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Abstract-  Bayesian Network (BN) is a probabilistic graphical model which describes the joint 

probability distribution over a set of random variables. Finding an optimal network structure based on an 

available training dataset is one of the most important challenges in the field of BNs. Since the problem of 

searching the optimal BN structure belongs to the class of NP-hard problems, typically greedy algorithms are 

used to solve it. In this paper two novel learning automata-based algorithms are proposed to solve the BNs’ 

structure learning problem. In both, there is a learning automaton corresponding with each possible edge to 

determine the appearance and the direction of that edge in the constructed network; therefore, we have a game 

of learning automata, at each stage of the proposed algorithms. Two special cases of the game of the learning 

automata have been discussed, namely, the game with a common payoff and the competitive game. In the 

former, all the automata in the game receive a unique payoff from the environment, but in the latter, each 

automaton receives its own payoff. As the algorithms proceed, the learning processes focus on the BN structures 

with higher scores. The use of learning automata has led to design the algorithms with a guided search scheme, 

which can avoid getting stuck in local maxima. Experimental results show that the proposed algorithms are 

capable of finding the optimal structure of BN in an acceptable execution time; and compared with other search-

based methods, they outperform them.   

Keywords- Bayesian Networks; Game of Automata; Learning Automata; Payoff; Structure 

Training 

1	Introduction	
Bayesian networks (BNs) are popular within the AI probability and uncertainty community as a 

method of reasoning under uncertainty. From an informal perspective, BNs are directed acyclic 

graphs (DAGs), where the nodes are random variables, and the arcs specify the independence 

assumptions between these variables. After construction, a BN constitutes an efficient device for 

performing probabilistic inference [1].  

One of the most important challenges of these networks is constructing an optimal network. The 

optimal network is a network which best reflects the dependence relations in a database of training 

samples. Searching an optimal structure for BNs is difficult due to the large number of possible DAG 

structures, given even a small number of nodes to connect. Different algorithms for training BNs from 

data have been developed; these algorithms can be classified into two categories: constraint-based 

algorithms, and search-and-score algorithms. In the first category, BNs are constructed by estimating 

the existence of certain conditional dependencies among nodes [2]; while in the second, heuristic 

search methods are used to search through the set of feasible structures, and then scoring functions 

evaluate each structure found [1-6]. Both have their own advantages and disadvantages. Algorithms in 

the first category can find the optimal network, but on the condition that the data volume is large 

enough; moreover, due to their conditional independency (CI) tests, they have heavy and impractical 

computational cost. On the other hand, algorithms in the other category have less time complexity, 

even in the worst case (when underlying DAG is densely connected), and do not require a large 

volume of data; however, because of their heuristic natures, they may not find the optimal network 

[2]. 



In this paper, two new search-and-score algorithms are proposed for BNs structure training. To 

search the optimal network, both use a game of learning automata, in which a learning automaton is 

assigned to each possible undirected edge in the graph. Each automaton determines the appearance 

and the direction of the corresponding edge. The BNs are built according to the selected actions of 

every learning automaton. Then, after verifying the networks, scoring functions evaluate the structures 

using the training samples, and each automaton updates its probability vector based on its received 

score. Scoring functions evaluate the constructed networks in two different ways; in the first 

algorithm, the scoring function evaluates whole the network, and then gives a common payoff to all 

automata. While in the next algorithm, it evaluates each edge in the constructed network and gives 

different payoffs to each automaton. These steps are run repeatedly in both algorithms until the 

optimal structures are found. Using the learning automata to perform a guided search leads to find an 

optimal (or near-optimal) network in lower computation time, and also to improve the score of the 

constructed network in comparison with rival search methods like hill climbing, genetic search and 

etc.  

The reminder of this paper is organized as follows. In section 2, BNs and structure training, 

preliminaries are explained. Learning automaton is described briefly in section 3. Section 4 represents 

the proposed BN structure training algorithms which are based on the game of learning automata. 

Experimental results obtained by the proposed algorithms are reported in section 5. The paper 

concludes with a conclusion given in section6.  

2	Bayesian	Networks	
A Bayesian network describes the joint probability distribution over a set of random variables, 

with defining a series of probability independences and a series of conditional independences [8]. To 

describe a BN we need to provide two items: topology or structure of the network, and parameters or 

the conditional probability tables of all variables. Having these two items, one can demonstrate the 

joint probability distribution among the variables. The joint probability density function (pdf) for n 

random variables can be written according to Eq. (1). , … , ∏ | 	                                                                                   (1) 

Where , … ,  is the set of random variables.  

As mentioned before, search-and-score is one category of BN structure training algorithms, which 

uses heuristic search methods to construct a model.  In this category, structure training requires two 

components: a scoring metric and a search procedure. Scoring metric evaluates the quality of the 

constructed network; in other words, it determines how much the structure of the constructed BN fits 

the training samples. Search procedure determines an algorithm to search a network that best fits the 

training samples according to the received score from the scoring function. In the rest of this section, 

we briefly describe each of these two components. 

2.1	scoring	metrics	
There are varied metrics proposed for evaluating the structure of BNs such as Bayesian metric, 

Minimum Description Length metric, and Bayesian Information Criterion, to mention a few. Bayesian 

metric evaluates a BN by computing a marginal likelihood of the BN by using the given data and 

inherent uncertainties [9-10]. Minimum Description Length (MDL) metric is based on the assumption 

that the number of regularities in the data encoded by a model is somehow proportional to the amount 

of data compression allowed by the model [10]. Finally the Bayesian Information Criterion (BIC), 

which is used as scoring metric in this work, is a criterion for model selection among a finite set of 

models, and it is based on the likelihood function. The BIC for a graph, G, is given by the following 

equation [9]. log , | | log                                                                                      (2) 



Where D is a set of training samples,  is Maximum Likelihood (ML) estimation for G’s 

parameters, and M is the number of samples in the training dataset. If all variables are multinomial, by 

considering ri as a finite set of outputs for xi, qi as the number of configurations for xi’s parents, Nij as 

the number of observations for xi if j is its parent's configuration, and finally Nijk as the number of 

observation for xi=k when its parent's configuration is j, Eq. (2) can be rewritten as below; ∑ ∑ ∑ ∑ 1                                                             

(3) 

and in this case BIC converts to a simple counting problem. 

2.2	Search	procedure	
Given a scoring metric, the problem of learning the structure of a Bayesian network belongs to the 

case of NP-hard problems and there is no polynomial-time algorithm for finding the best network 

structure corresponding to the most scoring metrics [11]. Usually, a simple greedy algorithm is used 

to build the network [12-13]. The greedy algorithm adds an edge with the greatest improvement of the 

current network quality in search step until no more improvement is possible. The initial network 

structure can be a graph with no edges; furthermore, it can take advantage of using the prior 

information such as using the best tree computed by the polynomial-time maximum branching 

algorithm [9] and [12]. Since Bayesian network is an acyclic graph, after each search step, the graph 

structure must be validated, and all cycles must be removed from the constructed graph [14-16]. To 

the best of our knowledge, Genetic Algorithms [1], [3], Learning Automata [5], Hill-Climbing [6], 

Ant Colony optimization [36], and A* search [37] are used in search procedure to build the network. 

3	Learning	automata	
 

Learning automaton is an adaptive decision making device that tries to learn the optimal action 

from a finite set of actions in an unknown random environment [17]. This process is done by 

interacting between the automaton and the random environment. At each time t, the automaton selects 

an action, α(t), according to its action probability distribution, p(t); and it applies the selected action to 

the random environment. The random environment generates a stochastic reinforcement signal, β(t), 

to the automaton [18]; and the automaton updates the action probability vector using both the 

reinforcement signal and a learning algorithm. Figure1 represents the interaction between a learning 

automaton and its environment. Learning automaton, based on its action-set, can be classified into two 

major classes: finite-action-set learning automata (FALA) and continues-action-set learning automata 

(CALA). In CALA, actions are Real numbers chosen from a continuous interval [20-22]. For an r-

action FALA, the action probability distribution is represented by an r-dimensional probability vector 

which is updated by the learning algorithm. Learning automata had been used successfully in many 

applications such as routing and admission control in computer networks [23-24], solving NP-

Complete problems [25-27], and too many other applications [18], [28-31]. For further information 

about learning automata please refer to [18]. 

 

 

Fig1. Interaction between the learning automaton and the environment 
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A single automaton is generally sufficient for learning the optimal value of one parameter. 

However, for multidimensional optimization problems, we need a system consisting of as many 

automata as there are parameters [17]. Let A1, …, AN be the automata involved in an N-player game. 

Each play of game consists of choosing an action by each learning automaton and then getting the 

payoffs or reinforcement signals from the environment for this choice of actions by the group of 

learning automata. Let p1(k), …, pN(k) be the action probability distributions of N automata; at each 

instant k, each automaton, Ai, chooses an action αi(k) independently and at random according to pi(k), 

1≤i≤N. This set of N actions is input to the environment, and the environment responds with N 

random payoffs, which are supplied as reinforcement signals to the corresponding automata. A useful 

special case of this model is a game with common payoff, in which all the automata get the same 

payoff from the environment (that is, βi=β). Hence there is only one payoff function. Learning 

automat in a common payoff game is often referred as a team of learning automata. 

4	Proposed	algorithms	for	BN	structure	training	
In this section, we have proposed two novel BN structure training algorithms. They use a game of 

learning automata to search the optimal structure among all possible structures. First, the learning 

automata construct a network; then a scoring function evaluates the constructed network, and based 

on its results, one (in the first proposed algorithm) or several (in the second proposed algorithm) 

reinforcement signals  are produced. Finally, the action probability vectors of all learning automata 

are updated according to the received signals and a learning algorithm. The training procedures are 

repeated until termination conditions are satisfied. These algorithms lead to find the optimal structure 

and decrease the time complexity of constructing a BN.  

4.1	BN	structure	training	based	on	a	game	of	learning	automata	with	a	common	payoff	
Firstly, we have implemented a game with a common payoff. As mentioned before, BN structure 

training has two components: a scoring function and a search procedure [9-13], and [36]. The 

proposed algorithm uses BIC, given in Eq. (3), as the scoring function to evaluate the constructed 

network; and it also uses a team of learning automata, which is a game with a common payoff, to 

generate the network in a search procedure. In a game with a common payoff, the scoring function 

gives a single score to the whole network; and the reinforcement signal, which is the response of the 

environment, is computed according to this score. Then the reinforcement signal is given to all 

learning automata in the game and they update their probability vectors based on the common signal 

and a common learning algorithm. The pseudo code of the proposed algorithm is given in Algorithm1. 

Algorithm1: Pseudo code of the proposed algorithm with a common payoff 

 

1: Let n be the number of random variables, and m be the number of LAs, i.e.  

2: Let t be the iteration counter and initially set to 0 and maxit be the maximum number of iterations with 

     BICt <BICt-1. 

3: Set the initial actions probability distribution of each learning automaton to be uniform. 

4: Do the following steps from 5 to 8, until the current score is not greater than the score of previous maxit steps 

5: Generate LAs’ actions, (α1(t), α2(t), …, αm(t)). 

6: Build the structure of the BN based on LAs’ actions and remove all cycles from the constructed 

    network. 

7: Calculate BIC as a scoring metric for current BN. 

8: Update the actions probability distribution of each learning automaton based on the reinforcement signal β(t). 

 

 

 In what follows we describe the search procedure. 

1- BN Construction 

Let n be the number of random variables; the maximum number of undirected edges in a graph 

with n nodes is 1 . We use a team of m learning automata (A1, A2… Am), with 



action set → , → , 	 	 	 1, . . , , 1, … , 	 	 ; each learning automaton 

is associated to one edge in the graph [5]. Let αj(t) be the chosen action of automaton Aj, at time t; 

it determines either the corresponding edge should not appear in the BN, or it should appear and 

in this case, it also determines the direction of the edge. The probability vector of automaton  Aj, 

(for j=1, 2… m) at time t is denoted by , , , where  is the 

probability of choosing action αi (for i=0, 1, 2) at time t. Initially, there is no prior information 

about the edges; therefore, we use the uniform probability distribution, i.e. 	 		0, 1, 2	 	 1, 2, … , . However, the action probability vectors can also be initialized based 

on the prior information about the variables' dependencies. For example, for each edge the mutual 

information of the nodes is computed, and then the action probability vector of the corresponding 

automaton will be initialized based on it (mutual information is explained in section 4.2). Using 

such prior information speeds up the algorithm and also improves the score of the constructed 

network; nevertheless, it imposes a new computational overhead to the algorithm. After choosing 

an action by each learning automaton, a network is built based on their chosen actions.  

2- Network verification 

The network, which is constructed in previous phase may have cycles. In order to remove cycles, 

the search procedure uses a modified version of Depth First Search (DFS) algorithm, named 

colored DFS [32]. It begins with a random start node to navigate the current structure and mark all 

the back edges, which point from a node to one of its ancestors. After detecting all back edges, the 

search procedure removes them all. Because of choosing a random start node in the colored DFS, 

the proposed algorithm has a chance to remove different edges in different iterations, even if the 

cycles are the same; so the algorithm can find the best structure of the network without biasing to 

any edge in the network.  

3- Compute the reinforcement signal  

In the next step, the reinforcement signal should be computed. As mentioned before, here we use 

a game with a common payoff; and it means that all the automata get the same reinforcement 

signal from the environment (that is, βj(t)=β(t)). The BIC, given in Eq. (3) in section 2.1, is used 

to score the whole network, and then the common reinforcement signal at t, β(t), is computed 

using Eq. (4).  

β 	 ,0                                                                                                       (4) 

Where, BICt and BICt-1 are the scores of the constructed networks in the current iteration, t, and 

the previous iteration, t-1, respectively; BICmax is the maximum score, and BICmin is the minimum 

score, which are gained up to the current iteration, t.  

4- Update the action probability vector 

At each stage, t, the learning algorithm updates the action probability distribution of every 

automata using following equation,   1 		 1, … ,                                                               (5) 

where 0 < λ <1 is a constant parameter, and is a unit vector of appropriate dimension (here the 

dimension is three that is the number of actions of each learning automaton) with αjth component 

unity.		 ∈ 0,1 , and this algorithm is known as Linear Reward-Inaction (LR-I) algorithm.  

 

 



5-Termination 

Step 1, 2, 3 and 4 are repeated until the stage number exceeds a pre-specified threshold Thmax, or 

the score of the constructed BN becomes greater than a certain pre-defined score BICopt, or for a 

pre-defined iterations maxit, the score of a constructed BN does not change. Here the latest state is 

used as the termination criteria.  

However maximizing the expected value of the common payoff β, which depends on the BIC 

value, is the main goal of the team of learning automata; reaching a Nash equilibrium is another 

important goal in a game. For good discussion on the rationality of Nash equilibrium, please refer to 

[33]. To explain more, let  = { , , 	is the action set of automaton Aj  for	1 . Define 

S=∏ ; for any a = (a1, …, am)	∈	S, we define its neighborhood in S as ∈ |∃ ,. .		 , ∀ , 	 . Thus, the neighbors of any m-tuple of actions are the set of all 

action choices that differ only in one action. It is easy to see that a specific m-tuple of actions a∈S is a 

Nash equilibrium for this game with a common payoff if and only if β(a) β(x), ∀ ∈ . The 

corresponding β which is the highest is called βop. It has been proven that the automata team would 

converge to one of the Nash equilibrium, if all the automata use LR-I (with sufficiently small value for 

the step size parameter) [33].  

4.2	Structure	training	based	on	a	competitive	game	of	learning	automata		
In the rest of this section, we will introduce a competitive game of learning automata for BN 

structure training. In a competitive game, each learning automaton receives its reinforcement signal, 

βj(t), from the environment; it means that the scoring function should give different scores. Then, all 

automata update their probability vectors according to their own reinforcement signals and a common 

learning algorithm. The pseudo code of the proposed algorithm is given in Algorithm 2. 

Algorithm2: Pseudo code of the proposed algorithm with different payoffs 

 

1: Let n be the number of random variables, and m be the number of LAs, i.e. .  

2: Let t be the iteration counter and initially set to 0 and It.max be the maximum number of iterations for running  

    the algorithm. 

3: Set the initial actions probability distribution of each learning automaton to be uniform. 

4: Do the following steps from 5 to 8 for It.max 

5: Generate LAs’ actions, (α1(t), α2(t), …, αm(t)). 

6: Build the structure of the BN based on LAs’ actions and remove all cycles from the constructed network. 

7: Calculate Ij(t) for each edge in the BN as the mutual information of its two nodes.  

8: Update the actions probability distribution of the corresponding learning automata based on the reinforcement 

    signal βj(t). 

 

 

The search procedure of this algorithm is the same as the previous one. At each stage t, automaton 

Aj, chooses an action αj(t), independently and at random according to . The chosen set of m 

actions is used to build a BN structure. Like before, the selected action of each automaton determines 

either the corresponding edge should not appear in the BN, or it should appear and in this case, it also 

determines the direction of the edge. After cycles detecting and removing by a colored DFS algorithm 

[32], the constructed network should be evaluated. Here scoring function produces m scores (for m 

learning automata); and these scores are individually given to the automata, as their payoffs or 

reinforcement signals, . In order to generate the reinforcement signal of each learning 

automaton, which is assigned to an edge, mutual information of the nodes of the edge, at stage t is 

computed using Eq. (6), and the training datasets. , ∑ , ,,                                                                                     (6) 



Where 	and  are the corresponding nodes. The mutual information measures the amount of 

information flows between two nodes. It is also used in some of the BN constructing algorithms that 

belong to the first category of the researches (As mentioned in section 1, the first category of the 

researches is based on analyzing dependency relationships among nodes [2].). The reinforcement 

signal of the corresponding automaton, Aj at time t, is one either ,  and the chosen action 

is → , or ,  and the chosen action is 	 ; otherwise,  is zero; where  is a 

certain threshold value. 

After computing the , the learning algorithm updates the action probability distribution of 

each automaton using the following equation,  1 		 1, … , ′                                                          (7)  

Where 0 < λ <1 is a constant parameter and is a unit vector of appropriate dimension, (here the 

dimension is three that is the number of actions of each learning automaton) with αjth component 

unity. In this section, we assumed that		 ∈ 0,1 , but the learning algorithm is still LR-I. All steps 

are repeated for a certain number of iterations, called It.max. 

The same as the game with a common payoff, it is expected that the algorithm reaches a Nash 

equilibrium; despite the fact that, each automaton has its own payoff and tries to improve it. The m-

tuple of actions (a1, …, am) is called a Nash equilibrium of this game if for each j, 1≤j≤m, , … , , , , … , , … , ∀ ∈                                                              (8) 

Where  is the payoff function for automaton Aj ( , … , | , 1
), and  is the action set of Aj.  

It is proven in [33] that, if the learning algorithms of all the learning automata are LR-I, this game 

would converge to a Nash equilibrium. 

					5	Experimental	Results	
In this section the proposed LA-based algorithms are evaluated. To do this, we have designed two 

categories of experiments. At first, a well-known BN named ALARM [34], is chosen; and two LA-

based algorithms are employed to construct the ALARM network using its available datasets. Then 

constructed networks are evaluated and the proposed algorithms are compared with each other and 

with other BN structure training algorithms. Second, since classification is one of the important 

applications of BNs, for 25 chosen datasets the classification accuracies of the proposed algorithms 

are compared against other algorithms. 

5.1	Results	on	the	ALARM	Network	
To evaluate the performance of the algorithms, experiments have been designed in following steps 

the same as [1]: 

Step1: Determine a well-known BN (structure and conditional probabilities) and simulate it, 

obtaining its database of cases D, which must reflect the conditional independence relations 

between the variables. 

Step2: Using the LA-based algorithms, try to obtain the networks BNLA-CP and BNLA-DP, which 

maximize the probabilities P(D| BNLA-CP) and P(D| BNLA-DP). 

Step3: Evaluate the BNLA-CP and the BNLA-DP, and then compare them with other BNs’ structures, 

which are constructed by other algorithms (all algorithms are described in section 5.1). 

The BN used in the experiments is the ALARM network. ALARM network is a medical diagnostic 

alarm message system for patient monitoring; it contains 37 nodes and 46 arcs (see figure 2). 
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number of the following operators required to make the DAGs match: add, remove, or reverse a 

directed edge. The lower Hamming distance indicates the more similar network with the ALARM 

network. LA-CP and LA-DP are also compared based on their computation time. They are 

implemented in .Net framework in a PC which has a single CPU of Intel(R) Core™ 2 Duo 3.33GHz 

and a 1GB memory. In order to measure the computation time, each algorithm is executed with no 

prior limitation in the number of iterations, until no improvement in BIC is observed.    

Table 1 represents the average results. For all datasets with 500, 1500, 3000, and 5000 cases, the 

algorithms are implemented 10 times independently. As the results indicate, using databases of 3000 

and 5000 cases, both LA-based algorithms perform well and construct acceptable networks (networks 

with low Hamming distance and high BIC score); however, for databases of 500 and 1500 cases, the 

performance of LA-DP decreases, compared with LA-CP. Such results were predictable because in 

LA-DP scoring metric is the mutual information between the corresponding nodes of each edge, and 

in this situation, in order to have a reliable scoring metric, the volume of data should be large enough. 

The computation time is also measured for both algorithms, and LA-CP has consumed less time in 

comparison with LA-DP.  

Table1. Average results of proposed algorithms after 10 runs 

Number of cases 

Parameters\ 

Networks 

500 1500 3000 5000 

BNLA-CP BNLA-DP BNLA-CP BNLA-DP BNLA-CP BNLA-DP BNLA-CP BNLA-DP 

Normalized BIC 0.039822 0.01235 0.15461 0.068914 0.238 0.15055 0.23853 0.235064 

Hamming Distance 17.7 35.0 4.1 19.0 2.0 7.3 2.0 2.0 

Computation time 71.30 141.91 81.19 152.54 96.52 166.94 116.14 189.62 

 

5.1.3	Compare	with	other	structure	training	algorithms	
At the end of this section, the proposed LA-based algorithms are compared against other BN 

structure training algorithms. Below all implemented algorithms are described: 

 Proposed algorithm based on a game of learning automata with a common payoff, called 

LA-CP.  

 Proposed algorithm based on a competitive game of learning automata with different 

payoffs, called LA-DP. 

 3-phase network construction algorithm which is based on computing the mutual 

information of attributes pairs. 

 Max-Min Hill climbing algorithm [6]. 

 Genetic algorithm which finds the best order of variables and then starts the search process 

[3].  

 Ant-colony optimization [36] called ACO.   

Many other BN structure training algorithms exist; A* search-based algorithm with a shortest 

path perspective [37], and multiple exact algorithms [38-40] are some examples. However, it is 

impossible and unnecessary to compare the proposed algorithms with all the structure training 

algorithms; so we have selected more comprehensive algorithms, which also stand in the same class 

with ours.  

Table2. Compare the proposed algorithms with other algorithm 

  Normalized BIC Hamming Distance Computation time 

LA-DP 0.23506 2.0 189.62 

LA-CP 0.23853 2.0 116.14 

3-phase  0.06232 9.5 671.35 

Max-Min hill climbing 0.20781 2.0 308.02 

Genetic algorithm-based 0.14404 2.6 284.15 

Ant- colony optimization 0.14402 2.6 259.12 

 



Datasets of 5000 cases are considered, and the performance metrics are defined like the previous 

experiments. Algorithms are implemented with no prior limitation in time and until no improvement 

in the score is observed. Table2 shows the results after 10 independent runs.   

5.2	Evaluate	the	predictive	ability	of	the	proposed	algorithms	in	classification	
A constructed BN is an efficient device to perform probabilistic inference; therefore, predictive 

ability in different applications is one of the important issues in the field of BNs. Classification is one 

of the important applications of BNs which is used in varied fields such as recommender systems for 

estimating users' ratings based on their implicit preferences, bank direct marketing for predicting 

clients' willingness of deposit subscription, disease diagnosis for assessing patients' breast cancer risk, 

simultaneous fault diagnosis problem, and classification problems with continuous attributes [41-43]. 

In this section first we briefly explain about BNs classifiers in section 5.2.1, and then choosing 

datasets of different applications, we evaluate the classification accuracy and the classification time of 

different algorithms in sections 5.2.2 and 5.2.3. 

5.2.1	BN	classifiers	
Suppose that each training sample is a vector of attributes (X1, X2 … Xv-1, C). The goal of 

classification is predicting the right value of class variable c=xv having (x1, x2 … xv-1). If the 

performance measure is the percentage of correct predictions on the test samples (classification 

accuracy), correct prediction for (x1, x2 … xv-1) is the class that maximizes P(c|x1, x2 … xv-1). If there is 

a BN over (x1, x2 … xv-1, C), we can compute these probabilities by inference on it. After the structure 

of a BN is specified, estimating the parameters so that the network can provide the best prediction for 

the value of the class variable in the test samples is important; however, it is out of the scope of this 

study, and we simply use Maximum Likelihood (ML) to estimate the parameters' values. 

  

Table3. Datasets and their samples 

Number 

Of 

samples  

Number 

Of 

attributes  

Number 

Of 

classes  

Dataset  

Number 

Of 

samples  

Number 

Of 

Attributes  

Number 

Of 

classes  

Dataset  

150 4 3 Iris 690 14 2 australian 

15000 16 26 letter 683 10 2 breast 

148 18 4 lymphography 2130 36 2 chess 

300 10 2 mofn-3-7-10 296 13 2 cleve 

768 8 2 pima 128 6 2 corral 

3866 9 7 shuttle-small 653 15 2 crx 

435 16 2 vote 768 8 2 diabetes 

4435 36 6 satimage 1066 10 2 flare 

1540 19 7 segment 1000 20 2 german 

562 35 19 soybean-large 214 9 7 glass 

846 18 4 vehicle 163 9 2 glass2 

300 21 3 waveform-21 270 13 2 heart 

    80 19 2 hepatitis 



5.2.2	Comparison	the	classification	accuracy	of	different	classifiers			
In order to evaluate and compare the classification accuracy of the proposed algorithms, 25 

datasets are used, which consist of 21 datasets from UCI [44] and others from [45]. Table3 shows a 

brief description of these datasets. 

All implemented classifiers are described as follows. 

 LA-CP and LA-DP classifiers,  

 Naїve Bayes classifier, 

 TAN classifier, 

 3-phase network construction algorithm as a classifier, 

 Hill climbing-based classifier, 

 And Genetic algorithm-based classifier [3]. 

The ACO-based algorithm is eliminated in the following experiments because its performance is 

very similar to the performance of the GA-based algorithm. We also compare the performance of the 

proposed algorithm with two simple and well-known classifiers, named Naїve Bayes and TAN.   

Furthermore, in order to construct more efficient networks in classification, another scoring 

function is used, which is proposed in [46] and called classification rate,  

| | ∑ : ,| |∈                                          (9) 

where, |D| is the number of training samples. The equation simply represents the rate of samples 

that are classified correctly by the network. And : , 1 if BN classifier :  

which is trained with D, predicts the right value of class variable  having attributes : .   

Table4 represents the classification error rate of implemented algorithms for different datasets; the 

best results are highlighted. Experiments are repeated 10 times with a fixed execution time, and the 

results are averaged. Average error rates (which are 0.133864 for LA-CP, 0.146492 for LA-DP, 

0.18094 for NB, 0.1586 for TAN, 0.159376 for 3-phase, 0.171016 for HC, and 0.146768 for GA) 

indicate that LA-CP and LA-CP have performed better than other classifiers, on average. Moreover, 

for 14 datasets LA-CP, and for five datasets LA-DP, have shown the superior results. For remaining 

datasets, HC on two datasets, TAN on two datasets, 3-phase on one dataset, and BN on one dataset, 

have shown the best results.  However, for all 11 datasets the differences between the best results and 

the results achieved by LA-CP are negligible; and the slight differences between them are justifiable 

by considering the stochastic nature of the algorithms. 

In addition, figure4 represents the scatter charts of comparing the algorithms. Firstly, we compare 

LA-CP with LA-DP, and then, since the LA-CP shows much better performance, we compare it with 

other algorithms. In Figure4, points above the line y=x, show wherever LA-CP has better performance 

in comparison with the other algorithm.. Figure5 shows bar chart, which compares the average error 

rate of all algorithms on different datasets. It is clear that LA-CP is indicating better results. 

5.2.3	Comparison	the	classification	time	of	different	classifiers		
Finally, the classification time of different algorithms are measured. All algorithms are 

implemented and run in .Net framework in a PC which has a single CPU of Intel(R) Core™ 2 Duo 

3.33GHz and a 1GB memory. To measure the execution time, algorithms are run with no prior 

limitation in time until no improvement is observed. Table5 shows the results after 10 independent 

runs for seven chosen dataset. Chosen datasets are: Letter, Chess, German, Hepatitis, Breast, Glass2, 

and Iris. The best results are highlighted. Results again show that LA-CP requires less time for 

classification. 

 

 



Table4. Average error rate for different datasets 

algorithms

datasets  
LA-CP  LA-DP NB TAN  3-phase HC GA 

Australian 0.1341 0.1149 0.1489 0.1751 0.1296 0.1391 0.1205 

Breast 0.0210 0.0411 0.0245 0.0351 0.0425 0.0668 0.0522 

Chess 0.0312 0.0469 0.1266 0.076 0.0422 0.0966 0.0459 

Cleve 0.1894 0.1863 0.1791 0.2164 0.1997 0.182 0.1826 

Corral 0.0041 0.0197 0.1277 0.0143 0.0119 0 0.0177 

Crx 0.1392 0.1401 0.1505 0.1631 0.158 0.137 0.146 

Diabetes 0.2168 0.268 0.2571 0.2384 0.2666 0.255 0.2743 

Flare 0.1823 0.174 0.2024 0.178 0.1804 0.181 0.1762 

German 0.2412 0.2551 0.2458 0.2609 0.2643 0.3085 0.2573 

Glass 0.3012 0.3992 0.4412 0.4578 0.4173 0.4412 0.4061 

Glass2 0.1634 0.2413 0.2236 0.2249 0.2691 0.2329 0.1758 

Heart 0.1526 0.1751 0.155 0.1847 0.1874 0.2221 0.1789 

Hepatitis 0.09382 0.1728 0.193 0.1302 0.1618 0.1967 0.1529 

Iris 0.0401 0.0411 0.0699 0.0763 0.042 0.0414 0.063 

Letter 0.23 0.1061 0.3068 0.1752 0.183 0.1896 0.1256 

Lymphography 0.1396 0.1554 0.1662 0.1784 0.1635 0.2247 0.1542 

Mofn-3-7-10 0.0800 0.0866 0.1328 0.085 0.0859 0.0859 0.0928 

Pima 0.1375 0.1823 0.2571 0.2384 0.2666 0.255 0.182 

Satimage 0.1771 0.1867 0.1915 0.1395 0.1745 0.184 0.1743 

Segment 0.0944 0.0662 0.1221 0.0675 0.0571 0.0831 0.0592 

Shuttle-small 0.0090 0.0041 0.014 0.0093 0.0047 0.0145 0.0066 

Soybean-large 0.0629 0.0786 0.0852 0.0644 0.0754 0.0922 0.0765 

Vehicle 0.2836 0.2987 0.3892 0.2718 0.2922 0.3451 0.2994 

Vote 0.0319 0.0374 0.0991 0.0509 0.0417 0.0467 0.0424 

Waveform-21 0.1892 0.1846 0.2142 0.2534 0.267 0.2543 0.2068 

Average 0.133864 0.146492 0.18094 0.1586 0.159376 0.171016 0.146768 

 

 

 

 

 



 

 

 

 

 

Fig4. Scatter chart to compare the classification error of LA-CP with (a) LA-DP, (b) Naїve Bayes, (c) TAN, (d) 3-phase, (e) Hill Climbing-based, and (f) 

Genetic algorithm-based classifiers; points above y=x show better performance of the LA-CP. 
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Fig5. Average classification error rate  

Table5. Comparing the execution time in classification  

algorithms

datasets  
LA-DP  LA-CP  NB TAN 3-phase HC GA 

Letter 386.49 136.09 676.42 458.59 898.81 608.64 458.59 

Chess 195.93 71.93 357.36 288.45 570.22 309.88 288.45 

German 88.12 33.12 148.42 95.45 164.80 106.32 95.45 

Hepatitis 64.99 21.99 52.54 88.43 93.01 89.34 88.43 

Breast 21.42 13.42 82.73 28.43 241.09 35.13 28.43 

Glass2 18.14 7.14 28.45 24.39 49.41 26.14 24.39 

Iris 8.42 4.32 19.90 14.54 29.29 16.12 14.54 

 

6.	Conclusion		
In this paper two novel learning automata-based algorithms are proposed, for structure training in BNs. 

They try to perform a guided search through the space of the possible network structures. In order to 

construct a BN, the first algorithm uses a team of learning automata in a game with a common payoff, 

named LA-CP, and the second, named LA-DP, uses a competitive game with different payoffs. In both, 

there is one learning automaton for each possible edge in the undirected related graph, and each learning 

automaton tries to learn the existence or not existence of the corresponding edge. In each stage, one BN is 

constructed based on the selected actions of the learning automata; then each learning automaton update 

its action probability vector based on the evaluation of the constructed network in LA-CP, and the 

evaluation of each edge in LA-DP. Some experiments have been developed to evaluate the performances 

of the algorithms. The first class of experiments is designed to compare two proposed algorithms with 

each other. Results show that LA-CP has superior performance; and the performance of LA-DP depends 

on the volume of the training dataset because it uses the mutual information as a scoring metric to 

evaluate each edge separately. Next, in order to compare the proposed algorithms with other BN structure 

training algorithms, some algorithms, which sit in the same class with ours, are selected. Comparison is 

done for both structure training, and classification accuracy, which is an important application of the BN. 
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Experimental results for structure training indicate the better performance of the proposed algorithms 

compared with others. Measures are the quality of the constructed networks, which is evaluated by using 

BIC and Hamming distance, and also the execution time. Furthermore, to examine the classification 

accuracy of the proposed algorithms, classification error of different BNs on 25 datasets from [44-45] are 

measured. Experimental results show that the LA-CP performs better than other classifiers, on average.  

Structure learning of BNs and Bayesian classifiers are still active fields of research; writers are eager 

to continue their study in this field and improve some features of LA-based algorithms; for example, 

speed up the convergence rate, reduce the number of learning automata, and etc. Moreover, other class of 

BN, which is known as Dynamic BN, is an interesting research topic; and structure learning of DBNs 

based on learning automata, will be the subject of the writers’ next investigation.    
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Appendix	A.	Experiments	Implementation	
In order to evaluate the performance of proposed algorithms and compare them with other algorithms, 

required programs are implemented with C# on .Net Framework. We have implemented two main 

elements called DataModel and BayesModel. In DataModel preprocess of datasets is done and an object 

oriented model is used to maintain the datasets. BayesModel constructs a BN based on a given dataset and 

then evaluates it. Figure 6 and figure 7 represent their class diagram. 
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