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Abstract:  

Supply chain risk propagation is a cascading effect of risks on global supply chain networks. 

The paper attempts to measure the behaviour of risks following the assessment of supply 

chain risk propagation. Bayesian network theory is used to analyse the multi-echelon network 

faced with simultaneous disruptions. The ripple effect of node disruption is evaluated using 

metrics like fragility, service level, inventory cost and lost sales. Developed risk exposure 

and resilience indices support in assessing the vulnerability and adaptability of each node in 

the supply chain network. The research provides a holistic measurement approach for 

predicting the complex behaviour of risk propagation for improved supply chain risk 

management.  
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1. Introduction 

Supply Chain Risk Management (SCRM) follows a systematic approach for managing risks 

by identifying, quantifying and mitigating the risks. Current supply chains accentuate 

efficiency rather than resilience (Kim et al. 2015), thus making them vulnerable to 

disruptions with increased exposure points (Stecke and Kumar 2009). Global supply chain 

networks face unforeseen and uncontrollable disruptions and there is substantial evidence that 

catastrophic events are on the rise, with an increased frequency (Samvedi et al. 2013). The 

average cost of disruptive events has grown more than 1000% since the 1960s (Hasani and 

Khosrojerdi 2016). Due to this increased complexity and the inter-relationship of modern 

supply chains, the impact of uncertainty has become difficult to predict (Heckmann et al. 

2015). Supply chain management practices like outsourcing, decentralisation and product 

customisation have amplified the number of risks in global supply chain networks (Jüttner et 

al. 2003; Ho et al. 2015). Therefore, proactive mitigation approaches are required to identify 

and manage the nodes of failure in the current volatile business environment. Decisions 

regarding the choice of mitigation strategy are driven by robust risk assessment outcomes. 

Thus, supply chains could benefit from developing predictive models that could estimate the 

impact of risks from a holistic perspective (Stecke and Kumar 2009; Tang and Musa 2011). 

To evaluate such a complex web of interconnected nodes together, Supply Chain (SC) 

systems must be holistically studied to identify the fracture points and level of ‘risk 

propagation’ across the network.  

 Risks originate at one node of the supply chain and create a ‘ripple effect’ generating 

further risks across the network with an amplified impact. We define this cascading 

phenomenon across the inter-connected networks as risk propagation. Failure due to risk at a 

node in the network can cause an entire supply chain system to collapse. Supply chain 

disruptions propagate along the supply chain network in a similar manner to the lifecycle of 

the product (Ghadge et al. 2013; Snyder et al. 2016). The risk impact can propagate not only 

along the supply delivery direction, but may also cause a backlash on the upstream supply 

chain network due to the dependence of different stakeholders in the network (Keow Cheng 

and Hon Kam 2008). Bueno-Solano and Cedillo-Campos (2014) validate this ‘reverse 

bullwhip effect’ while analysing the dynamic impact of disruption propagation on global 

supply chain networks. Previous academic work on SCRM has attempted to model risk/loss 

propagation within SC networks quantitatively (e.g. Wu et al. 2007; Mizgier et al. 2012, 
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Ghadge et al. 2013; Bueno-Solano and Cedillo-Campos 2014; Mizgier et al. 2015; Scheibe 

and Blackhurst, 2017). The above studies contribute significantly to the advancement of 

research in supply chain risk propagation. Disruption network analysis, agent-based 

modelling, systems dynamics and simulation modelling have been used to model the risk 

propagation phenomenon. However, most of the above research considers limited nodes or 

variables and is, thus, unable to capture the overall cascading impact on the SC network. 

Complex relationships and dependencies (impacting factors) significantly contribute to the 

disturbance propagation in the network (Hallikas et al. 2004). The holistic measurement of 

the overall behaviour of risks in the SC network is found to be a missing link. Hence, the 

research aims to measure risk propagation in the supply chain network holistically. To 

achieve the aim, the following research objectives are set: 

1. To capture the risk propagation behaviour at each node and across the supply chain 

network. 

2. To assess the total fragility of a supply chain network due to disruption propagation 

within the nodes and between nodes. 

3. To study the simultaneous disruptions and develop Risk Exposure Indices (REI) and 

Resilience Index (RSI) for multiple nodes within supply chain networks.  

 The amount of uncertainty and subjectivity inherent in a supply chain network makes 

it difficult to analytically examine the risk scenario (Samvedi et al. 2013). In the context of 

the phrase “You can’t manage, what you don’t measure” (McAfee et al. 2012), supply chain 

managers require further insights into quantifying the supply chain risk exposure of a firm in 

order to, consequently, determine the effectiveness of the SCRM (Wagner and Neshat 2010; 

Scheibe and Blackhurst, 2017). This study is an effort towards bridging the obvious research 

gap.  

 The remaining part of the paper is structured as follows. A literature review on SC 

risk modelling, risk propagation and holistic measurement is provided in section 2. In section 

3, the theory associated with the Bayesian network is explained along with the development 

and formulation of the model. Section 4 discusses the numerical analysis extensively. 

Theoretical and managerial implications of the research are discussed in section 5. The paper 

concludes with discussion on the key findings, limitations and future research directions.  
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2. Literature review 

2.1. Supply chain risk modelling 

Qualitative and quantitative approaches have been widely used to study supply chain 

disruptions in the context of SCRM. Conceptual as well as empirical methods are used, with 

case study being the most preferred approach (Ghadge et al. 2012). Limited studies have used 

modelling and simulation techniques to understand the intricacies of SCRM (Tang and Musa 

2011, Aqlan and Lam 2015). A collaborative approach for mitigating operational risks 

focused on supply and demand risks is presented by Chen et al. (2013). Hendricks and 

Singhal (2005) quantify the adverse effects of supply chain disruption following empirical 

analysis. Mizgier et al. (2012) and Mizgier et al. (2013) follow an agent-based modelling and 

simulation approach respectively for understanding the loss propagation in SC networks. 

Chong et al. (2014) extend Mizgier et al.’s (2012) model to a dynamic setup and study risk 

propagation and diversification during financial crises.  

 Simulation is a useful tool to visualise the stochastic nature and uncertainty of supply 

chain risks. Discrete Event Simulation (DES) and Monte Carlo simulation have been widely 

used to quantify supply chain disruption risks (e.g., Schmitt and Singh 2012; Mizgier et al. 

2015). For instance, Carvalho et al. (2012) use a DES approach to study the supply chain 

risks in an automotive three-echelon supply chain. Similarly, Schmitt and Singh 

(2012) utilise a DES approach to estimate the disruption risk of production and supply 

capacities in a multi-echelon supply chain. Bayesian Network (BN) theory is seen to be a 

practical modelling approach for supply chain risks (e.g., Badurdeen et al. 2014; Garvey et 

al. 2015; Qazi et al. 2018). Interestingly, most of the past research considers disruption at 

single or limited nodes in the network. Therefore, it is unable to capture a complete picture of 

the ‘risk propagation’ phenomenon (Han and Shin 2016). Multi-period disruptions at 

multiple nodes to capture their simultaneous, long-term effects on supply chain network 

variables is lacking in the extant literature. Indeed, measurement of supply chain 

vulnerability is challenging, as it is multi-dimensional and there are no well-developed 

matrices for evaluating the factors on which the vulnerability depends. Given this deficiency, 

one of the objectives of this study is to develop a Risk Exposure Index (REI) and Resilience 

Index (RSI) following a BN approach for risk propagation modelling. Risk modelling for 

understanding the cascading impact of risks is critical for the development of a resilient 
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supply chain network (Bueno-Solano and Cedillo-Campos 2014). The research discussed in 

this paper follows a quantitative modelling approach by combining a BN theory and 

simulation approach to develop a rich understanding of risk propagation across the supply 

chain network.  

2.2. Supply chain risk propagation 

In today's dynamic environment, a decision taken by one firm in a supply chain network has 

a direct influence on the performance of another firm. This leads to the disruptions caused by 

one level to quickly spread to other levels with an adverse effect (Samvedi et al. 2013). The 

impact of risks propagating to the complete network and beyond, flowing along the 

connected nodes is defined as disruption propagation (Han and Shin 2016; Tang et al. 2016). 

If not controlled proactively, the risk propagation leads to the collapse of the entire supply 

chain network.  

 

  Disruptive risks cause a ripple effect in the SC system and impacts heavily on the 

supply chain performance (Ivanov et al. 2014; Ivanov et al. 2017). It is evident through 

recent man-made and natural disasters that such disruptions should not be considered as 

isolated instances. While designing the resilient supply chain network, it is vital to consider 

that an isolated disruption may cause a series of cascading disruptions (termed as ripple 

effect) with a potential global impact (Cantor et al. 2014; Dolgui et al. 2017). Although there 

is no robust supply chain strategy to restrict risk propagation impact, developing robust 

assessment and mitigation plans to deal with the supply chain disruptions effectively has 

gained significant attention (Kamalahmadi and Mellat-Parast 2016). Comprehensive research 

on risk propagation can help to identify redundancy measures for quick recovery and SC 

continuity (Schmitt and Singh 2012; Snyder et al. 2016). It is clear that studying SC 

performance assessment and recovery decisions, in light of the impact of risk propagation, is 

necessary (Mizgier et al. 2015). The paper attempts to close this evident research gap 

following a BN modelling approach. 

 
2.3. Holistic performance measurement and Network theory 
 
A performance measure is a metric utilised to quantify the effectiveness and efficiency of a 

system (Neely et al. 1995, Gunasekaran and Kobu 2007). The term ‘holistic' is characterised 

by an interconnected, integrated system understandable only as a whole and not in parts 
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(Oxford Dictionary 2017). Holistic measurement is all about quantifying the performance of 

the system by harnessing its overall inter-linkages (Anderson et al. 2006). Performance 

measures should be designed to have a reference value that should imply corresponding 

consequences depending on whether the actual measurement is on, below or above the 

desired value (Melnyk et al. 2014). While considering the holistic measurement for supply 

chain networks, this reference value typically considers all possible inter-linkages rather than 

only a part of the network.  

 Feedback loops can capture such interactions between complex network inter-

linkages (Sterman 2001). However, they tend to fail under uncertainty (Qiu et al. 2014; Qazi 

et al. 2017). Bayesian networks have become an increasingly popular approach for handling 

complexity and uncertainty in systems (Feng et al. 2014; Hosseini and Barker 2016). The 

Bayesian network follows the ‘Bayes theorem’ by explicitly representing the conditional 

probability dependencies between different variables through feedback (Kabir et al. 2015). It 

can represent uncertain variables as nodes, with causal relationship represented by edges 

between the two nodes, forming an acyclic directed graph (Cooper and Herskovits 1992). 

Existing methods such as causal-loop/feedback loop diagramming, social network analysis 

and interpretive structural modelling fail to capture the power of relationships between inter-

connected risks in inter-connected nodes (Qazi et al. 2017). A Bayesian network is an 

analytical tool for computing the subsequent probability distribution of un-observed variables 

conditioned on the observed variables. The BN has several advantages such as the ability to 

combine multiple information sources, structural learning possibility and explicit treatment of 

uncertainty (Uusitalo 2007). Moreover, BN is most effective for assessing cascading 

disruptive events (Badurdeen et al. 2014; Qiu et al. 2014). This unique ability to model 

several variables and their interconnected structure in a complex network system encourages 

adaptation of BN modelling as a preferred research methodology. 

 

 

3. Research design 

In this section, BN theory is provided before developing the SC network model and 

associated formulation.  

3.1. Bayesian network conditional independence 
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The theory of BN relies on the notion of conditional independence between the variables of 

the network (Lemmer and Kanal 2014); thus it must be formally defined. Let us assume that, 

we have prior knowledge 𝜑 and 𝐴# and 𝐴$ are two events of which very little is known in 

terms of their dependence upon each other. Depending on 𝜑 we can ascertain whether two 

events would be dependent or independent. Suppose we observe a third event, 𝐴% with which 

we can now conclude that the first two events are independent. This concept of independence 

of two events given a prior condition is known as conditional independence and is 

demonstrated in Eqn. (1). 

𝑃 𝐴#, 𝐴$ 𝐴%, 𝜑 = 𝑃 𝐴# 𝐴%, 𝜑 . 𝑃 𝐴$ 𝐴%, 𝜑 																																											(1)            

Likewise for four events 𝐴#, 𝐴$, 𝐴%, 𝐵	the equation can be written as shown in Eqn. (2). 

𝑃 𝐴#, 𝐴$, 𝐵 𝐴%, 𝜑 = 𝑃 𝐴# 𝐴%, 𝜑 . 𝑃 𝐴$ 𝐴%, 𝜑 . 𝑃 𝐵 𝐴%, 𝜑 																													(2)				               

 

3.2. Conditional probability table and joint probability distribution 

BN is capable of representing dependence relationships among random variables (Feng et al. 

2014). Let 𝑉 = (𝐴#, 	𝐴$ … . 𝐴2) define the set of variables with edges, whose structure defines 

conditional independence. If an edge is directed from 𝐴3 to 𝐴2 then 𝐴3is the parent node 

while 𝐴2 is the child node of 𝐴3. There are three types of nodes in BN: 1) Root nodes are 

nodes without a parent node, 2) Leaf nodes are nodes without child nodes and 3) 

Intermediary nodes have both parent and child nodes. The causal relationships between the 

variables of the BN are assessed from the Conditional Probability Table (CPT). The complete 

joint probability distribution of BN consisting of n variables 𝐴#, 	𝐴$ … . 𝐴2	is shown in the 

following eqn. (3).  

𝑃 𝐴#, 	𝐴$ … . 𝐴2 = 𝑃(𝐴4|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝐴4 )2
4<#                                (3) 

 The variables in each graph denote the risk factors associated with a facility. The 

individual probability values for the occurrence of a risk are obtained from expert knowledge. 

The causal relationship structure between these risks is determined by learning BN using a 

K2 algorithm and, consequently, the corresponding CPT is developed depending on the 

severity of the risk factors. The efficacy of a BN is in its ability to determine the possible 

cause of an event by bottom-up inference (Kabir et al. 2015). In BN analysis, for 𝑛	number of 

mutually exclusive parameters (risk factors) 𝑅4(4>#,$,…,2) and a given observed data 

(disruption of the node) 𝑍, the updated probability of occurrence of 𝑍 due to 𝑅4 is computed 

by eqn. (4). 
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     𝑃 𝑅4 𝑍 = 	 @ A BC .@(BC)
@ A BD .@(BD)D

                                                (4) 

Where 𝑝(𝑅 𝑍) represents the posterior occurrence probability of 𝑅 given the condition that 

𝑍	occurs, 𝑝(𝑅) denotes the prior occurrence probability of 𝑅, 𝑝(𝑍) denotes the total 

occurrence probability of 𝑍 and 𝑝(𝑍/𝑅) refers to the conditional occurrence probability of 𝑍 

given that 𝑅 occurs (Kabir et al. 2015). 

 

3.3. Bayesian network development 
 
Structure and parameter learning are two types of learning in the BN. Structure learning is the 

estimation of links of the network, while parameter learning is the estimation of conditional 

probabilities in the network (Feng et al. 2014). Within structural learning, constraint-based 

and score based approaches exist. Unlike the constraint-based approach which tests the 

conditional independence of the data, the score based function operates on the principle of 

defining a scoring function that represents how well it fits with the data (Feng et al. 2014). 

The aim here is to find the highest scoring network structure. A score based structure in BN 

learning is utilised in this paper because it is less sensitive to errors in the individual tests. 

The BN is used to develop a feasible network of risk factors for the facility nodes in the 

supply chain. 

 The Bayesian score function is decomposable in the presence of complete data. Eqn. 

(5) and (6) represent the Bayesian score functions used in the model.    

𝑓 𝐺𝑟𝑎𝑝ℎ = 𝑓(𝑥4, 𝑃𝑎(𝑥4))4                                            (5) 

𝑓(𝑥4, 𝑃𝑎(𝑥4)) = 	 (log (NC>#)!
PCDQNC># !

+ log	(𝑁4TU!)
NC
U<# )VC

T<#                    (6) 

Where Graph represents a set of nodes and edges, 𝑥4 is the risk factor associated with node 𝑖, 

𝑃𝑎(𝑥4) are the parents of risk 𝑥4, 𝑟4 is the number of possible values of risk 𝑥4, 𝑞4 is the 

number of possible configurations of variables in 𝑃𝑎(𝑥4),	 𝑁4TU is the number of cases in 

which 𝑥4 has its 𝑘Z[	value, 𝑃𝑎(𝑥4) is configured to its 𝑗Z[ value and  𝑁4T = 𝑁4TU
NC
U<#  (Feng 

et al. 2014). The K2 algorithm, a heuristic search algorithm for structural learning problems, 

is used in the model. The logic of this search algorithm is that it adds a node to a parent set 

incrementally and maximises the joint probability of the structure by finding the best parent 

set. Details of the input and output variables for the K2 algorithm are provided below. 

Inputs: Set of risk factors, ordering of risk factors, upper bound on the number of parents a 

risk factor can have and a database containing several cases of risk. 
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Output: Learned network of risk factors for each node [as shown in Figure 1 (a, b) and 2 (a, 

b)]. 

 
 

 
Figure 1 (a): Network of risk factors for 

Suppliers  

 

 
Figure 2 (a): Network of risk factors for 

Distributors  

 
 

Figure 1 (b): Network of risk factors for 
Manufacturer  

 
 

 
Figure 2 (b): Network of risk factors for 

Retailer 
 

Figure 1 (a,b) and Figure 2 (a,b) show the dependency of several risks on each other for the 

identified facilities (nodes) in a supply chain network. The risk graphs are constructed using 

the K2 algorithm and basic characteristics of given risks associated with each facility node. 

3.4. Model development 

To investigate how simulation can be employed to assess risk propagation and capture 

product flow, a large Discrete Event Simulation (DES) model is introduced representing an 

automotive SC network. Leading automotive organization based in India was chosen for the 

study. The supply chain network of the case organization consisted of six nodes and four 

echelons as described below. 

• First echelon: Supplier 1 and Supplier 2 

• Second echelon: Manufacturer 

• Third echelon: Distributor 1 and Distributor 2 

• Fourth Echelon: Retailer 
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Establishing meaningful limitations for the SC network under study is critical. Since 

automotive SC network is very complicated, with several parts flowing from various 

suppliers, located in different countries, it will be a colossal task to consider all the SC 

entities and respective information, financial and material flows (Carvalho et al. 2012). 

Hence, it is imperative to identify the significant factors contributing to disruptions at nodes 

in the SC network. Semi-structured interviews with operations managers were conducted 

for the collection of relevant data. To evaluate the SC node performance, the simulation 

model was developed to evaluate SC indices/performance in both single disruption and 

multiple disruption scenarios.  

To understand the system behaviour, simulation parameters such as demand, inventory 

costs, backup capacity, risk factors and their initial occurrence probabilities related data were 

collected from the Risk Registers maintained by different SC network stakeholders associated 

with the automotive organization. Historical data were also made available by operations 

managers to estimate the significant risk factors which had led to the failure of SC nodes in 

the past. Using this data, the simulation model was developed to test different scenarios.  

In the simulation model for a SC network, the components are produced according to the 

end customer’s order specifications and make-to-order policy. The suppliers have a base level 

raw material inventory. Shocks due to disruption can wholly or partially disrupt the 

production process in the model and all the inputs are independently pre-set for the 

simulation study. The conditional probability table (CPT) of the risk factors associated with 

the nodes is defined using the network developed by the K2 algorithm. The BN theory 

provides the probability of occurrence of risk associated with a supply chain node, given the 

occurrence probability of the parent risk. Parent risk is a primary risk, which later propagates 

into other secondary risks. A scenario is defined as a combination of risk factors associated 

with a node. 

The total number of possible scenarios for a node is 22, where 𝑛 denotes the number of 

risk factors associated with the node. For example: [1,0,1,0,0] is a scenario for the retailer 

with five risk factors in which risks 1 and 3 have occurred. Since the risk factors are 

connected to each other, the occurrence of risk 1 and 3 at the retailer might induce occurrence 

of the remaining three risks. Consequently, the probability of occurrence of risks at the 

retailer maybe as follows	 1,0.4,1,0.35,0.2 . The combination of these risks results in a 

partial disruption of retailer due to its risks. However, another scenario with risk factor 
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probabilities as [1,1,1,1,1] results in total disruption of the retailer. The total disruption cost 

for every scenario is determined by the expected cost incurred due to each risk in the given 

scenario. The disruption probability of a node for a scenario is calculated using the 

formulation provided in section 3.5. Based on the suggestion provided by respondents, the 

production capacities of the supplier and demand at each node are generated using Uniform 

distribution (as shown in Table 1(b)) and the initial inventory level of each node is forecast as 

the mean value of the total demand in the previous year. An additional backup capacity of 

𝑃	% with a lead time of 𝑄 weeks is provided to every node whose inventory level falls below 

𝑋	% in any time period. Production capacities of the supplier and demand at each node are 

among the additional inputs generated randomly. A 20-week time horizon with 𝑄 = 1	𝑤𝑒𝑒𝑘 

is considered for the simulation. The disruption weeks for the nodes in the single node 

disruption scenario are generated randomly to replicate the real world scenario. Random 

numbers are generated for each node and compared with the cumulative disruption 

probability to obtain a plausible scenario, its associated cost and the disruption probability 

from risk registers for each simulation run. 

 
Table 1 (a): Production or supply decrement of each node depending on TTR 

 
TTR Cumulative 

Probability 
for TTR 

Supplier 
1 

Supplier 
2 

Manufacturer Distributor 
1 

Distributor 
2 

Retailer 

2 0.20 0.20 0.20 0.10 0.10 0.15 0.10 
4 0.40 0.40 0.45 0.30 0.25 0.25 0.35 
7 0.70 0.60 0.75 0.60 0.50 0.50 0.50 
10 1.00 0.80 1.00 0.75 0.75 0.70 0.70 

 

Once the disruption scenario and its probability for a node have been determined, time to 

Recovery (TTR) for the node is estimated from Table 1(a). It is expected that the disruption 

at a node causes a decrement in the production or supply. The production/supply decrement 

in each node depends on TTR and is shown in Table 1(a). The estimation of TTR values and 

production decrement ratios are taken from the risk registers. The demand at each node and 

the production level at the supplier are used to determine the relative dependency between 

nodes of the adjacent layers (𝛽T4). 𝛽T4 plays a major role in determining the disruption 

propagation between the adjacent layers. The unit inventory and backup cost is taken to be 

same for a node and is shown in Table 1(b).  
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Table 1(b): Demand and unit inventory cost at each node 

Node Demand Production Unit inventory cost 
(in pounds) 

Supplier 1 Uniform(30000,32000) Uniform(32000,34000) 
 

0.15*30 
 

Supplier 2 Uniform(12000,14000) 
 

Uniform(13000,15000) 
 

0.15*30 
 

Manufacturer Uniform(42000,44000) 
 

- 0.20*30 
 

Distributor 1 Uniform(10000,12000) 
 

- 0.25*30 
 

Distributor 2 Uniform(32000,34000) 
 

- 0.25*30 
 

Retailer Uniform(42000,44000) 
 

- 0.40*30 
 

 

 The simulation code was developed using Matlab, a commercial programming 

platform to depict a product flow in a multi-node supply chain network for a disruption 

scenario; 3000 simulation runs were conducted to capture the overall behaviour of risks. The 

performance variables analysed through the simulation are customer service level and risk 

exposure index of the nodes based on fragility and lost sales. These output variables enable 

us to capture the long-term service level and REI at each node. Figure 3 provides a step-by-

step approach for the analysis of the model. Table 2 shows the supply chain nodes and 

associated risk with each node.  

 
Table 2: Risk factors for supply chain nodes 

Sl. No. Facility 
Nodes 

Risk Factors 

1. Supplier  • Natural disaster         
• Supplier bankruptcy 
• Machine breakdown 
• Product quality issues  
• Inaccurate forecast 
• Labor strikes 
• Information/Infrastructure 

breakdown 
2. Manufacturer • Natural disaster         

• Machine breakdown 
• Product quality issues 
• Labor strikes 
• Excess pollution and 

emissions 
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• Information/Infrastructure 
Breakdown 

3. Distributor  • Natural disaster 
• Labor strikes 
• Product damage/Obsolesce 

risk 
• Information/Infrastructure 

Breakdown 
4. Retailer • Natural disaster 

• Labor strikes 
• Inaccurate forecast 
• Competition 
• Delivery delays 

 

 
Figure 3: Research methodology 

 

The following assumptions were made to overcome the complexity inherent in the modelling 

and simulation of the SC under study: 

1. Each node in the supply chain network has multiple risks associated with it. 
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2. Probabilities in CPT have been allocated on the basis of managerial advice and 

network of risk associated with each node. 

3. Disruption propagates only from upstream to downstream nodes in the supply 

chain network. 

3.5. Model formulation 

The disruption probability of a node 𝑛4 in layer 𝑙 due to the occurrence of risk 𝑘 is defined as: 

                                           𝑃g4h 𝑟Ui
2C = 𝑃 𝑟Ui

2C . 𝑔(𝑟Ui
2C, 𝑛4)       𝑘	 ∈ {1,2, … , 𝑁 𝑅2C }       (7) 

                                                 𝑃n 𝑅i
2C = 	∅ 𝑃g4h 𝑟Ui

2C 											                                     (8) 

The disruption probability of all nodes in the supply chain network, except supplier layer, is 

a function of disruption due to its risk scenario and the propagated impact of disruption from 

nodes in the previous layers. 

                            	𝑃q 𝑅i
2C = 𝑓 𝑃n 𝑅i

2C , 𝑃r 𝑅i
2D2C 																																																(9)                         

                         𝑃r 𝑅i
2D2C = 𝑃q 𝑅i>#

2D . 𝛽2D2C			. 𝑔 𝑛T, 𝑛4 								𝑛T, 𝑛4 ∈ 𝑁																															(10)	 

𝑛4: node in layer 𝑙 

𝑛T:	node in layer 𝑙 − 1   

𝛽2D2C	 =
vwxyDyC
vwxyDyCyD

																																																			                    (11) 

𝑔 𝑛T, 𝑛4 	 ∈ [0,1]                   ∀	𝑛T, 𝑛4 ∈ 𝑁                            (12) 

𝑔 𝑟Ui
2C, 𝑛4 ∈ [0,1]                                                                  (13)      

Eqn. (8), Eqn. (9), Eqn. (10) and Eqn. (11) are adapted from Han et al. (2016) to solve the 

model developed in this paper. A summary of the parameters used in this paper are presented 

in Table 3. 
Table 3: Summary of the model parameters 

Parameters         Description 
 Set of Suppliers 
 Set of Manufacturers 
 Set of Distributors 
 Set of Retailers 
 Set of all nodes in the network, 	𝑁	 ∈ {𝑆, 𝐷,𝑀, 𝑅} 
Total number of layers (in our case study 𝐿 = 4) 
 Node element from the supply network, 𝑛	 ∈ 𝑁, if 𝑛	represents 
𝑆 then 𝑛4 represents supplier 𝑖 i.e. 𝑆(𝑖) 
Set of risk factors associated with node 𝑛4 in layer 𝑙 also referred 

𝑆 
𝑀 
𝐷 
R 
𝑁 
𝐿	
𝑛4 
 

𝑅i
2C 
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4. Numerical analysis 

Based on the multi-echelon inventory literature, it is understood that inventory at downstream 

nodes (finished goods inventory) incur higher holding costs than inventory at upstream nodes 

(raw material/WIP inventory) (Chopra and Meindl 2007; Schmitt and Singh 2012). In the 
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 REI 
𝑅𝑆𝐼𝑘 

 

to as scenario of 𝑛4 , 𝑅i
2C = 	 {𝑟#i

2C, 𝑟$i
2C, … . , 𝑟

P ByC i
2C } 

Risk factor j associated with 𝑛4 in layer 𝑙  
 
Probability of occurrence of risk 𝑘 associated with node 𝑛4 in 
layer 𝑙  
Disruption probability of node 𝑛4 in layer 𝑙 due to risks 
associated with it 
Disruption probability of node 𝑛4 in layer 𝑙 due to risks 
propagated from node 𝑛T of previous layer 
 
layer index 𝑙	𝜖	{1,2,3,4} 
function to determine the impact of occurrence of risk 𝑘 on node 
𝑛4 
function to determine the impact of disruption propagated from 
node 𝑛T to node 𝑛4 
Average function to determine the disruption probability of a 
scenario at a node due to risks associated with it. 
Maximum function for disruption due to risks within the node 
and the disruption due to risk propagated from nodes in 
preceding layer 
 
Average function to determine overall disruption probability of 
the supply chain network 
 
Demonstrates the relative dependency of node 𝑛4 on node 𝑛T 
 
capacity allowed on link connecting 𝑛4 and 𝑛T 
Fragility of a node for option 𝑖 inventory and backup level 
Total number of simulations 
Disruption cost for option 𝑖 inventory and backup level at a node 
in simulation 𝑛	(𝑛 ∈ 𝑁) 
Disruption probability for option 𝑖 inventory and backup level at 
a node in simulation 𝑛 
Service level of  a node for option 𝑖 inventory and backup level 
Service level of node 𝑘 when there is no disruption 
Service level of node 𝑘 in week 𝑤 
Lost sales of node 𝑘 in week 𝑤 
Demand of node 𝑘 in week 𝑤	(𝑤 ∈ 𝑊) 
Number of weeks in each simulation 
Risk Exposure Index 
Resilience index of node 𝑘 for a given inventory and backup 
level 
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model, this knowledge is used to determine the holding cost at the nodes (Table 1b). Three 

options were tested for inventory and backup levels at each node as shown in Table 4. The 

following parameters are measured for the holistic understanding of risk propagation within 

the SC network: 

• Fragility of each node 

• Lost sales 

• Service level 

• Total inventory and backup cost 

Table 4: Percentage inventory and backup level at each Layer 
 

 

4.1. Fragility 

Fragility at a node is defined as the expected increase in the cost of a supply chain in the 

event of a disruption on a given node (Chopra and Sodhi 2004). Supply chain networks, 

where the disruption impact could propagate across the entire network, often have higher 

fragility than networks where the disruption impact is more localised. In this model, it is 

measured in terms of million pounds. The variation in fragility is depicted in Figure 4. Here, 

𝐹𝒊: Fragility for option 𝑖 inventory and backup level at a node. 

                                𝐹4 =
#
P
∗ 𝐷𝐶42 ∗ 𝐷𝑃422                                                                     (14) 

    

 The fragility at each node is almost the same for all three options of inventory and 

backup level (Figure 4). Since fragility is dependent on the disruption probability and cost, it 

does not vary much with the variation in the inventory level. Suppliers 1 and 2 have a greater 

number of risks associated with them as compared to other nodes. Therefore, the disruption 

probability and cost of impact is higher at these suppliers. Fragility is higher for the 

manufacturer compared to all other nodes in the supply chain, although it has less number of 

risks associated with it. This is attributed to the fact that the manufacturer is the bottleneck in 

Option Supplier Manufacturer Distributor Retailer 

1 20% 20% 20% 40% 

2 20% 40% 20% 20% 

3 25% 25% 25% 25% 
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Figure 4: Fragility at the nodes in a supply chain network 

the above supply chain network. Any disruption occurring at the manufacturer or propagated 

from the supply side gets amplified and can significantly impact the performance of the 

manufacturer. The number of risks and cost impact associated with distributors is less and 

hence the fragility value is minimal. Moreover, the disruption propagated from the 

manufacturer is shared by the distributors in this supply chain network structure. Despite the 

small number of risks associated with it, the retailer seems to be highly fragile. This is 

because any disruption at the retailer directly affects customer demand. Thus, the cost impact 

of any disruption is significantly higher. Hence, the disruption cost at the retailer is higher 

than at the suppliers. To contain fragility, reducing disruption risk at a node is not sufficient. 

It is equally important to reduce the propagated effects of disruption from upstream nodes 

because the final disruption probability at a node is a function of disruption probability due to 

the propagated effects of disruption from upstream nodes and disruption probability due to 

risks within the node.   

4.2. Lost sales 

Loss in sales is mainly due to individual disruption at the respective nodes and the propagated 

effects of disruption at the nodes in the downstream supply chain network. From the graph in 

Figure 5(a), it is evident that using higher inventory and backup with a small lead time is very 

effective in reducing the after-effects of disruption. The manufacturer’s graph shows that 

𝐿𝑆# > 𝐿𝑆% > 𝐿𝑆$ , an apparent conclusion as inventory and backup, is maximum for option 2 

and minimum for option 1. Any disruption at the manufacturer can reduce its production 
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Figure 5(a): Lost sales at the nodes in supply chain network 

 

drastically which, in turn, increases lost sales. Lost sales are high for distributor 2 and 

retailer, as they manage the transfer of a large volume of products. Any disruption propagated 

from the upstream nodes propagates and significantly reduces the supply to downstream 

nodes. The higher volume of inventory and backup is the most effective way to reduce the 

effects of disruption. Considering the entire supply chain network as a single entity option 3 

leads to a minimum average in lost sales. Increasing the inventory and backup at all the nodes 

by a small percentage is more effective in containing the propagated effect of the disruption. 

 

4.3. Service level 

Service level at a node is defined in Equation 15 as the average fill rate of customers. Here, 

𝑆𝐿4 is a service level for option 𝑖 inventory and backup level. Service level at the retailer is  

                                𝑆𝐿4 =
#
P
∗ #

n
∗ (1 − ��C�

��3C�
)�2                                              (15) 

   

maximum in option 3, although retailer’s inventory increment is 40% in option 1 (Figure 

5(b)). Increasing inventory and backup to reduce the effects of disruption at the downstream 

node is costly as it increases the finished goods inventory. However, this is not the best 

method to overcome disruption effects. To contain the effects of disruption at the upstream 

nodes and thereby reduce amplification, a small increase in inventory level at all the nodes of 

a supply chain network is recommended.   
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Figure 5(b): Service level at the nodes in supply chain network 
 

 
4.4. Total cost 

In this section, the total cost of SC network is calculated. Here, 𝐼𝑁𝑉4: inventory cost for 

option 𝑖 inventory and backup level. The total inventory and backup cost for the retailer is 

minimum for option 2 because the bottleneck node (manufacturer) has a higher backup and 

therefore the disruption propagated from upstream nodes is least in option 2 (Figure 6). Since 

disruption propagation to the subsequent downstream nodes is minimal, the requirement of 

the inventory is low. In option 1, this cost is higher because of a large amount of finished 

goods inventory and backup being maintained at the retailer (Figure 7). A major proportion 

 

 
 

Figure 6: Total inventory and backup cost at the nodes in supply chain network 
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of the cost is due to the occurrence of the risk. However, in the case of the retailer, since the 

cost of finished goods inventory is very high, fragility is comparable to the inventory and 

backup cost. Retailer's fragility is comparable to that of supplier despite having a smaller 

number of risk factors associated with it. Simultaneous occurrence of a disruption at both 

nodes (supplier and retailer) causes a higher cost impact at the retailer.

 

 
 

Figure 7(a): Total cost for option 1  
 

 
 

Figure 7(b): Total cost for option 2  
 
 
 
 
 
 

 
 

 
Figure 7(c): Total cost for option 3 

  

 
 

Figure 7(d): Total cost at the nodes in 
supply chain network

It is evident from the above results that option 3 incurs a minimum cost. The inventory 

and backup cost for option 3 is more than the respective cost for option 2. However, due to 

less fragility in the case of option 3, the total cost is less. Option 1 is not a good choice 

because not only is its cost high, but also the service level is low. 

 

4.5. Risk exposure index 

The REI helps a firm to identify the nodes that need attention from the operations and risk 

manager. In the model, REI is assessed based on two performance impact factors: Fragility 

and lost sales. The node with the largest performance impact value is assigned with a value of 
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1, while REI for other nodes is calculated relative to this node. REI value 1 implies that the 

node is most vulnerable to disruption (Simchi-Levi et al. 2014). 

 

REI based on fragility 

      In the context of fragility, the manufacturer is the most vulnerable node of all three 

options. This is because, for the same disruption at all nodes, the manufacturer has a higher 

cost impact than suppliers and distributors. Although it has a lesser cost impact than retailers, 

the greater number of risks associated with the manufacturer elevates its REI. A small 

disruption at the manufacturer reduces productivity significantly. Not only does this reduce 

the supply towards the downstream layer, it also backpressures upstream layer with high 

inventory levels at suppliers. Table 5(a) and 5(b) shows the REI values based on fragility and 

lost sales for each node. 

 
Table 5(a): REI (PI: Fragility) for each node in supply chain network 

 
Nodes /REI 𝑹𝑬𝑰𝟏 𝑹𝑬𝑰𝟐 𝑹𝑬𝑰𝟑 

Supplier 1 0.914817 
0.91016

9 0.920748 

Supplier 2 0.911618 
0.92303

1 0.908149 
Manufacturer 1 1 1 
Distributor 1 0.674465 0.66258 0.677505 

Distributor 2 0.654869 
0.66539

4 0.671205 

Retailer 0.923615 
0.90896

3 0.910994 
 
 

Table 5(b): REI (PI: Lost Sales) for each node in supply chain network 
 

Nodes /REI 𝑹𝑬𝑰𝟏 𝑹𝑬𝑰𝟐 𝑹𝑬𝑰𝟑 

Supplier 1 0.566413 
0.52877

5 0.550542 

Supplier 2 0.328485 
0.31164

9 0.325813 

Manufacturer 1 
0.60122

2 0.937555 

Distributor 1 0.321668 
0.29310

9 0.316465 

Distributor 2 0.955914 
0.87257

5 0.943537 
Retailer 0.713555 1 1 
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REI based on lost sales 

        According to the results obtained for REI based on lost sales, the retailer is the most 

vulnerable since it is the last node in the supply chain network. Customers receive products 

directly from the retailer. They do not have any alternative source to mitigate the 

propagation. Thus, any disruption at this node or the upstream nodes significantly reduces 

supply to the retailer, reducing the fill rate to customers.  

 
4.6. Resilience Index  
 

This section attempts to measure the resilience of supply chain nodes with the help of 

a Resilience Index (RSI). Hosseini et al. (2016) define RSI as a function of the quality of 

community infrastructure. The RSI of SC nodes in each week is calculated as the 

performance impact parameter for the SC network (adapted from Barroso et al. 2015). 𝑤�	is 

the week in which disruption occurs at the SC node, while 𝑤2 is the time when disruption 

ends plus time to recover from the negative effect of disruption. Operations managers could 

not provide (due to non-availability) the service level at each node in the absence of 

disruption (i.e.,	𝑆𝐿U�). Hence, a value of 𝑆𝐿U� = 1 is assumed which implies that every node 

satisfies demand in the absence of disruption. When disruption occurs, the service level 

versus weeks’ graph shows a triangular pattern (Figure 8). It can be concluded from the 

formulation that, the higher the SL of a node in the event of a disruption, the higher is its RSI. 

 

       𝑅𝑆𝐼U = 1 −
����>���� g��y

����
���� �y>��

≅ 1 −
����>����

�y
����
���� �y>��

= 1 −
#>���� ����

�y
����

�y>��
     (16) 

 

The RSI value of each node ranges from 0 to 1. The RSI index of a node tending to 0 

implies that node 𝑘 is less resilient to disruption; whereas, if it is tending to 1, it implies the 

node is resilient to the disruption and can sustain its performance. It is evident from Table 6 

that option 3’s inventory and backup capacity is most effective in reducing the propagated 

effects of disruption, as it ensures the highest average RSI for the SC network. 

 
Table 6: RSI for each node in supply chain network 

Nodes /RSI 𝑹𝑺𝑰𝟏 𝑹𝑺𝑰𝟐 𝑹𝑺𝑰𝟑 
Supplier 1 0.8405 0.8414 0.8564 
Supplier 2 0.7808 0.7794 0.7956 

Manufacturer 0.7688 0.8704 0.8275 



Ojha, R., Ghadge, A., Tiwari, MK. and Bititci, U. (2018), “Bayesian network modelling for supply chain risk 
propagation”, International Journal of Production Research, Accepted. 

 
	

Distributor 1 0.7446 0.7522 0.7677 
Distributor 2 0.7389 0.7531 0.7812 

Retailer 0.8554 0.7827 0.8185 
Average RSI 0.7882 0.7965 0.8078 

 
 

It must be noted that REI is a relative index as opposed to RSI, which is an absolute 

value. RSI is more suited to ascertain the resilience of each node and, more importantly, the 

entire SC network. It shows the positive aspects of the proactive measures taken to improve 

the ability of the system to recover from disruption. REI, on the other hand, helps us to 

understand how vulnerable a node is relative to the most vulnerable node. 

 

4.7. Impact of single node disruption on SC network 
To assess the impact of single node disruption on the SC network, simulation runs were 

conducted for every disrupted node. Based on the finding discussed in the paper, option 3’s 

inventory and backup level was found to be the ideal input for this analysis. The backup 

supply with a lead time of 1 week is engaged when the inventory level of the node falls 

below X% (say 5%) of the demand at a single node in a given time period. It is interesting to 

observe TTR of retailer for disruption at supplier-1, supplier-2, manufacturer, distributor-1 

and distributor-2 are 5, 2, 10, 1, 10 days respectively. 

 

 
 

Figure 8(a): SL when Supplier 1 
disrupts in week 5 

 

 
 

Figure 8(b): SL when Supplier 2 
disrupts in week 5 

 

           When the disruption occurs at the supplier node, the fill rate curve drops due to a 

subsequent decrease in the supply from the supplier through the intermediate nodes up to the 

retailer. The TTR is small due to the equal proportion of inventory and backup at each layer 

which reduces the propagated effects of the disruption before it reaches the retailer. The 
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demand at supplier 2 is less than that at supplier 1, thus decrement in supply due to disruption 

at supplier 2 is less significant. This factor enables the retailer to quickly recover from the 

disruption due to supplier 2, compared to that from supplier 1 (Figure 8(b)). It is for the same 

reason that the minimum service level during supplier 2 disruption is greater than that during 

supplier 1 disruption. The ripples in Figure 8(a) from weeks 7 to 14 show that impact time 

exceeds the disruption duration and takes relatively more time to recover compared to the 

other case. This is known as the amplification of the disruption propagation from the 

upstream nodes. 

 

 
 

Figure 8(c): SL when Manufacturer disrupts in week 5 

 
Disruption at the manufacturer node results in a significant drop in the service level at 

the retailer as the production is reduced considerably. As soon as inventory at the retailer falls 

below 5% of the demand, backup supply is ordered at the end of the fifth week. Since the 

lead time is one week, the backup supply is received at the end of the sixth week, which 

justifies the rise in SL in Figure 8(c) from 0.60 (approx. value) to 0.81(approx. value). The 

reduced supply from upstream nodes is fractionally compensated by the backup capacity. The 

graph fluctuates between 0.81 to 0.85 from weeks 7 to 14 and the system recovers from the 

disruption in week 15. 

 As the volume of goods handled by distributor 1 is small, it has a negligible impact on 

the retailer’s SL in week 5. The backup capacity of the retailer received in week 5 is 

sufficient to compensate for the reduced supply from distributor 1. Thus, the retailer recovers 

towards the end of the sixth week. It can be inferred from Figure 8(d) that some amount of 

inventory is always left (because backup quantity is significantly higher than the production 
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decrement), which compensates for the reduced supply from week 6 to week 15, thereby 

keeping fluctuations to a minimum. When distributor 2 is disrupted in week 5, the service 

level decreases sharply to 0.75 (approx. value) as shown in Figure 8(e). As soon as the 

backup is received at the end of sixth week, the service level rises. From weeks 7-14 the 

graph gradually increases and the system recovers at the end of week 15. Since distributor 2 

handles a large volume of goods, the decrement in supply due to disruption is high. Thus, the 

inventory is exhausted during the recovery period and the backup supply is used to support 

the demand. Since the production decrement is significantly higher than the backup capacity, 

the retailer takes time to recover from the disruption. 

 

 
Figure 8(d): SL when Distributor 1 

disrupts in week 5 

 
 

 
Figure 8 (e): SL when Distributor 2 

disrupts in week 5 
 

 The mean SL of the retailer is at a maximum when disruption occurs at supplier 2. 

Since the node is located upstream in the supply chain network, the disruption propagated by 

it is reduced by the inventory and backup at the intermediate node, before it reaches the 

retailer. The small deviation in SL from the mean in the case of disruption at supplier 2 and 

distributor 1 is attributed to the low volume of goods handled by these nodes. The mean SL is 

at a minimum in the case of the manufacturer because any disruption at the manufacturer has 

a significant impact on its production and propagates to the retailer. Even though a small 

number of risks are associated with distributor 2, disruption at this node causes a significant 

drop in the supply to the retailer due to its proximity (Figure 9). 

 It can be inferred from the above analysis that, in order to reduce the fragility and 

increase the service level at the downstream supply chain network (i.e., retailer) the firm can 

opt to locate another manufacturing facility. In several SC systems such as food and 

electronics, it may be difficult to depend totally on the inventory as it is expensive in the long 

run and may not be a feasible solution due to technological changes. For these critical 
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systems, adding flexibility through redundancy increases systems resilience and thus reduces 

the risk of failure. 
 

 
 

Figure 9: Retailer’s SL during single node disruption 
 

 

4.8. System behaviour with increasing number of suppliers and tiers of suppliers  

The adapted equation from Bimpikis et al. (2017) imply that the Coefficient of Variation 

(CV) of retailer 𝑅 decreases, as the number of nodes in any tier increases. This is because 

when the number of nodes increases, the tier becomes more reliable and each disruption has a 

smaller impact on the final output. Similarly, CV increases if the disruption probability 

increases, since having disruptive events more frequently implies that the output fluctuates 

more around its expected value. 

 

                       𝐶𝑉B = ( #
#>�@�

#
P i

𝑁 𝑙 − 1 + #
#>�@�

− 1i∈�>{B} )
�
                       (17) 

 

𝑁 𝑙 : number of nodes in layer 𝑙  

𝐷𝑃i: average disruption probability of nodes in layer 𝑙  

Supplier	1 Supplier	2 Manufacturer Distributor	1 Distributor	2
mean		SL 0.973 0.9858 0.8966 0.9835 0.9411

SL	min 0.7206 0.8333 0.6243 0.7952 0.7142

std 0.07257 0.04433 0.116 0.04884 0.08357

Range	of	Dip 0.2794 0.1667 0.3757 0.2048 0.2858
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𝐷𝑃B: average disruption probability of retailer 

𝐿: set of layers or tiers in supply chain network 

 

 For a fixed disruption profile and network structure, the coefficient of variation is also 

a measure of how balanced the supply chain network is, i.e., a measure of how evenly 

distributed firms are in different tiers. For instance, if there are ‘bottleneck’ tiers in the 

network, i.e., tiers with only a few nodes, then the corresponding multiplier in Eqn. 17 and, 

consequently, CV take large values. Conversely, if all tiers have a comparable number of 

nodes (hence the network is more balanced), then CV takes a smaller value.  

 

5. Theoretical and managerial implications 
Based on the above findings, there are three contributions to the theory. First, following a 

systematic approach, different performance variables such as fragility, lost sales, service level 

and inventory cost are captured for the holistic understanding of risk propagation within the 

SC network. Second, the research develops novel indices for measuring the risk behaviour 

following the development of a risk exposure index and resilience index. The third 

contribution may be associated with the use of BN methodology. A robust methodology for 

probabilistic inter-dependency modelling to capture complexity and uncertainty in supply 

chain networks is proposed in the research design. This modelling approach provides a 

unique capability to model inter-connected risks in the inter-connected network. The 

sensitivity of risk exposure at different nodes with varying inventory and backup levels 

further assists in understanding the complex behaviour of the risk. 

 In terms of contribution to practice, the REI values can assist risk managers in 

quantifying the risk exposure of each facility node relative to other prior and after the 

implementation of risk mitigation measures in the SC network. The RSI index will provide 

further insights into the adaptability of each node in the SC network. The study shows that 

vulnerability at a facility depends upon the factors impacting performance. Existing risk 

propagation research does not capture the holistic network-wide impact of risks (Qazi et al. 

2017). SC managers can use the ‘risk propagation’ model to quantify risks based on the 

performance of the impacting factors. The study on the impact of single node disruption on 

downstream SC network service level is expected to help managers in making robust SC 

decisions. Foremost, the research shows that facility nodes which handle large volumes of 

products are more exposed to the adverse impact of disruption than nodes with small 
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volumes. SC managers could limit the tedious and costly supply chain proactive measures for 

facility nodes with low REI to improve cost efficiency. 

          In the context of SCRM, practitioners should avoid sourcing and backup supply from 

regions prone to disruptions (e.g., Japan due to frequent earthquakes), as this could make the 

SC more vulnerable. SC managers should also reduce dependency on the finished goods 

inventory. Using the developed model, practitioners can quantify the financial impact on the 

SC network due to the disrupted facility node. SC analysts could use the model to drill down 

into detail and account for disruptions of varying severity. This could be achieved by running 

scenarios using TTR of different durations for the facility nodes.  

 

6. Conclusion and future research 
The research successfully demonstrates the quantitative and holistic modelling approach for 

understanding risk propagation within the SC network. Risk analysis of extended supply 

chain networks, considering multiple levels of stakeholders and hazards, is critical for the 

success of SCRM (Mizgier 2017). The findings are believed to contribute to the growing 

field of SCRM by providing a comprehensive understanding of the complex behaviour of 

risks. The holistic measurement of risk propagation was found to be lacking in the SCRM 

literature and the paper has attempted to close that evident research gap. The research 

delivers the first objective of capturing the risk propagation behaviour at each node and 

across the supply chain network by conceptualising and modelling the phenomenon. The 

research investigates a multi-period SC model faced with varied risks comprising of 

organisational, network and environmental risks. The quantitative approach combines 

Bayesian networks with the K2 algorithm to develop the network of risks associated with a 

node and CPT. Similar techniques can be effectively used to handle large networks such as 

global supply chains to identify bottlenecks (Mizgier et al. 2013). The SC network model 

lays important groundwork for quantitative approaches to measuring supply chain 

disruptions. The second objective of the research was to assess the total fragility of SC 

network due to disruption propagation. The simulation results demonstrate the vulnerability 

of nodes due to disruption propagation by calculating different influential parameters such as 

lost sales, service level and total cost. The measures adopted to represent disruption risks and 

impact on the SC can be easily adapted to risk assessment in the financial markets and 

humanitarian disaster management. The measurement of risk exposure and resilience indices 

for a given supply chain network captures the third research objective. Development of such 
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indices is crucial for the SCRM and the paper contributes to the growing interest in creating 

adaptable supply chains in the future (Hohenstein et al. 2015). 

 Like any other research, the study has some limitations, which pave the way for future 

research opportunities. An automotive SC network was considered for measuring risk 

propagation. However, each SC network is unique and differs in terms of performance and 

exposure points, thus making it difficult to generalise the findings. We have incorporated the 

significant, recurrent risk factors and their occurrence probability as collected from the risk 

registers of the participating firms. One of the most important limitations is the static 

approach proposed by the BN model to develop the network of risk factors. The model 

considered a small number of risk factors and future research can look into multiple risk 

factors disrupting multiple nodes and links. Developed CPT are based on manager’s 

perception of the risk and are likely to vary depending on different scenarios due to bounded 

rationality of the decision maker. Impact of bounded rationality on risk propagation in SC 

network is another avenue for research. 

The model focuses on quantifying the risk propagation impact on the facility nodes of a SC 

network. We have not fully considered the link failure at the nodes due to unavailability of 

product-specific processes and attributes required to quantify link failures. The disruption 

impact is captured in terms of cost and service level. However, the study does not consider 

how to reduce SC risk exposure without losing financial performance. Future research can 

include a rigorous study following optimisation techniques to demonstrate the trade-off 

between SC financial performance and risk mitigation. To keep the complexity of the model 

to a minimum, the research imposed certain constraints. For example, the model did not 

consider logistics risks (lengths of arcs between nodes) in the network and lead time due to 

different node layers. Future study can include logistical network failures between the nodes. 

The limited number of nodes in the considered SC network may limit the generalizability of 

the findings. Future research can incorporate the application of this model to more complex 

SC networks. The probabilistic theory has been used to demonstrate disruption propagation in 

the network. However, other theories such as utility theory or stakeholder theory have the 

potential to provide insights into the behaviour of risks. It could be insightful to evaluate the 

effectiveness of these methods in the context of our model. The paper contributes to the 

growing SCRM research by providing a holistic measurement approach for predicting the 

complex behaviour of risk propagation.  
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Appendix 

1. Service Level  

Fraction of unfulfilled demand = ��C�
��3�

 

Fraction of fulfilled demand in week 𝑤 = 1 − ��C�
��3�

 

Average fill rate in 𝑊 weeks = 
#>

¡¢C�
£¤¥�

¦
���

n
 

Average service level over 𝑁 simulations = #
P
∗

#>
¡¢C�
£¤¥�

¦
���

n
P
2<#  

2. Resilience index 

Service level in absence of disruption =	𝑆𝐿U� 

Expected degraded service level during disruption in week 𝑤 = 𝑆𝐿U� 

Change in service level during disruption = ∆𝑆𝐿 = 	 𝑆𝐿U� − 𝑆𝐿U� 

∆𝑆𝐿 increases during the disruption phase and decreases during the recovery phase to 0, 

hence, resulting in a triangle pattern. 

When time is continuous, aggregating ∆𝑆𝐿 over 𝑤�, 𝑤2  we get, 

Total ∆𝑆𝐿 = 𝑆𝐿U� − 𝑆𝐿U� 𝑑𝑤�y
�<��

 

We consider time at a discrete weekly level we get, 

Total ∆𝑆𝐿 = 𝑆𝐿U� − 𝑆𝐿U�
�y
�<��  

In ideal scenario total SL = 𝑆𝐿U�
�y
�<�� = 𝑆𝐿U� 𝑤2 − 𝑤�  

Overall fractional loss in SL =
����>����

�y
����
���� �y>��

.  

We can conclude, intuitively, that if the overall fractional loss in SL is high then the supply 

chain node will take time to recover from the disrupted phase and will be less resilient. 

However, lower fractional loss implies that the node can spring back to its potential when 

disruption ends. Consequently, we define Resilience Index (RSI) in Equation 16 such that 

higher service level in a week, during disruption, contributes to higher resilience index 

 

       𝑅𝑆𝐼U = 1 −
����>���� g��y

����
���� �y>��

≅ 1 −
����>����

�y
����
���� �y>��

= 1 −
#>���� ����

�y
����

�y>��
						

	

3. Coefficient of Variation (Adapted from Bimpikis et al. 2017 ) 
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𝑁 𝑙 :	number of nodes in layer 𝑙  
𝐶 𝑙 : Cost of processing and production in layer 𝑙 
𝐷𝑃i: average disruption probability of nodes in layer 𝑙  
𝐷𝑃B: average disruption probability of retailer 
𝐿: set of layers or tiers in supply chain network 
𝑦T: realised output of node 𝑗 
𝑚4T: ratio of demand of node 𝑖 to realised output of node 𝑗 
𝑚4T 𝑦T :	Demand of node 𝑖 
𝑝4:	Price at node 𝑖 
𝑠: supply of raw material by (L+1)th  tier supplier 
𝐸 . : Expected value of a variable 
Total realised output of a node = 𝑦4 = 𝑦TT«@ 4 𝑚4T  
The expected output at retailer is given by the following equation: 

𝜇 𝑅 = 𝐸(𝑦B) =
1 − 𝐷𝑃B
𝑁(𝑅) (1 − 𝐷𝑃i)

i∈�>{B}

			 

 
Profit at retailer 𝜑4 = 𝐸(𝑅𝑒𝑣𝑒𝑛𝑢𝑒4 − 𝑐𝑜𝑠𝑡	𝑜𝑓	𝑏𝑢𝑦𝑖𝑛𝑔	𝑓𝑟𝑜𝑚T − 𝑐𝑜𝑠𝑡	𝑜𝑓	𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔4) 
Where 𝑃 𝑖  is the set of nodes to which node 𝑖 supplies products 

𝜑4 = 𝐸 𝑝4 𝑚4i𝑦i
i«@ 4

− 𝑝i𝑚4i𝑦i
i«@ 4

− 𝐶(𝑖) 𝑚4i𝑦i
i

$

 

 
Differentiating with respect to 𝑚4T i.e. with respect to sourcing decisions of 𝑖 to get first 
order optimality criteria for node 𝑖: 

𝜕𝜑4
𝜕𝑚4T

=
𝜕

𝜕𝑚4T
𝐸 𝑝4 𝑚4i𝑦i

i«@ 4

− 𝑝i𝑚4i𝑦i
i«@ 4

− 𝐶(𝑙) 𝑚4i𝑦i
i

$

= 0 

𝐸 𝑝4𝑦T − 𝑝T𝑦T − 2𝐶(𝑙) 𝑚4i𝑦i
i

𝑦T = 0 

(1 − 𝐷𝑃i)𝑝 𝑙 𝜇 𝑙 + 1 − 𝑝 𝑙 + 1 𝜇 𝑙 + 1

− 2𝐶 𝑙 𝑚4i𝜋 𝑙 + 1 +𝑚4T𝜋 𝐿 + 1
i³T|i«@(4)

= 0 
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𝜋 𝑙 =
𝜋 𝑙

(1 − 𝐷𝑃i)
 

 
Using the above equations for finding variation in output at the retailer we write 𝐶𝑉B as: 

𝐶𝑉B =
𝑉𝑎𝑟(𝑅)
𝐸(𝑅)$ =

𝐸(𝑅$) − 𝐸(𝑅)$

𝐸(𝑅)$ =
𝜋(𝑅)

(𝑠 (1 − 𝐷𝑃i)�
i<# )$

− 1 

 

                      𝐶𝑉B = ( #
#>�@�

#
P i

𝑁 𝑙 − 1 + #
#>�@�

− 1i∈�>{B} )
�
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