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1 INTRODUCTION 

This research focuses on the development of an Initial Bayesian Network (BN) model for 

modelling system and component failures on a large offshore installation. The intention of the 

presented research is to model a sequence of events following a specific component failure, 

under certain conditions and assumptions. This sequence of events is then applied to a BN 
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 ABSTRACT: This paper proposes the initial stages of the application of Bayesian Networks 

in conducting quantitative risk assessment of the integrity of an offshore system. The main 

focus is the construction of a Bayesian Network (BN) model that demonstrates the interactions 

of multiple offshore safety critical elements to analyse asset integrity. The majority of the data 

required to complete the BN was gathered from various databases and past risk assessment 

experiments and projects. However, where data was incomplete or non-existent, expert 

judgement was applied through Pairwise Comparison, Analytical Hierarchy Process (AHP) 

and a Symmetric Method to fill these data gaps and to complete larger Conditional Probability 

Tables (CPTs).  A NUI (Normally Unattended Installation) - Integrity Case will enable the user 

to determine the impact of deficiencies in asset integrity and demonstrate that integrity is being 

managed to ensure safe operations in situations whereby physical human to machine 

interaction is not occurring. The Integrity Case can be said to be dynamic as it shall be 

continually updated for an installation as the Quantitative Risk Analysis (QRA) data is 

recorded. This allows for the integrity of the various systems and components of an offshore 

installation to be continually monitored. The Bayesian network allows cause-effect 

relationships to be modelled through clear graphical representation. The model accommodates 

for continual updating of failure data. 

Keywords: Offshore safety, Integrity case, Bayesian networks, Offshore installations, 

Electrical generation systems 
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model using a proposed methodology. This should provide a base with which to expand the 

BN model to facilitate the requirement of having a dynamic risk assessment model within an 

NUI (Normally Unattended Installation) - Integrity Case. The purpose of the BN model is to 

demonstrate that it is possible to accurately and sufficiently apply BN techniques to offshore 

systems and their associated failures and hazard. The aim of this is to apply Bayesian theory 

and BNs to the integrity case as the basis for modelling various other offshore systems and 

monitoring their integrity based upon the data and scenarios within the BN models. 

An Asset Integrity Case will enable the user to determine the impact of deficiencies in asset 

integrity on the potential loss of life and demonstrate that integrity is being managed to ensure 

safe operations. The Integrity Case is an extended Safety Case. Where safety cases demonstrate 

that safety procedures are in place, the Integrity Case shall ensure that the safety procedures 

are properly implemented. The Integrity Case can be applicable to operations for any large 

scale asset, and in the case of this research the large asset for which the Integrity Case shall be 

developed is an offshore installation [1]. By expanding on this Integrity Case proposal, it is 

intended that an Integrity Case be developed for a Normally Unattended Installation (NUI) in 

conjunction with a dynamic risk assessment model to maintain a live representation of an 

offshore installations integrity. Furthermore, it is proposed that the NUI-Integrity Case be 

initially developed utilising a manned installation, but modelling failure and risks without 

human presence on board. This is due to a much larger range of failure data being available 

regarding manned installations as opposed to unmanned installations. Similarly, should a risk 

assessment model be feasible for various hazardous zones of an installation, and the dynamic 

model proves to be effective in the detection of failures and mapping of consequences, it may 

be possible to reduce the number of personnel on board manned offshore installations, to reduce 

the risk of injury and fatality.  

The paper is structured as follows. Section 2 presents a literature review, outlining the 

background into the research. An outline of BNs and a proposed methodology of constructing 

a BN model is shown in section 3. Section 4 outlines and analyses a case study to demonstrate 

the proposed methodology. Section 5 summarizes the paper. 

2 LITERATURE REVIEW 

2.1  Offshore Safety Assessment 

Following the public inquiry into the Piper Alpha disaster, the responsibilities for offshore 

safety regulations were transferred from the Department of Energy to the Health and Safety 
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Commission (HSC) through the Health and Safety Executive (HSE) as the singular regulatory 

body for safety in the offshore industry [2] [3]. In response to this the HSE launched a review 

of all safety legislation and subsequently implemented changes. The propositions sought to 

replace the legislations that were seen as prescriptive to a more “goal setting” approach. Several 

regulations were produced, with the mainstay being the Health and Safety at Work Act [4]. 

Under this a draft of the offshore installations safety case regulations was produced. The 

regulations required the preparation of operational safety cases for all offshore installations, 

both fixed and mobile. In addition, new fixed platforms require a design safety case and in the 

case for mobile installations the duty holder is the owner [2]. 

Offshore operators must prepare acceptable operational safety cases (SC) for all existing and 

new offshore installations which is subject to approval based on an independent reputable 

organisation’s verification, such as; DNV GL (Det Norske Veritas) (Germanischer Lloyd), for 

acceptance, and it is an offence to operate without an approved SC [5]. The SC must show that 

it identifies the hazards with potential to produce a serious accident and that these hazards are 

below a tolerability limit and have been reduced to the ALARP Level (As Low As Reasonably 

Practicable) [2]. 

Safety and risk assessment for offshore installations is vigorous and requires demonstration 

from duty holders that all hazards with potential to cause major accident are identified, all 

major risks have been evaluated, and measures have been or will be taken to control the major 

accident risks to ensure compliance with the statutory provisions [6]. 

This is vitally important as accidents in the offshore industry lead to devastating consequences, 

such as the explosion on board the Deepwater Horizon rig in the Gulf of Mexico which was 

caused by the failure of a subsea blowout preventer (BOP), with some failures thought to have 

occurred before the blowout. This solidifies the use of quantitative risk and reliability analysis, 

with recent emphasis on Bayesian networks, as the model can perform predictive analysis and 

diagnostic analysis [7]. 

In 1996 the regulations surrounding safety cases were expanded to include the verification of 

Safety Critical Elements (SCEs). In conjunction to this, further regulations were introduced, 

the so called offshore installations and wells regulations. These regulations dealt with the 

various stages of an installations life cycle. In terms of SCEs, they are defined by HSE (1996) 

as parts of an installation, including software programs, whose failure has the potential to cause 



4 
 

or contribute substantially to or whose purpose to prevent or limit effect of a major accident [2] 

[8]. 

Recently, however, it is felt that an expansion on Safety Cases is necessary, especially in the 

offshore and marine industry, as they are static documents that are produced at the inception 

of offshore installations and contains a structured argument demonstrating that the evidence 

contained therein is sufficient to show that the system is safe [9]. This is the full extent of Safety 

Cases. They involve very little updating unless an operational or facility change is made. It can 

be difficult to navigate through a safety case, as they can be difficult for project teams and 

regulators to understand, as well as often being monolithic [10]. This is where the e-Safety 

Case comes into play. e-Safety Cases are html web-based electronic Safety Cases. They are 

much easier to navigate and have clear concise information about the safety of the facility they 

are provided for. However, the QRA data (Quantified Risk Assessment) is only updated with 

the release of updated regulations [11]. Over the past 10 years it has been stated that a dynamic 

risk assessment model is required within the offshore and process industries. [12] proposed to 

apply BN to Bow-Tie (BT) analysis. They postulated that the addition of BN to BT would help 

to overcome the static limitations of BT and show that the combination could be a substantial 

dynamic risk assessment tool. Similarly, in the oil, gas & process industry [13] proposed a 

methodology of Dynamic operational Risk Assessment (DORA). This starts from a conceptual 

framework design to mathematical modelling and to decision making based on cost-benefit 

analysis. Finally, [1] proposed the idea of a dynamic decision making tool in an Asset Integrity 

Case. 

The Integrity Case, an idea proposed by RMRI Plc. (Risk Management Research Institute), can 

be said to be dynamic as it shall be continually updated with the QRA data for an installation 

as the QRA data is recorded. This allows for the integrity of the various systems and 

components of a large asset, such as an offshore installation, to be continually monitored. This 

continual updating of the asset’s QRA data allows for the users to have a clearer understanding 

of the current status of an asset. The updating also allows a user to identify the impact of any 

deviation from specified performance standards, as well as facilitate more efficient 

identification of appropriate risk reduction measures. Finally, it identifies key trends within 

assets (e.g.: failures, failure modes), hence, reporting to regulators would improve greatly and 

it would provide a historical audit trail for the asset. Furthermore, the integrity of an asset is 

maintained so that potential loss of life is kept ALARP. This means that an asset may continue 
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safe operations under circumstances that may have instigated precautionary shutdown, 

resulting in considerable cost savings for the owner and operator [1]. 

2.2  BN Justification 

Improving offshore safety is a main objective for various offshore organisations such as the 

HSE and DNV GL. In order to help achieve this improvement in offshore safety risk 

assessment analysis models need to become more efficient and dynamic. Hence, in this 

research the development of a potential dynamic risk assessment model is presented, with a 

focus on specific failure on an offshore installation [14]. 

The risk of hazards and failures offshore is determined by a large range of factors due to the 

countless possible scenarios in which incidents and accidents can develop. This makes 

establishing risk both qualitatively and quantitatively an intimidating task. There are many 

techniques which can aid risk analysis, yet in this research the focus is to be around BNs, and 

a large number of studies have been conducted for marine, offshore and process industries. 

Most studies usually associate themselves around a particular area. For example BNs have been 

utilised by [7] to conduct quantitative risk assessment of operations in the offshore oil and gas 

industry. Their method involves translating a flow chart of operations into the BN directly. 

They then verify their model through the use of a case study involving Subsea Blowout 

Preventer Operations, in light of the Deepwater Horizon sinking in 2010, whose cause was the 

failure of the subsea blowout preventer [15]. In another instance [16] applied BN to produce a 

marine and offshore decision support tool to realistically deal with random uncertainties, while 

at the same time making risk assessments easier to build and to check [17]. Furthermore, [16] 

proposed, in their work, an offshore decision-support solution, through BN techniques, to 

demonstrate that it is necessary to model the assessment domain such that the probabilistic 

measure of each event becomes more reliable in light of new evidence being received. This is 

the preferred method as opposed to obtaining data incrementally, causing uncertainty from 

imperfect understanding and incomplete knowledge of the domain being analysed.  

There are a multitude of positive by using BNs over alternate risk assessment methods, for 

example, in BNs various forms of data can be combined, such as; expert judgement and 

empirical data. This is particularly useful in situations where there is an absence of data or 

where data is very sparse. Thus other forms of data and information can be incorporated into 

the network [18]. The advantageous nature of BNs over other methods is outlined by [12], who 

investigated the exclusive nature of comparing BNs and Fault Tree Analysis (FTA) in safety 
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analysis within the process industry. It was concluded by them that a BN is a superior technique 

in safety analysis due to its flexible structure, which allows for it to fit a wide variety of accident 

scenarios. In conjunction to this, BNs provide a clear visual representation of what they are 

representing and can be a highly effective tool for generating ideas and expanding the model 

in itself [17]. This trait is shared by other risk modelling techniques, however, BNs are 

particularly adaptable method. BNs also facilitate inference and the ability to update 

predictions through the insertion of new evidence or observations into its parameters. This 

makes them a very useful tool when dealing with uncertainty.  

The BN methodology provides a substantial way in which the modelling of relationships 

between variables, within a given domain, through the assignment and linking of nodes.  The 

method also allows for clear graphical representation of a scenario resulting from a series of 

events. The uncertainty between multiple dependencies of nodes is captured through the 

assignment of conditional probabilities [19]. It is worth noting that BNs are not without their 

critics. Bayesianism is analysed by [20] and discussed some of the limitations of BNs. He 

addressed in particular that the Bayesian approach cannot combine conflicting beliefs that are 

based on different implicit conditions and cannot carry out inference when the premises are 

based on different implicit conditions [14]. In terms of the research presented in this work, the 

BN should be thought of as a probabilistic approach to risk analysis which considers factors 

and chains of potential events, which can result in an undesired situation or condition. 

3 METHODOLOGY 

3.1  Overview of Bayseian Networks 

BNs are a Directed Acyclic Graph (DAG) encoding Conditional Probability Distribution 

(CPD). There are two main components to BNs. The first is the graphical structure, which 

provides the qualitative part and the second is the probability distribution which provides the 

quantitative part [14]. 

The graphical structure is referred to as the DAG. The DAG contains a set of nodes each 

representing a random/chance variable which can take the form of an event, the presence of 

something, a measurable parameter, a latent variable and an unknown parameter or hypothesis. 

Nodes are connected together by arcs in one-way directions. Arcs can also be referred to as 

directed edges, and they represent the direct probabilistic dependence relationship between 

variables. A simple example of a BN is shown in Figure 1. In this example, nodes A and B are 

the parents of node C. Node C is the parent of nodes D and E and the child of A and B. Nodes 
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D and E are children of C. Following this logic, nodes C, D, and E are descendants of A and 

B. Nodes A and B are the root nodes, while nodes D and E are the leaf nodes [17] [18]. 

Each node in the DAG has a number of possible states which must apply at any one time. 

Probability distribution indicates the strength of the belief in how the states of parent nodes can 

affect the states of their child nodes. Nodes can represent either discrete random variables with 

a finite number of states, (e.g.: ‘Yes/No’ and ‘Low/Medium/High’) or they can represent a 

continuous random variable with a normal density distribution. For root nodes a marginal 

probability table is defined. Non-root nodes are assigned conditional probability tables (CPTs) 

(Neapolitan, 2004). If the node is discrete then each cell in the CPT contains a conditional 

probability for the state of the node given the state of the parent node or combination nodes. 

When constructing a BN it is important to note that the number of permutations in the CPTs 

increases exponentially with the number of parent nodes and the number of states in the CPT. 

For example; If node A has ‘X’ parents with ‘n’ number of states, then there will be ‘Xn’ 

permutations in the CPT or node A. Similarly, the total number of cells in a CPT is equal to 

the product of the possible number of states in the node and the number of states in the parent 

nodes [17]. 

Conditional probabilities are essential to BNs. They can be expressed by statements such as "B 

occurs given that A has already occurred" and "given event A, the probability of event B is 'p'", 

which is denoted by P(A|B)=p. This specifically means that if event A occurs and everything 

else is unrelated to event B (except event A), then the probability of B is 'p' [17]. Conditional 

probabilities are part of the joint probability of the intersection of A and B, P(A∩B).  

For any two events A and B:  

Figure 1: A simple BN 
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𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵|𝐴) · 𝑃(𝐵) = 𝑃(𝐴|𝐵) · 𝑃(𝐴)         (Eq. 1) 

It should be noted that if P(A)=0 then A is an event with no possible outcomes. Therefore, it 

follows that (A∩B) also contains no possible outcomes and P(A∩B)=0. The independence of 

events can be shown by definition. Let A and B be any events with P(A)≠0. Then A and B can 

be defined as independent if P(B) is equal to P(B|A).  

Thus, it follows from the previous definition, that: 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) · 𝑃(𝐵)   (P(A ∩ B) = P(A) · P(B)                 (Eq. 2) 

Bayes Theorem of probability theory is seen as a way of understanding how the probability 

that a theory is true, is affected by new evidence. For example, the probability of A can be 

updated if new evidence about event B is known (Matellini, 2012). 

𝑃(𝐴│𝐵) =   (𝑃(𝐵│𝐴) · 𝑃(𝐴))/𝑃(𝐵)                                (Eq. 3) 

3.2 Modelling and Analysis Steps 

There are many step-by-step procedures in use that allow for construction of the various parts 

of the BN model. The procedures are useful as it allows for maintaining consistency throughout 

the process and offers an element of confidence to the model. The procedures have varying 

parts depending on the context of the model and how much information is already available 

[19] [21]. However, there are key elements which all the procedures follow, these are: 

3.2.1 Establish the domain and project definition   

This involves putting boundaries in place for the model. In this analysis the domain is to be 

defined as a module on a large offshore installation. The model begins with an initial 

component failure and tracks the cause and effect relationship of this failure on various other 

components and systems. The model ends with outlined consequences. The objective of the 

model involves stating what results are expected to be achieved from the model. For the model 

in this research the focus is on the interaction of the components and their probability of 

occurrence. 

3.2.2 Identify the set of variables relative to the problem 

This involves filtering possible parameters that are relevant to the description and objective. 

For the model the initial variables were devised utilising a sequence of events diagram. This 

sequence of events diagram represents the steps of various events with their order and causality. 
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The events in the diagram are connected with arcs and arrows. This allows for a straightforward 

transition to a BN.  

3.2.3 Form Nodes and Arcs for the BN 

The events and consequences in the sequence of events are translated to corresponding parent 

and child nodes in the Bayesian Network. The sequence of events, however, is basic and the 

arcs do not directly translate to the BN and are determined in Step 4. It is possible to express 

node as positive or negative. The interconnections between the events is translated to the 

specific CPTs in question. The CPTs are constructed in Step 5. Once the relevant nodes are 

identified, they are input into a BN software package, HuginResearcher7.7, and connected. 

This entails referring to the sequence of events from the initial failure to determine the most 

effective way of connecting the nodes together. The network is reviewed to ensure that there 

are no missing factors. 

3.2.4 Data acquisition and analysis  

Primarily, data is sought from various sources including: industrial & academic publications, 

offshore risk assessment projects, as well as databases such as: the Offshore Reliability 

Database (OREDA), the HSE and International Association Oil & Gas Producers (OGP). 

However, should data not be widely available or the CPT for a node be much too large to 

construct utilising data from the outlined sources, then expert judgement is to be utilised. The 

expert judgement is to be obtained using the Pairwise Comparison technique and analysed with 

the Analytical Hierarchy Process (AHP). The data from the AHP analysis is translated to the 

CPTs using a Symmetric Method. The data from relevant sources is then used to create the 

marginal or conditional probability tables. 

3.2.5  Analysis of BN model and Sensitivity Analysis  

This step concerns itself with the analysis of the BN model using Bayesian Inference. The 

probability of failure given a specific operation is obtained by forward analysis. Hence, it is 

possible to determine the posterior probabilities of the influencing events through backward 

analysis, provided some evidence is entered into the nodes of the BN. The propagation of the 

BN is conducted using Hugin Researcher 7.7. The results of the analysis provide useful 

information in handling the effect of one failure on multiple components and systems. These 

results are demonstrated through a Sensitivity Analysis. The data for this analysis is again 

produced by the Hugin Researcher 7.7 software. 
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3.2.6 Verification of the BN Model  

Verification is a key aspect of the methodology as it provides a reasonable amount of 

confidence to the results of the model. In carrying out a full verification of the model, the 

parameters should be closely monitored for a given period of time. For modelling a specific 

failure within an electrical generator, this exercise is not practical. In current work and literature, 

there is a three axiom based verification procedure, which is used for partial verification of the 

proposed BN model. The three axioms to be satisfied are as follows [15]: 

Axiom i:  

A small increase or decrease in the prior probabilities of one or more parent nodes should 

produce a relative increase or decrease in the probability of one specific child node or a number 

of child nodes. The number of child nodes affected is dependent on the type of BN and the 

purpose of the analysis. 

Axiom ii: 

Given the variation of probability distributions within a parent node, or more than one, the 

magnitude of the influence to the child node should remain consistent. 

Axiom iii:  

The complete influence magnitudes of the arrangement of the variations in probability from “x” 

attributes on the values should be larger than that of the set “x-y” attributes. 

4 CASE STUDY 

4.1  Establish domain and model definition 

In order to demonstrate the proposed methodology a case study is applied. The case study 

undertakes the evaluation of the effects that a rotor retaining ring failure has on an offshore 

electrical generation unit. The study takes into account systems within a module of a large 

offshore installation and the key surrounding systems. 

The potential damage scenarios from the failure of the retaining rings shall be assessed for one 

electrical generator contained within a module of a platform, which has significant hydrocarbon 

inventories adjacent to either side of the module. Hence the potential for damage to key 

hydrocarbon systems is present and provides an ideal position to model the cause and effect 

relationship of a retaining ring failure across various systems. 
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The electrical generation unit is considered to be of a generic layout for electrical generation 

on a large platform. The generator consists of a primary alternator, driven by a gas turbine. 

Located after the alternator is the exciter. The alternator rotor and shaft are forged in one piece 

with the exciter coupled on to one end. The opposite end of the shaft is coupled to the turbine 

drive shaft, which has an approximate operating speed of 3,600 rpm. The main shaft is 

supported by two main bearings, housed in pedestals, on stools on the baseplate. One bearing 

is situated between the turbine and the alternator and the other between the alternator and the 

exciter. An electrical generation unit is illustrated by figure 2.  

4.2  Identifying  the set of variables relative to the problem 

The variables are identified following the failure of one specific component which, in this case, 

is a Rotor Retaining Ring. Should one of the retaining rings fail, the main shaft would become 

unbalanced causing potential fragmentation of the rings inside the alternator. Given the extreme 

tolerances’ within the generator construction, the unbalanced shaft could also cause damage to 

other areas of the equipment, such as: the turbine blades and the exciter. Should the retaining 

ring fail within the alternator casing and fragment, debris would be created within the casing. 

Furthermore with the machine operating at approximately 3,600rpm, an out of balance shaft 

would cause substantial vibrations, which could cause the main bearings to fail. Should the 

bearings fail, causing the shaft to become misaligned, it would result in increased damage to 

the turbine, alternator and exciter [22].  

 

Turbine Alternator 

Compressor Blades Turbine Blades  Casing  
Rotor 

Stator 

Retaining Rings 
Baseplate 

Bearings 
Bearings 

Exciter 

Figure 2: Schematic of a Generator Unit 
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From this the most likely point of failure within the turbine is the turbine blades shearing. 

Multiple blade failure could lead to the turbine casing not fully containing the turbine blade 

debris. This would result in turbine blades being expelled through the turbine casing as high 

velocity projectiles. Continually, the violent shaft vibrations and misalignment could have a 

severe impact on the exciter and may result in the exciter, weighing approximately one tonne, 

becoming detached from the main shaft. Some catastrophic failures have resulted in the exciter 

breaking up and some have had the exciter remain mostly intact [22]. Should the bearings not 

fail, the alternator stator coils & casing, can provide enough resistance and are substantial 

enough to prevent the debris from the retaining ring penetrating the alternator casing. However, 

it is possible for the fragments to be expelled axially towards either the turbine or the exciter 

or both [23].  

 

In the event of one or two rotor retaining ring failures, significant damage could occur within 

the alternator casing and fragments of the retaining ring could be expelled axially. Should the 

ring debris be expelled, it is assumed that it will travel in two possible direction; i) towards the 

turbine or ii) towards the exciter and out of the casing. Should the debris travel to the turbine 

there is potential for the fragments to impact the fuel gas line within the turbine. This then 

provides the escalation to a fire (given the location of the potential release, ignition is assumed). 

Should the debris travel out of the casing towards the exciter, it is considered by RMRI. Plc 

(2009) that while the axial velocity may be considerable, it is likely to be lower than the radial 

velocity that the debris would be expelled at, were the casing and stator not there. Therefore, 

while it is possible for the ring debris to penetrate the casing, they would not have the required 

1. Initiating failure: 

i.e.: Rotor retaining ring 

failure 

2. Operational changes: 

i.e.: Electrical generator 

does not function properly. 

3. Unsafe conditions: 

Conditions caused by initial 

failure. i.e.: violent shaft 

vibrations or retaining ring 

fragments/ debris. 

4. Incident: 

Results from unsafe 

conditions. i.e.: main 

bearing failure 

5. Accident: 

Results from an incident. 

i.e.: Projectiles escaping or 

turbine fuel pipe impact. 

6. Consequences: 

Results from an accident. 

i.e.: Projectiles cause HC 

containment Impact and 

release or Fuel Gas pipe 

impact causes a fire. 

Figure 3: Outline of a Sequence of Events Diagram. 
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velocity to penetrate the module walls or deck. From this it is deemed that if retaining ring 

failure does not cause a bearing failure, then the consequence of the event is likely to be limited 

to the damages caused by the retaining ring [23].  

However, should the main bearing fail, the potential consequences become much more severe. 

The significant damage caused by the bearing failure can potentially produce high velocity 

projectiles from the turbine blades being expelled and/or the exciter becoming detached [22]. 

In these events, there is potential for the projectiles to impact the hydrocarbon containment 

around the module. 

The series of events stated can be expressed in a sequence of events, by applying the variables 

to a generic sequence of events diagram, as shown in Figure 3. 

4.3 Form Nodes and Arcs for the BN 

The model is demonstrated in Figure 4 and is designed around the variables identified in the 

sequence of events shown in Figure 3 and Section 4.2, and is to represent the cause and effect 

of one initial component failure has on systems within the stated domain. The Initial BN model 

is not a direct representation of the sequence of events in terms of the section of the model 

where possible debris is expelled. Within the sequence of events if the debris is not expelled 

initially, it is assumed to remain in the alternator, yet if debris expelled, it is assumed to travel 

towards the exciter. Similarly, if the debris is not expelled to the exciter, it is assumed to be 

Figure 4: BN model as constructed from the outlined variables. 
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expelled towards the turbine. While this is all possible, it is more realistic to assume that if the 

debris is created from the retaining ring failure, it has the potential travel to the turbine and the 

exciter in the same instance. However, it is possible for debris to be expelled to the exciter and 

not to the gas turbine, whereby some debris would remain in the alternator. The way in which 

the BN model is created ensures that it contains all relevant possible outcomes.  

In this case the analysis is conducted within an electrical generation module of a large offshore 

installation. The initial model is made up of seventeen chance nodes labelled 1 to 10 and E1 to 

E7. The latter nodes represent the possible events that can result from the initial mechanical 

failure. All nodes have two states (“Yes” and “No”) except for event node E6 which has four 

(“Small”, “Medium”, “Full-bore” and “None”). The BN constructed from the variables 

outlined is shown in Figure 4.  

 

4.4 Data acquisition and analysis 

It is important to note that the numerical results of the model are not significant in terms of 

being absolute, but rather to serve in the demonstration of the practicability of the model. Once 

a full set of verified data is fed into the model, the confidence level associated with planning 

and decision making under uncertainty will improve. Figure 5 complements Figure 4 by 

demonstrating the marginal probabilities for each node. 

Figure 5: Marginalised Probabilities for each node in the BN model 
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To complete the CPTs within the BN, certain data and knowledge is required regarding each 

specific node. For some nodes data is limited or not available. For cases where there is an 

absence of hard data, the CPTs are to be completed through subjective reasoning or the 

application of expert judgement. This process can be demonstrated by looking at the node 

“Event Escalation”. This node represents the chance of escalation following key component 

failures. The parents of this node are as follows: “Turbine Blades Expelled”, “Exciter 

Detaches”, Gas Import Riser Piping Impact” and “HP Flare Drum Shell Impact”. In order to 

put together an appropriate estimate, experts must judge the situation and provide their opinions. 

This data acquisition can be either qualitative or quantitative in nature. However, the child node 

“Event Escalation” has a CPT which is too large for an expert to simply fill with their own 

judgements and opinions. Therefore, an effective way to gather information, to fill these large 

CPTs, from experts is to apply the use of a Pairwise Comparison technique in questionnaires 

and make use of the Analytical Hierarchy Process (AHP) to analyse the results, combined with 

the symmetric method algorithm to fill the large CPTs [24].  

The AHP will produce a weighting for each parent criterion in the pairwise comparison matrix. 

These weights are applied to the symmetric method which is utilised to fill large CPTs. The 

symmetric method provides an input algorithm which includes of a set of relative weights that 

quantify the strengths of the parent-nodes influence on the child-node, and a set of probability 

distributions. However, in the symmetric method the probability distribution is deemed not to 

grow exponentially but linearly, with the number of parent-nodes [25] [26]. Figure 5 shows the 

complete marginal probability distributions for the BN. 

Table 1 shows each node in the BN along with the number of states, number of parents, 

permutations in the probability tables and the sources of data. In addition, the full CPTs for the 

BN can be found in Appendix 1.  
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Table 1: Details of each Nodes CPT along with their data origins 

No. Node States Parents 
Permutations in 

probability table 
Data Sources 

1 Retaining Ring Failure 2 0 2 Literature (HD1) 

2 Debris Expelled 2 1 4 Literature (Db2 & RAP3) 

3 Debris Expelled into Turbine 2 1 4 Literature (Db2 & RAP3) 

4 Debris Expelled towards Exciter 2 1 4 Literature (Db2 & RAP3) 

5 Fuel Gas Feed Impact 2 1 4 Literature (Db2 & RAP3) 

6 Generator Bearings 2 1 4 Literature (Db2 & RAP3) 

7 Turbine Blades Expelled 2 1 4 Literature (Db2 & RAP3) 

8 Exciter Detaches 2 1 4 Literature (Db2 & RAP3) 

9 Gas Import Riser Piping Impact 2 1 4 Literature (Db2 & RAP3) 

10 HP Flare Drum Shell Impact 2 1 4 Literature (Db2 & RAP3) 

E1 Debris Contained in Alternator 2 3 16 Literature (Db2 & RAP3) 

E2 Debris Escapes Generator Housing 2 1 4 Literature (Db2 & RAP3) 

E3 Fuel Gas Fire 2 1 4 Literature (Db2 & RAP3) 

E4 Debris Remains in Turbine Housing 2 1 4 
Expert Opinion (PC, AHP & 

SM)4 

E5 Event Escalation 2 4 32 
Expert Opinion (PC, AHP & 

SM)4 

E6 
Gas Import Riser Loss of 

Containment 
4 1 4 Literature (RAP3) 

E7 
HP Flare Drum  Loss of 

Containment 
2 1 4 Literature (HD1 & RAP3) 

1Historical Data (HD), 2Databases (Db)such as; OREDA, HSE, OGP, 3Offshore Risk Assessment Projects, 4Pairwise 

Comparison, Analytical Hierarchy Process & Symmetric Method 

 

4.4.1.1 Pairwise Comparison and AHP 

Pairwise comparison is required as the experts cannot simply analyse the individual nodes and 

provide their judgements. A specific criterion is required in order for the experts to understand 

the situation and provide the relevant information. Furthermore, the BN contains some nodes 

which are at component level and some nodes which are at system level. The pairwise 

comparison provides a hierarchy for comparisons so the experts can see the breakdown of the 

situation and compare areas that are system related and those that are component related [25]. 

The AHP approach is a structured technique for organising and analysing complex decisions. 

It is based on the well-defined mathematical structure of consistent matrices and their 

associated right eigenvector’s ability to generate true or approximate weights [26] [27]. It 

enables the comparison of criteria with respect to a benchmark in a similar fashion to the pair-
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wise comparison mode. Such a comparison uses a fundamental scale of absolute numbers. For 

example, in this analysis the scale is as follows: “1 is equally important”, “3 is a little 

important”, “5 is important”, “7 is very important”, “9 is extremely important” and “2, 4, 6, 

and 8 are intermediate values of important”. This fundamental scale has been shown to be a 

scale that captures individual preferences with respect to quantitative and qualitative attributes 

[28] [29]. 

A set of questionnaires, applying the fundamental scale for absolute numbers, was sent to 

selected experts in the offshore industry for their evaluation. The feedback is investigated 

according to their judgements on the criteria under discussion. This feedback, in the form of a 

pairwise comparison, is utilised to determine the relative weights of the parent nodes using 

AHP. The back grounds of the five experts, who shall remain anonymous, is as follows: 

Expert 1 is a current member of a national regulatory body with over 20 years of experience in 

the offshore industry. This person current holds chartered engineer status. 

Expert 2 is currently in the employment of a reputable classification society and holds a 

university qualification at the MSc. Level. This person has 8 years of experience at sea and 

more than 5 years as an offshore safety manager. 

Expert 3 is currently in the employment of a reputable classification society and holds a 

university degree at PhD level. This person has more than 10 years’ experience of working in 

the offshore industry. 

Experts 4 and 5 are both currently colleagues in the employment of a leading energy 

corporation and have university degrees to MSc. Level. Both also have more than 10 years’ 

experience in the offshore industry. 

To find the relative weight of each criterion, an AHP approach containing a pair-wise 

comparison matrix will be used. To conduct the pairwise comparison matrix, at first, set up n 

criteria in the row and column of an n×n matrix. 

The judgements on pairs of attributes Ai and Aj are represented by an n×n matrix A as shown 

in (Eq. 4) [30]. 

𝐴 = (𝑎𝑖𝑗) =

[
 
 
 

1 𝑎12 … 𝑎1𝑛
𝑎

𝑎12⁄ 1 … 𝑎2𝑛

. . … .
1

𝑎1𝑛
⁄ 1

𝑎2𝑛
⁄ … 1 ]

 
 
 

    (Eq. 4) 
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where i, j = 1,2,3, …, n  and each aij is the relative importance of attribute Ai to attribute Aj. 

For a matrix of order n, (n×(n-1)/2) comparisons are required. According to Ahmed et al. 

(2005), each element in the pair-wise comparison matrix carries a weight vector which 

indicates their priority in terms of its overall contribution to the decision making process. These 

weight values are found using (Eq. 5).  

𝑤𝑘 =
1

𝑛
∑ (

𝑎𝑘𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖=1

)𝑛
𝑗=1  (𝑘 =  1, 2, 3, … , 𝑛)    (Eq. 5) 

where aij  is the entry of row i and column j in the comparison matrix of order n. 

The weight values obtained in the pair-wise comparison matrix are checked for consistency 

purpose using a Consistency Ratio (CR). The CR value is computed using the following 

equations [26]:  

𝐶𝑅 = 𝐶𝐼/𝑅𝐼                                                       (Eq. 6) 

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
           (Eq. 7) 

𝜆𝑚𝑎𝑥 =
∑

∑ 𝑤𝑘𝑎𝑗𝑘
𝑛
𝑘=1

𝑤𝑗

𝑛
𝑗=1

𝑛
      (Eq.8) 

where n equals the number of items being compared, λmax stands for maximum weight value of 

the n×n n × n comparison matrix, RI stands for average random index (Table 2) and CI stands 

for consistency index [26] [31]. 

CR is designed so that a value greater than 0.10 illustrates an inconsistency in the pairwise 

comparison. If the Consistency Ratio is 0.10 or less, then the pair-wise comparison is 

considered consistent and reasonable. Should the inconsistency level in the pairwise 

comparison be unacceptably high, a revisit to the expert judgements would be required. It is 

also possible to approach more domain experts in the elicitation process [26].  

Table 2: Saaty’s Random Index (RI) Values 

n 2 3 4 5 6 7 8 9 10 

RI 0 0.58 0.9 1.12 1.24 1.32 1 1.45 1.49 
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4.4.1.2 Symmetric Method 

The symmetric method is an ideal solution to compiling data for large CPTs, as it simplifies 

the problem. 

To outline the symmetry method, let us consider part of the initial BN model consisting of 

nodes 7, 8, 9, 10 and E5. as shown in Figure 6. 

 

Also, for ease of explanation, Table 3 shows a simple notation for each parent node. 

Table 3: Notation for Parent Nodes in Figure 6 

Parent Nodes (from left to right in figure 5) Notation  

Gas Import Riser Piping Impact W 

Turbine Blades Expelled X 

Exciter Detaches Y 

HP flare Drum Shell Impact Z 

 

In this example the child node E5 has 24
 different parental configurations, as there are four 

parents each with two states (Yes and No). Hence, the CPT will consist of 24
 probability 

distributions. This large number of distributions would require a substantial level of effort on 

the part of the expert to complete the CPT to an acceptable degree of accuracy. The more 

enigmatic part is that the CPTs are exponentially large. A CPT dependent on n parents with 

two states would require distributions of the order 2n to be deemed to be functional. The 

exponential growth provides the key issue behind compiling large CPTs. This symmetry 

method simplifies the problem of exponentially large CPTs. 

Figure 6: Small BN Network taken from the Initial BN Model 
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For calculation of the CPT for the child node (Event E5), assume that the number of 

distributions grows linearly as opposed to exponentially. i.e.: with the network shown there are 

2x4 distributions linearly as opposed to 24 exponentially. If the states of the parents are assumed 

to have one-to-one capability correspondence (which is an equivalence relation) then the 

number of ‘Questions’ regarding the CPT for the child node is reduced [32]. 

The parent nodes, W, X, Y and Z, in this instance, have the same number of states; k1 = k2 

=....= k4, = k.  

Suppose: Y = yt  is compatible with W = wt , for 1 ≤ t ≤ k. 

Y = yt  is not compatible with W = ws   whenever t ≠ s where t and s are the sets of n elements 

of the parents. 

Let {comp(Y = ys)} denote the Compatible Parent Configuration where parent Y is in the state 

ys and the rest of the parents are in states compatible to Y = ys  

Therefore, using the symbol '≡' to relate two identical sets, one has; 

{𝑐𝑜𝑚𝑝(𝑌 = 𝑦𝑠)} ≡ {𝑐𝑜𝑚𝑝(𝑊 = 𝑤𝑠)} ≡ {𝑐𝑜𝑚𝑝(𝑋 =  𝑥𝑠)} ≡ {𝑐𝑜𝑚𝑝(𝑍 =  𝑧𝑠)} ≡ 

{𝑊 = 𝑤𝑠 , 𝑋 = 𝑥𝑠  , 𝑌 = 𝑦𝑠 , 𝑍 = 𝑧𝑠}                               (Eq. 9) 

Consider the network shown in Figure 6 where the 2×4 linear probability distribution has been 

assigned. Starting with parent W and interpreting the compatible parent configurations as 

follows in equation 10 (Das, 2008): 

{𝑐𝑜𝑚𝑝(𝑊 = 𝑠)} ≡ {𝑐𝑜𝑚𝑝(𝑋 = 𝑠)} ≡ {𝑐𝑜𝑚𝑝(𝑌 = 𝑠)} ≡ 

{𝑐𝑜𝑚𝑝(𝑍 = 𝑠)} ≡ {𝑊 = 𝑠, 𝑋 = 𝑠, 𝑌 = 𝑠, 𝑍 = 𝑠}      (Eq. 10) 

where the set contains two states. s = Yes, No  

Hence the probability distribution over the child node E will be: 

𝑃(𝐸5|{𝑐𝑜𝑚𝑝(𝑊 = 𝑠)}) = 𝑃(𝐸5|{𝑐𝑜𝑚𝑝(𝑋 = 𝑠)}) = 

 𝑃(𝐸5│{𝑐𝑜𝑚𝑝(𝑌 = 𝑠)}) = 𝑃(𝐸5│{𝑐𝑜𝑚𝑝(𝑍 = 𝑠)})                   (Eq. 11) 

where the set contains two states. s = Yes, No  

However, all parental configurations, regardless of their compatibility, are needed to complete 

the required CPT probability distribution. This primes requirement for relative weights. The 

relative weights established from the AHP results are applied to the algorithm here (Das, 2008).  
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Given the network in Figure 6 it is possible to assign the relative weights (w1, ..., w4), calculated 

in Equation 5 (Eq. 5), to the parents W, X, Y, Z respectively, to quantify the relative strengths 

of their influences on child node E5.  

The weights should be positive and normalised, i.e.: 0 ≤ wi ≤ 1, for i=1, ..., n , and w1+ ... 

+w4=1. 

Once the key information is determined, i.e.: the relative weights w1 , ... , w4 , and, the k1+ ... 

+k4 probability distributions over E5, of the linear type, for compatible parental configurations. 

Then the weighted sum algorithm can be used to produce an estimate, based upon expert 

judgements, of the k1 × ... × k4 distribution for child node E5 [32]. 

 𝑃(𝑥𝑙| 𝑦1
𝑆1 ,  𝑦2

𝑆2 ,  … ,  𝑦𝑛
𝑆𝑛) =  ∑ 𝑤𝑗

𝑛
𝑗=1 . 𝑃 (𝑥𝑙  | {𝐶𝑜𝑚𝑝(𝑌𝑗 =  𝑦

𝑗

𝑆𝑗)})                   (Eq. 12) 

where: l = 0, 1, ..., m and Sj = 1, 2, ..., kj. 

This weighted sum algorithm is applied to the distribution over E5 for compatible parental 

configurations. Table 4 shows the compatible distributions over child node E5, with data 

obtained from expert judgement through pairwise comparison and AHP.  

Table 4: Distribution over E5 for Compatible Parental Configurations {Comp(W = s)} 

Probability Distribution over E5 s = Yes s = No 

P(E5 = Yes|{Comp(W = s)})  0.23 0.77 

P(E5 = No|{Comp(W = s)}) 0.77 0.23 

 

In addition, Table 5 shows the relative weights for the parents of event E5, which were obtained 

from expert judgment through pair-wise comparison and AHP. 

Table 5: Relative Weights of Parent Nodes of Event E5 

Parent Node Weighting Notation Relative Weights 

Gas Import Riser Piping Impact (W) W1 0.65 

Turbine Blades Expelled (X) W2 0.05 

Exciter Detaches (Y) W3 0.03 

HP flare Drum Shell Impact (Z) W4 0.27 

 Total 1.00 
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Utilising the data shown in Table 4 and Table 5, it is possible to calculate all of the 24 parental 

distributions required to populate the CPT for event E5. Consider an example to demonstrate 

the algorithm for a specific parental distribution, where the probability of E5=Yes is required. 

One possible distribution is shown in Table 6. 

Table 6: Possible Parental Configuration for Parents of Event E5 

Parent Node State: Yes or No 

Gas Import Riser Piping Impact (W) No 

Turbine Blades Expelled (X) Yes 

Exciter Detaches (Y) No 

HP flare Drum Shell Impact (Z) Yes 

 

Given the states of the parents in Table 6, the distribution over E5 is to be: 

𝑃(𝐸5 = 𝑌𝑒𝑠|𝑊 = 𝑁𝑜, 𝑋 = 𝑌𝑒𝑠, 𝑌 = 𝑁𝑜, 𝑍 = 𝑌𝑒𝑠)                        (Eq. 13) 

Once all of the relevant data is known, according to Equation 4-9, the following computation 

is required: 

𝑃(𝐸5 = 𝑌𝑒𝑠 |𝑊 = 𝑁𝑜, 𝑋 = 𝑌𝑒𝑠, 𝑌 = 𝑁𝑜, 𝑍 = 𝑌𝑒𝑠) = 𝑤1. 𝑃(𝐸 = 𝑌𝑒𝑠 |{𝑐𝑜𝑚𝑝(𝑊 = 𝑁𝑜)}) 

        + 𝑤2. 𝑃(𝐸 = 𝑌𝑒𝑠 |{𝑐𝑜𝑚𝑝(𝑋 = 𝑌𝑒𝑠)}) + 𝑤3. 𝑃(𝐸 = 𝑌𝑒𝑠 |{𝑐𝑜𝑚𝑝(𝑌 = 𝑁𝑜)}) 

                            +𝑤4. 𝑃(𝐸 = 𝑌𝑒𝑠 |{𝑐𝑜𝑚𝑝(𝑍 = 𝑌𝑒𝑠)})                                                       (Eq. 14) 

From Equation (Eq. 17) is can be deduced that for the parental configuration shown in Table 

6, when the correct compatible probabilities and weights are substituted in, the probability of 

event E5 being in the state “Yes” is to be: 

𝑃(𝐸5 = 𝑌𝑒𝑠|𝑊 = 𝑁𝑜, 𝑋 = 𝑌𝑒𝑠, 𝑌 = 𝑁𝑜, 𝑍 = 𝑌𝑒𝑠) = 0.6                         (Eq. 15) 

Subsequently, according to Axiom 2 shown in Section 3.2.6, the complement of (Eq. 16) 

[P(𝐸5 = 𝑁𝑜)] is to be: 

𝑃(𝐸5 = 𝑁𝑜|𝑊 = 𝑁𝑜, 𝑋 = 𝑌𝑒𝑠, 𝑌 = 𝑁𝑜, 𝑍 = 𝑌𝑒𝑠) = 

1 − 𝑃(𝐸5 = 𝑌𝑒𝑠|𝑊 = 𝑁𝑜, 𝑋 = 𝑌𝑒𝑠, 𝑌 = 𝑁𝑜, 𝑍 = 𝑌𝑒𝑠) = 0.4      (Eq. 17) 

The relative weight algorithm is applied to all cells within the relevant CPT table to obtain the 

full conditional probability distribution. This process was completed using the formula function 

in Microsoft Excel, which also saves time for calculations. 

At first, the symmetric method may seem a slightly excessive method for compiling a CPT of 

this size when compared to Noisy-OR or the ranked node method. However, when compiling 
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large CPTs it becomes very efficient without becoming more complex. This method is being 

utilised at this stage of the modelling as similar adaptations of the symmetric method are to be 

used in further BN models to demonstrate the methods effectiveness with both subjective and 

hard data. 

4.5 Results and Disscussions 

4.5.1  Analysis of BN model and Sensitivity Analysis 

Quantitative analysis is carried out on a specific section of the Initial BN model, shown in 

Figure 7, concerning the event “E5. Event Escalation” and its parents.  

 

4.5.1.1 Quantitative Analysis 

This analysis involved systematically inserting evidence into each of the parent nodes and 

finally the child node. In addition, nodes 7 and 8 have a parent node “Generator Bearings” 

which has no evidence inserted, and there is no evidence inserted anywhere else within the 

model. However, in this section of the BN model nodes 7 and 8 are parents of nodes 9 and 10 

respectively, and therefore will alter the posterior probabilities of these nodes when evidence 

is inserted. This relationship has been left in the analysis to give an accurate representation of 

the posterior probabilities of the event E5, which is the focus node in this analysis.  

Figure 7: A) Specific Section of BN to be analysed. B) Prior Probabilities for Event E5 and its Parent Nodes. 
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The scenario shown in Figure 8 illustrates the gas turbine blades being expelled as projectiles 

from the generator housing. This increases the probability of the events escalating from 25.19% 

to 35.09%. This increase would involve some concern as a potential escalation from this is the 

impact of the turbine blades on the Gas Import Riser. This can also be seen in Figure 8 where 

the probability of there being a gas import riser impact increases from 6.2% to 25%. 

 

Furthermore, as shown in Figure 9, the expulsion of the turbine blades coupled with a gas riser 

impact, increases the probability of there being event escalation from 35.09% to 61.42%. This 

is a very large increase as the impact of a gas riser is the largest threat to escalation, due to the 

loss of containment of the gas, this hypothesis was also confirmed by expert opinion. It can 

also be noted that in both Figure 7 and Figure 8 when evidence is inserted into nodes 7 and 9, 

Figure 8: Probability of "Event Escalation" given Turbine Blades are Expelled 

Figure 9: Probability of "Event Escalation" given both Turbine Blades Expelled and Gas Import Riser 

Impact 
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there is no effect on nodes 8 and 10, which is to be expected as they should be independent 

from each other. Should this scenario have the potential to occur, immediate action should be 

taken to prevent a major accident in the form of LOC of hydrocarbons and potential explosion 

& fire. 

Figure 10 further demonstrates the potential for escalation by showing that the generator’s 

exciter detaches, along with turbine blades expelled and gas riser impact. It shows that again 

the potential for escalation increases from 61.42% to 63.86%. This scenario also increases the 

probability of the HP flare drum being impacted from 1.47% to 10% as would be expected.  

 

Figure 11 demonstrates the final influencing factor on the possibility of event escalation, 

whereby the HP flare drum is impacted. This increases the potential for escalation from 63.86% 

to 77%.  

The final scenario, shown in Figure 12, demonstrates the effect of there being an escalated 

event, for example, observing an explosion or a fire within the area of the platform containing 

the electrical generator, and the effect this has on the influencing parameters. This serves to 

obtain areas that would require closer inspection. This scenario has given insight to the possible 

causes of the event escalation, based upon the data presented. Here the main influencing factors 

are: “Turbine Blades Expelled” – Yes, increases from 0.12% to 0.17%; “Exciter Detaches” –

Yes, increases from 0.15% to 0.17%; “Gas Import Riser Piping Impact” – Yes, Increases from 

6.2% to 14.31%; and “HP Flare Drum Shell Impact” – Yes, increasing from 0.02% to 0.03%.  

Figure 10: Probability of "Event Escalation" given Turbine Blades Expelled and Gas 

Import Riser Impact, together with the Exciter Detaching. 
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4.5.1.2 Sensitivity Analysis 

Sensitivity Analysis (SA) is essentially a method to determine how responsive the output of 

the model is when subject to variations from its inputs. Having the understanding of how a 

model responds to changes in its parameters is important when trying to maximise its potential 

and ensuring correct use of the model. SA provides the user with a level of confidence that the 

BN has been built accurately both in terms of the graphical structure, but more importantly, the 

probability distribution. It also provides verification that the model is functioning as intended. 

In this analysis a SA is used to demonstrate how responsive a specific event is given small 

Figure 11: Probability of "Event Escalation" given that all Influencing Factors take place. 

Figure 12: BN Model illustrating the effects on the parent nodes when "Event Escalation" takes 

place. 
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percentage increases and decreases in the probability of other nodes. Knowing the most 

influential nodes can assist in the experimentation and further expansion of the model. 

Similarly, nodes which have very little influence can be altered or discarded [14].  

The SA conducted for the Initial BN model focuses on the event E5 and its parent nodes, shown 

in Figure 7, to further verify the claims in Section 4.5.1.1. However, the analysis will be 

conducted using smaller increases and decreases in the probabilities of the parent nodes as 

opposed to inserting 100% occurrence probability into the input node CPTs. 

 A possible way of undertaking this is to manually insert evidence into the input nodes, one by 

one, and subsequently analyse the effect on the output node via its posterior probability. When 

doing this the input nodes are increased or decreased by equal percentages, individually. This 

allows for clear comparison of their impact upon the output node. However, this manual 

method was not applied to this analysis. Instead a parameter sensitivity wizard within the Hugin 

BN software was used. In this program wizard the input node is individually paired with the 

output node in its desired state. In this case that was “E5. Event Escalation” in the state ‘Yes’. 

A state for each of the input nodes was purposely selected. It should be noted that in this 

analysis, node 6, “Generator bearings” has had evidence input at state – ‘Failure’ to 100%. This 

input of evidence allows for nodes 7, 8, 9 & 10 to remain independent from each other, which 

allows for the values analysed in the sensitivity analysis to remain consistent. Following this 

the four input nodes (nodes 7, 8, 9 & 10) are all set to state – ‘No’ in the parameter sensitivity 

wizard. In this way a sensitivity value from Hugin was obtained for each input node and using 

Microsoft Excel a graph was constructed to show the results 

From the graph in Figure 13 it can be seen that the most influential factor on “Event Escalation” 

is “Gas import Riser Impact”, whilst the least influential is “Exciter Detaches”. If the 

probability of State - ‘No’, “Gas Riser Impact” increases by 10%, then the probability of “Event 

Escalation” decreases by 2.63%. Whereas, if the probability of State - ‘No’, “Exciter Detaches” 

increases by 10%, then the probability of “Event Escalation” only decreases by 0.29%. From 

the graph it is also apparent that the sensitivity function is a straight line which adds to the 

model verification. The sensitivity values computed within Hugin are shown in Table 7.  

It should be noted that the sensitivity values within Table 7 are negative as in their current 

states of ‘No’, they have a negative effect on the outcome of “Event Escalation” – ‘Yes’. For 

example; with the probability of “Turbine Blades Expelled” increasingly being ‘No’, it is less 

likely that “Event Escalation” – ‘Yes’ occurs.  
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Table 7: Sensitivity Values for the four input nodes acting upon Event "E5. Event Escalation" 

Input Node: “State” Sensitivity Value 

7. Turbine Blades Expelled: “No” -0.095 

8. Exciter Detaches: “No -0.029 

9. Gas Import Riser Impact: “No” -0.263 

10. HP Flare Drum Shell Impact: “No” -0.073 

 

4.5.2 Verification of the BN Model 

For partial verification of the model, it should satisfy the three axioms stated in Section 3.2.5. 

Examination of the model in Figures 7 to 12  shows that when evidence is inserted in the form 

of a component failing or not failing, the posterior probabilities for the final events decrease or 

increase depending on whether state in question is positive or negative.  

Examination of a specific part of the model, in Figure 8, reveals when “turbine Blades Expelled” 

is set to 100% ‘Yes’, this produces a revised increase in probability for “Event Escalation” 

occurring from 25.19% to 35.09%. Figure 9 shows both the change in Figure 8 and “Gas Import 

Riser Piping Impact” set at 100% ‘Yes’. This resulted in a further increase in the potential for 

“Event Escalation” occurring. Figure 10 shows the changes in Figure 9 plus the “Exciter 

Detaches” being set to 100% ‘Yes’, again resulting in an increase for the potential for “Event 

Escalation” being of the state ‘Yes’. Finally, Figure 11 shows all of the influencing factors on 
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Figure 13: Sensitivity Functions for the four input nodes acting upon Event "E5. Event Escalation" 
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“Event Escalation” being set to 100% ‘Yes’, resulting in yet another increase in the probability 

of “Event Escalation” occurring from 63.86% to 77.00%.  

This exercise of increasing each of the influencing nodes as well as the changes displayed when 

increasing or decreasing the probability of the initial event occurring satisfies the three axioms 

stated in Section 3.2.5. Given this, it is possible to state that partial verification can be given to 

the BN model.  

5 CONCLUSIONS  

This paper has outlined the Bayesian Network technique that has been used to model the cause 

and effect relationship of a specific component failure of an electrical generation system, within 

a module of an offshore platform. It has been stated that offshore systems can be very complex 

and when coupled with the volume of data required to model failures within these systems, it 

makes BNs a challenge to model effectively. This synopsis of BNs is in conjunction with 

research conducted by [33], where they apply BNs to produce a predictive model for 

Autonomous underwater Vehicle (AUV) loss. They state that the use of BNs to model the 

failures of AUV missions, under sea ice is particularly appropriate as BNs cope well with 

indeterminate or probabilistic elements and uncertainty. However, in some cases a lack of 

reliable data means that some risk assessment models cannot always be applied. With this in 

mind, the BN model demonstrates that BNs can provide an effective and applicable method of 

determining the likelihood of various events under uncertainty. The model can be used to 

investigate various scenarios around the systems and components outlined and to show the 

beginnings of establishing where attention should be focused within the objective of preventing 

offshore incidents, as well as having a clear representation of specifically where these accidents 

can originate from. This method of modelling offshore risk assessment is to be improved upon 

in future research, by potentially modelling larger areas with several systems and an increased 

number of components. The purpose of this is to gain a wider understanding of how offshore 

systems interrelate. 

A number of tests were generated to verify the hypotheses of the model by applying the 

methodology to a case study (See Section 4). The BN model has demonstrated the effect a 

possible retaining ring failure would have on the electrical generation system, and surround 

area, of an offshore platform. The levels of fatalities have been omitted from the analysis as 

the objective of the research was to determine whether it is possible to accurately model 

equipment failures using BN. This is because the BN model is part of the development of NUI-
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Integrity Cases, whereby there is very limited physical human presence on board. Furthermore, 

the BN was constructed utilising equipment on a manned installation as a further objective of 

the research is to demonstrate whether it is possible to create a dynamic risk assessment model 

that will allow for humans to not be continuously present on large installations, but monitor its 

operations from onshore. Hence, the Initial BN model presented in this work provides a base 

to expand the research and the BN model to achieve this goal.  

In relation to the verification of the model a sensitivity analysis was carried out to determine 

how responsive the output of the model is to various modifications in the inputs and 

subsequently verify that the model works as expected. This exercise is vital as it provides an 

indication to what the most important variables. In addition, inputs can be ranked or weighted 

in terms of their importance upon the output or final consequences. For example, in the Initial 

BN model “Gas Import Riser piping Impact” had a much larger effect on the possibility of 

“Event Escalation”. The more advantageous element of conducting SA in BNs is that they take 

into consideration the chain of events below the input node leading to the output node, which 

presents a closer approximation to reality. 

There are several interesting and relevant possibilities that can be considered and explored with 

relative ease now that the core structure of an initial model has been constructed. However, 

before expanding the model it is vital to maintain that it must remain practical and close to 

reality from the perspective of gathering data and generating results. Continually too many 

variables which display vague information or increasingly irrelevant effects can diminish the 

quality of results and findings. 
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APPENDIX 1 COMPLETE CPTS FOR THE BN MODEL 

Failure 1 Failure Success

Success Yes 0.25 0.006

No 0.75 0.994

2 Yes No 2 Yes No

Yes 0.5 0.006 Yes 0.5 0.006

No 0.5 0.994 No 0.5 0.994

3 Yes No 1 Yes No

Yes 0.1 0.032 Failure 0.066 0.001

No 0.9 0.968 Success 0.934 0.968

6 Yes No 6 Yes No

Yes 0.25 0.0009 Yes 0.5 0.0008

No 0.75 0.9991 No 0.5 0.9992

7 Yes No 8 Yes No

Yes 0.25 0.062 Yes 0.1 0.000057

No 0.75 0.938 No 0.9 0.999943

4

3

2 Yes No Yes No Yes No Yes No

Yes 0.37 0.43 0.51 0.57 0.43 0.49 0.57 0.63

No 0.63 0.57 0.49 0.43 0.57 0.51 0.43 0.37

4 Yes No 5 Yes No

Yes 0.0002 0.006 Yes 0.0002 0.0001

No 0.9998 0.994 No 0.9998 0.9999

5 Yes No

Yes 0.0002 0.076

No 0.9998 0.924

10

8

7

9 Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No

No 0.23 0.58 0.26 0.61 0.24 0.60 0.27 0.62 0.38 0.73 0.40 0.76 0.39 0.74 0.42 0.77

Yes 0.77 0.42 0.74 0.39 0.76 0.40 0.73 0.38 0.62 0.27 0.60 0.24 0.61 0.26 0.58 0.23

9 Yes No 10 Yes No

Small 

(10mm)
0.00066 0.00033 Yes 0.000845 0.000007

Med. 

(50mm)
0.00015 0.00008 No 0.999160 0.999993

Fullbore 0.00027 0.00017

None 0.99893 0.99942

0.002

0.998

1. Retaining Ring Failure 2. Debris Expelled

E1. Debris Contained in Alternator

4. Debris Expelled to Exciter3. Debris Expelled into Turbine

5. Fuel Gas Feed Impact 6. Generator Bearings

7. Turbine Blades Expelled 8. Exciter Detaches

9. Gas Import riser Impact 10. HP Flare Drum shell Impact 

Yes No

Yes No Yes No

Yes No

Yes

E2. Debris Escapes Generator 

Housing
E3. Fuel Gas Fire

No

E6. Gas Import Riser LOC E7. H.P. Flare Drum LOC

No Yes No

Yes No Yes No Yes No Yes

E4. Debris Remains in Turbine 

Housing

E5. Event Escalation


