel sets tends to stabilize around 60 clusters once the number of
examples reaches 30, which yields an average of more than 5 voxels per cluster given that
CALC is made of 318 voxels. For a training set of 40 examples, the largest cluster has 41
voxels while many clusters consist of only one voxel.

The second set of experiments (see Table 3) describes the performance of the three mod-
els for each of the 24 individual ROIs of the brain, and trained over the entire brain. While
we have seen that ShHPM was biased in CALC, we see here that there are several ROIs
where it makes sense to characterize all of its voxels by a single Shared Hidden Process
Model. In fact, in most of these regions, HieHPM finds only one cluster of voxels. Actually,
ShHPM outperforms the baseline model StHPM in 18 out of 24 ROIs while HieHPM outper-
forms StHPM in 23 ROIs. One may ask how StHPM can possibly outperform HieHPM on a
ROI, since HieHPM may also represent the case when there is no sharing. The explanation
is that the hierarchical approach can get stuck in a local maximum of the data log-likelihood
over the search space if it cannot improve by splitting at a specific step, since it is a greedy
process that does not look beyond that split for a finer grained partition. Fortunately, this
problem appears to be rare in these experiments.

Over the whole brain, HieHPM outperforms StHPM by a factor 1792 in terms of log
likelihood while ShHPM outperforms StHPM only by a factor of 464. The main drawback
of the ShHPM is that it also makes a very restrictive sharing assumption and therefore we
suggest HieHPM as the recommended approach. Next we give the reader a feel of what the
learned HieHPM model looks like.

As mentioned above, HieHPM automatically learns clusters of voxels that can be repre-
sented using a Shared Hidden Process Model. Figure 3 shows the portions of these learned
clusters in slice five of the eight vertical slices that make up the 3D brain image captured by
the fMRI scanner. Neighboring voxels that were assigned by HieHPM to the same cluster
are pictured with the same color. Note that there are several very large clusters in this
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ROI Voxels No Sharing All Shared Hierarchical Cells
(StHPM) (ShHPM) (HieHPM) Hierarchical

CALC 318 -24024 -24182 -23918 59
LDLPFC 440 -32918 -32876 -32694 11

LFEF 109 -8346 -8299 -8281 6
LIPL 134 -9889 -9820 -9820 1
LIPS 236 -17305 -17187 -17180 8
LIT 287 -21545 -21387 -21387 1

LOPER 169 -12959 -12909 -12909 1
LPPREC 153 -11246 -11145 -11145 1

LSGA 6 -441 -441 -441 1
LSPL 308 -22637 -22735 -22516 4
LT 305 -22365 -22547 -22408 18

LTRIA 113 -8436 -8385 -8385 1
RDLPFC 349 -26390 -26401 -26272 40

RFEF 68 -5258 -5223 -5223 1
RIPL 92 -7311 -7315 -7296 11
RIPS 166 -12559 -12543 -12522 20
RIT 278 -21707 -21720 -21619 42

ROPER 181 -13661 -13584 -13584 1
RPPREC 144 -10623 -10558 -10560 1

RSGA 34 -2658 -2654 -2654 1
RSPL 252 -18572 -18511 -18434 35
RT 284 -21322 -21349 -21226 24

RTRIA 57 -4230 -4208 -4208 1
SMA 215 -15830 -15788 -15757 10

All Brain 4698 -352234 -351770 -350441 299

Table 3: Per ROI performance (Average Log Score) of the three models when learned using all 40
examples.

picture. This may be because of the fact that it makes sense to represent an entire ROI
using a single Shared Hidden Process Model if the cognitive process does not activate voxels
in this ROI. However, large clusters are also found in areas like CALC, which we know is
directly involved in visual processing.

In Figure 4 we can see the learned Sentence hidden process for the voxels in the Visual
Cortex (CALC). Again, the graphs corresponding to voxels that belong to the same cluster
have been painted in the same color, which is also the same as the color used in Figure 3.
To make these graphs readable, we only plotted the base process, disregarding the scaling
(amplitude) constants corresponding to each voxel within a given cluster (consult Section
4.2 for more details about Shared Hidden Process Models).
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Figure 3: Parameter Sharing found using model HieHPM. Slice five of the brain is showed here.
Shared neighboring voxels have the same color.

Figure 4: Per voxel base Sentence processes in the Visual Cortex(CALC).

To summarize, this subsection presented experiments training different generative mod-
els for the fMRI signal during a cognitive task, all based on Hidden Process Models. We
demonstrated experimentally that Parameter Sharing for Hidden Process Models (as de-
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fined in Section 4.2) can greatly benefit learning, and that it is possible to automatically
discover useful parameter sharing constraints in this domain using our hierarchical parti-
tioning algorithm.

6. Formal Guarantees

Taking advantage of parameter constraints can be beneficial to learning because, intuitively,
it has the effect of lowering the variance in parameter estimators by shrinking the degrees
of freedom of the model. In this section we provide a formal proof of this fact. In order for
our proof to work, we make the assumption that the true distribution factors according to
the given Bayesian Network structure and that it obeys the parameter constraints provided
by the expert. The second interesting result presented in this section will give theoretical
guarantees in the case when the constraints provided by the expert are not entirely accurate.
While we only investigate this issue for one type of constraint, Parameter Sharing within One
Distribution (introduced in subsection 4.1), we believe similar formal guarantees describe
all other types of parameter constraints presented in this paper.

6.1 Variance Reduction by Using Parameter Constraints

Assume we want to learn a Bayesian Network in the case when a domain expert provides
parameter constraints specifying that certain parameters appear multiple times (are shared)
within a conditional probability distribution. Each conditional probability distribution in
the Bayesian Network can have its own such constraints. Also, the case when all parameters
are distinct within one such distribution may be seen as a particular case of Parameter
Sharing within One Distribution, where each parameter is shared exactly once.

There are two ways to perform Maximum Likelihood parameter learning in the above
Bayesian Network. First, one may choose to ignore the constraints given by the expert
and compute standard Maximum Likelihood estimators. A second option is to incorporate
the constraints in the learning method, in which case we can use the results described
in subsection 4.1. One would intuitively expect that taking advantage of the constraints
provided by the expert would reduce the variance in parameter estimates when compared
to the first approach. In Niculescu (2005) we prove the following result:

Theorem 2 Assuming a domain expert can specify parameter sharing assumptions that
take place inside the conditional probability distributions of a Bayesian Network, the Max-
imum Likelihood estimators that use this domain knowledge as computed with Theorem 1
have lower variance than standard Maximum Likelihood estimators computed ignoring the
domain knowledge. More specifically, for one parameter θijk that is shared s ≥ 1 times
within P (Xi|PAi = paik), denote by θ̂ML

ijk the Maximum Likelihood estimator that ignores
domain knowledge and by θ̂PS

ijk the Maximum Likelihood estimator that uses the parameter
sharing assumptions specified by the expert. We have the following identity:

V ar[θ̂ML
ijk ]− V ar[θ̂PS

ijk ] = θijk · (1−
1
s
) · E[

1
Nik

|Nik 6= 0] ≥ 0
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6.2 Performance with Potentially Inaccurate Constraints

Sometimes it may happen that the parameter constraints provided by an expert are not
completely accurate. In all our methods so far, we assumed that the parameter constraints
are correct and therefore errors in domain knowledge can prove detrimental to the perfor-
mance of our learned models. In this section we investigate the relationship between the
true, underlying distribution of the observed data and the distribution estimated using our
methods based on parameter constraints. In particular, we come up with an upper bound
on how well our estimated model can perform given a set of potentially incorrect parameter
constraints.

Assume an expert provides a set of potentially incorrect Parameter Sharing assumptions
as described in subsection 4.1. In other words, for each conditional probability distribution
c in the Bayesian Network, the expert is stating that parameter θic is shared in kic given
positions. We denote by Nic the cumulative observed count corresponding to the presum-
ably shared parameter θic and by Nc the cumulative observed count corresponding to the
conditional distribution c. Essentially, we follow the notations in subsection 4.1, to which
we add an additional index corresponding to the conditional probability distribution that
a parameter belongs to.

Let us introduce the notion of True Probabilistic Counts (TPC). Suppose P is the
true distribution from which data is sampled. If, for example, the expert states that θic

is the shared parameter that describes the set {P (X = x1|PA(X) = pa), . . . , P (X =
xkic

|PA(X) = pa)}, let TPCic =
∑kic

i=1 P (X = xi, PA(X) = pa). Let P ∗ be the distribution
that factorizes according to the structure provided by the expert and has parameters given
by theorem 1 where the observed counts are replaced by the True Probabilistic Counts.

Theorem 3 P ∗ is the closest distribution to P (in terms of KL(P, ·)) that factorizes ac-
cording to the given structure and obeys the expert’s parameter sharing assumptions.

Proof Let Q be such a distribution. Minimizing K(P,Q) is equivalent to maximizing∑
d P (d) · log Q(d). Let θ be the set of parameters that describe this distribution Q. After

breaking the logarithms into sums of logarithms based on the factorization given by the pro-
vided structure, our optimization problem reduces to the maximization of

∑
TPCic · log θic.

This is exactly the objective function used in theorem 1. This is equivalent to the fact that
P ∗(see the definition above) minimizes KL(P, ·) out of all the distributions that factorize
according to the given structure and obey the expert’s sharing assumptions.

Theorem 4 With an infinite amount of data, the distribution P̂ given by the Maximum
Likelihood estimators in Theorem 1 converges to P ∗ with probability 1.

Proof Assume the number of data points in a dataset sampled from P is denoted by n.
According to the Law of Large Numbers, we have limn→∞Nic

n = TPCic. This implies that
P̂ converges to P ∗ with probability 1.

25



Niculescu, Mitchell and Rao

Corollary 5 If the true distribution P factorizes according to the given structure and if
the parameter sharing provided by the expert is completely accurate, then the distribution P̂
given by the estimators computed in Theorem 1 converges to P with probability 1.

Again, we mention that we analyzed the formal guarantees presented in this section
using only one type of parameter constraints. We are confident that these results can be
extended to all other types of constraints for which we computed closed form solutions.

7. Conclusions and Future Work

Building accurate models from limited training data is possible only by using some form of
prior knowledge to augment the data. In this paper we have demonstrated both theoreti-
cally and experimentally that the standard methods for parameter estimation in Bayesian
Networks can be naturally extended to accommodate parameter constraints capable of ex-
pressing a wide variety of prior domain knowledge.

We mentioned our previous work on methods for incorporating general parameter con-
straints into estimators for the parameters of a Bayesian Network, by framing this task as
a constrained optimization problem. In the general case, solving the resulting optimization
problem may be very difficult. Fortunately, in practice the optimization problem can often
be decomposed into a set of many smaller, independent, optimization subproblems. We have
presented parameter estimators for several types of constraints, including constraints that
force various types of parameter sharing, and constraints on sums and other relationships
among groups of parameters. Subsection 4.3 provides a comprehensive list of the parameter
constraint types we have studied, along with brief examples of each. We considered learning
with both discrete and continuous variables, in the presence of both equality and inequality
constraints. While for most of these types of parameter constraints we can derive closed
form Maximum Likelihood estimators, we developed a very efficient iterative algorithm to
perform the same task for Shared Hidden Process Models. In many of these cases, for
discrete variables, we are also able to compute closed form normalization constants for the
corresponding Constrained Parameter Priors, allowing one to perform closed form MAP
and Bayesian estimation when the data is complete.

The General Parameter Sharing domain knowledge type (Constraint Type 6 defined in
subsection 4.3) encompasses models including HMMs, Dynamic Bayesian Networks, Module
Networks and Context Specific Independence as particular cases, but allows for much finer
grained sharing, at the parameter level, across different variables and across distributions
of different lengths. It is also important to note that one can combine different types of
parameter constraints when learning the parameters of a Bayesian Network as long as the
scopes of these constraints do not overlap.

Experimental results using an fMRI brain imaging application demonstrate that tak-
ing advantage of parameter constraints can be very beneficial for learning in this high-
dimensional, sparse-data domain. In the context of this application we developed methods
to automatically discover parameter sharing constraints. Using these methods our program
discovered clusters of voxels whose parameters can be shared. Our results showed that the
impact of these learned parameter constraints can be equivalent to almost tripling the size
of the training set on this task. Experiments on synthetic data demonstrated the same
beneficial effect of incorporating parameter constraints.
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A basic theoretical result is that the estimators taking advantage of a simple form of
parameter sharing achieve variance lower than that achieved by estimators that ignore
such constraints. We conjecture that similar results hold for other types of parameter
constraints, but their proof is left as future work. In addition, we proved that even when the
asserted parameter constraints turn out to be incorrect, given an infinite amount of training
data our Maximum Likelihood estimators converge to the best describable distribution;
that is, the distribution closest in terms of KL distance from the true distribution, among
all distributions that obey the parameter constraints and factor according to the given
structure.

We see many useful directions for future work. In this paper we have considered only how
to take advantage of deterministic parameter constraints when the structure of the Bayesian
Network is known in advance. It would be interesting to investigate methods to incorporate
probabilistic constraints in learning algorithms for Bayesian Networks. A second direction
to explore is to also use parameter constraints to perform structure learning. This might be
achieved by specifying an initial set of parameter constraints, then at each step of the hill
climbing during structure search performing a change of variable to adapt the constraints
to the new parameterization of the network. Finally, we would like to extend our results to
undirected graphical models, to the extent that it is intuitive to acquire domain knowledge
from an expert about the much harder to interpret parameters of such models.
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