
Bayesian	Network	structure	Training	based	on	a	Game	of	Learning	
Automata	

S. Gheisari M.R. Meybodi

Department of Computer, Science and Research

Branch, Islamic Azad University, Tehran, Iran

Computer Engineering and Information Technology

Department, Amirkabir University of Technology,

Tehran, Iran.

S.gheisari@srbiau.ac.ir mmeybodi@aut.ac.ir

Abstract- Bayesian Network (BN) is a probabilistic graphical model which describes the joint

probability distribution over a set of random variables. Finding an optimal network structure based on an

available training dataset is one of the most important challenges in the field of BNs. Since the problem of

searching the optimal BN structure belongs to the class of NP-hard problems, typically greedy algorithms are

used to solve it. In this paper two novel learning automata-based algorithms are proposed to solve the BNs’

structure learning problem. In both, there is a learning automaton corresponding with each possible edge to

determine the appearance and the direction of that edge in the constructed network; therefore, we have a game

of learning automata, at each stage of the proposed algorithms. Two special cases of the game of the learning

automata have been discussed, namely, the game with a common payoff and the competitive game. In the

former, all the automata in the game receive a unique payoff from the environment, but in the latter, each

automaton receives its own payoff. As the algorithms proceed, the learning processes focus on the BN structures

with higher scores. The use of learning automata has led to design the algorithms with a guided search scheme,

which can avoid getting stuck in local maxima. Experimental results show that the proposed algorithms are

capable of finding the optimal structure of BN in an acceptable execution time; and compared with other search-

based methods, they outperform them.

Keywords- Bayesian Networks; Game of Automata; Learning Automata; Payoff; Structure

Training

1	Introduction	
Bayesian networks (BNs) are popular within the AI probability and uncertainty community as a

method of reasoning under uncertainty. From an informal perspective, BNs are directed acyclic

graphs (DAGs), where the nodes are random variables, and the arcs specify the independence

assumptions between these variables. After construction, a BN constitutes an efficient device for

performing probabilistic inference [1].

One of the most important challenges of these networks is constructing an optimal network. The

optimal network is a network which best reflects the dependence relations in a database of training

samples. Searching an optimal structure for BNs is difficult due to the large number of possible DAG

structures, given even a small number of nodes to connect. Different algorithms for training BNs from

data have been developed; these algorithms can be classified into two categories: constraint-based

algorithms, and search-and-score algorithms. In the first category, BNs are constructed by estimating

the existence of certain conditional dependencies among nodes [2]; while in the second, heuristic

search methods are used to search through the set of feasible structures, and then scoring functions

evaluate each structure found [1-6]. Both have their own advantages and disadvantages. Algorithms in

the first category can find the optimal network, but on the condition that the data volume is large

enough; moreover, due to their conditional independency (CI) tests, they have heavy and impractical

computational cost. On the other hand, algorithms in the other category have less time complexity,

even in the worst case (when underlying DAG is densely connected), and do not require a large

volume of data; however, because of their heuristic natures, they may not find the optimal network

[2].

In this paper, two new search-and-score algorithms are proposed for BNs structure training. To

search the optimal network, both use a game of learning automata, in which a learning automaton is

assigned to each possible undirected edge in the graph. Each automaton determines the appearance

and the direction of the corresponding edge. The BNs are built according to the selected actions of

every learning automaton. Then, after verifying the networks, scoring functions evaluate the structures

using the training samples, and each automaton updates its probability vector based on its received

score. Scoring functions evaluate the constructed networks in two different ways; in the first

algorithm, the scoring function evaluates whole the network, and then gives a common payoff to all

automata. While in the next algorithm, it evaluates each edge in the constructed network and gives

different payoffs to each automaton. These steps are run repeatedly in both algorithms until the

optimal structures are found. Using the learning automata to perform a guided search leads to find an

optimal (or near-optimal) network in lower computation time, and also to improve the score of the

constructed network in comparison with rival search methods like hill climbing, genetic search and

etc.

The reminder of this paper is organized as follows. In section 2, BNs and structure training,

preliminaries are explained. Learning automaton is described briefly in section 3. Section 4 represents

the proposed BN structure training algorithms which are based on the game of learning automata.

Experimental results obtained by the proposed algorithms are reported in section 5. The paper

concludes with a conclusion given in section6.

2	Bayesian	Networks	
A Bayesian network describes the joint probability distribution over a set of random variables,

with defining a series of probability independences and a series of conditional independences [8]. To

describe a BN we need to provide two items: topology or structure of the network, and parameters or

the conditional probability tables of all variables. Having these two items, one can demonstrate the

joint probability distribution among the variables. The joint probability density function (pdf) for n

random variables can be written according to Eq. (1). , … , ∏ | 	 (1)

Where , … , is the set of random variables.

As mentioned before, search-and-score is one category of BN structure training algorithms, which

uses heuristic search methods to construct a model. In this category, structure training requires two

components: a scoring metric and a search procedure. Scoring metric evaluates the quality of the

constructed network; in other words, it determines how much the structure of the constructed BN fits

the training samples. Search procedure determines an algorithm to search a network that best fits the

training samples according to the received score from the scoring function. In the rest of this section,

we briefly describe each of these two components.

2.1	scoring	metrics	
There are varied metrics proposed for evaluating the structure of BNs such as Bayesian metric,

Minimum Description Length metric, and Bayesian Information Criterion, to mention a few. Bayesian

metric evaluates a BN by computing a marginal likelihood of the BN by using the given data and

inherent uncertainties [9-10]. Minimum Description Length (MDL) metric is based on the assumption

that the number of regularities in the data encoded by a model is somehow proportional to the amount

of data compression allowed by the model [10]. Finally the Bayesian Information Criterion (BIC),

which is used as scoring metric in this work, is a criterion for model selection among a finite set of

models, and it is based on the likelihood function. The BIC for a graph, G, is given by the following

equation [9]. log , | | log (2)

Where D is a set of training samples, is Maximum Likelihood (ML) estimation for G’s

parameters, and M is the number of samples in the training dataset. If all variables are multinomial, by

considering ri as a finite set of outputs for xi, qi as the number of configurations for xi’s parents, Nij as

the number of observations for xi if j is its parent's configuration, and finally Nijk as the number of

observation for xi=k when its parent's configuration is j, Eq. (2) can be rewritten as below; ∑ ∑ ∑ ∑ 1

(3)

and in this case BIC converts to a simple counting problem.

2.2	Search	procedure	
Given a scoring metric, the problem of learning the structure of a Bayesian network belongs to the

case of NP-hard problems and there is no polynomial-time algorithm for finding the best network

structure corresponding to the most scoring metrics [11]. Usually, a simple greedy algorithm is used

to build the network [12-13]. The greedy algorithm adds an edge with the greatest improvement of the

current network quality in search step until no more improvement is possible. The initial network

structure can be a graph with no edges; furthermore, it can take advantage of using the prior

information such as using the best tree computed by the polynomial-time maximum branching

algorithm [9] and [12]. Since Bayesian network is an acyclic graph, after each search step, the graph

structure must be validated, and all cycles must be removed from the constructed graph [14-16]. To

the best of our knowledge, Genetic Algorithms [1], [3], Learning Automata [5], Hill-Climbing [6],

Ant Colony optimization [36], and A* search [37] are used in search procedure to build the network.

3	Learning	automata	

Learning automaton is an adaptive decision making device that tries to learn the optimal action

from a finite set of actions in an unknown random environment [17]. This process is done by

interacting between the automaton and the random environment. At each time t, the automaton selects

an action, α(t), according to its action probability distribution, p(t); and it applies the selected action to

the random environment. The random environment generates a stochastic reinforcement signal, β(t),

to the automaton [18]; and the automaton updates the action probability vector using both the

reinforcement signal and a learning algorithm. Figure1 represents the interaction between a learning

automaton and its environment. Learning automaton, based on its action-set, can be classified into two

major classes: finite-action-set learning automata (FALA) and continues-action-set learning automata

(CALA). In CALA, actions are Real numbers chosen from a continuous interval [20-22]. For an r-

action FALA, the action probability distribution is represented by an r-dimensional probability vector

which is updated by the learning algorithm. Learning automata had been used successfully in many

applications such as routing and admission control in computer networks [23-24], solving NP-

Complete problems [25-27], and too many other applications [18], [28-31]. For further information

about learning automata please refer to [18].

Fig1. Interaction between the learning automaton and the environment

Environment

Learning automaton

β(n)

α(n)

A single automaton is generally sufficient for learning the optimal value of one parameter.

However, for multidimensional optimization problems, we need a system consisting of as many

automata as there are parameters [17]. Let A1, …, AN be the automata involved in an N-player game.

Each play of game consists of choosing an action by each learning automaton and then getting the

payoffs or reinforcement signals from the environment for this choice of actions by the group of

learning automata. Let p1(k), …, pN(k) be the action probability distributions of N automata; at each

instant k, each automaton, Ai, chooses an action αi(k) independently and at random according to pi(k),

1≤i≤N. This set of N actions is input to the environment, and the environment responds with N

random payoffs, which are supplied as reinforcement signals to the corresponding automata. A useful

special case of this model is a game with common payoff, in which all the automata get the same

payoff from the environment (that is, βi=β). Hence there is only one payoff function. Learning

automat in a common payoff game is often referred as a team of learning automata.

4	Proposed	algorithms	for	BN	structure	training	
In this section, we have proposed two novel BN structure training algorithms. They use a game of

learning automata to search the optimal structure among all possible structures. First, the learning

automata construct a network; then a scoring function evaluates the constructed network, and based

on its results, one (in the first proposed algorithm) or several (in the second proposed algorithm)

reinforcement signals are produced. Finally, the action probability vectors of all learning automata

are updated according to the received signals and a learning algorithm. The training procedures are

repeated until termination conditions are satisfied. These algorithms lead to find the optimal structure

and decrease the time complexity of constructing a BN.

4.1	BN	structure	training	based	on	a	game	of	learning	automata	with	a	common	payoff	
Firstly, we have implemented a game with a common payoff. As mentioned before, BN structure

training has two components: a scoring function and a search procedure [9-13], and [36]. The

proposed algorithm uses BIC, given in Eq. (3), as the scoring function to evaluate the constructed

network; and it also uses a team of learning automata, which is a game with a common payoff, to

generate the network in a search procedure. In a game with a common payoff, the scoring function

gives a single score to the whole network; and the reinforcement signal, which is the response of the

environment, is computed according to this score. Then the reinforcement signal is given to all

learning automata in the game and they update their probability vectors based on the common signal

and a common learning algorithm. The pseudo code of the proposed algorithm is given in Algorithm1.

Algorithm1: Pseudo code of the proposed algorithm with a common payoff

1: Let n be the number of random variables, and m be the number of LAs, i.e.

2: Let t be the iteration counter and initially set to 0 and maxit be the maximum number of iterations with

 BICt <BICt-1.

3: Set the initial actions probability distribution of each learning automaton to be uniform.

4: Do the following steps from 5 to 8, until the current score is not greater than the score of previous maxit steps

5: Generate LAs’ actions, (α1(t), α2(t), …, αm(t)).

6: Build the structure of the BN based on LAs’ actions and remove all cycles from the constructed

 network.

7: Calculate BIC as a scoring metric for current BN.

8: Update the actions probability distribution of each learning automaton based on the reinforcement signal β(t).

 In what follows we describe the search procedure.

1- BN Construction

Let n be the number of random variables; the maximum number of undirected edges in a graph

with n nodes is 1 . We use a team of m learning automata (A1, A2… Am), with

action set → , → , 	 	 	 1, . . , , 1, … , 	 	 ; each learning automaton

is associated to one edge in the graph [5]. Let αj(t) be the chosen action of automaton Aj, at time t;

it determines either the corresponding edge should not appear in the BN, or it should appear and

in this case, it also determines the direction of the edge. The probability vector of automaton Aj,

(for j=1, 2… m) at time t is denoted by , , , where is the

probability of choosing action αi (for i=0, 1, 2) at time t. Initially, there is no prior information

about the edges; therefore, we use the uniform probability distribution, i.e. 	 		0, 1, 2	 	 1, 2, … , . However, the action probability vectors can also be initialized based

on the prior information about the variables' dependencies. For example, for each edge the mutual

information of the nodes is computed, and then the action probability vector of the corresponding

automaton will be initialized based on it (mutual information is explained in section 4.2). Using

such prior information speeds up the algorithm and also improves the score of the constructed

network; nevertheless, it imposes a new computational overhead to the algorithm. After choosing

an action by each learning automaton, a network is built based on their chosen actions.

2- Network verification

The network, which is constructed in previous phase may have cycles. In order to remove cycles,

the search procedure uses a modified version of Depth First Search (DFS) algorithm, named

colored DFS [32]. It begins with a random start node to navigate the current structure and mark all

the back edges, which point from a node to one of its ancestors. After detecting all back edges, the

search procedure removes them all. Because of choosing a random start node in the colored DFS,

the proposed algorithm has a chance to remove different edges in different iterations, even if the

cycles are the same; so the algorithm can find the best structure of the network without biasing to

any edge in the network.

3- Compute the reinforcement signal

In the next step, the reinforcement signal should be computed. As mentioned before, here we use

a game with a common payoff; and it means that all the automata get the same reinforcement

signal from the environment (that is, βj(t)=β(t)). The BIC, given in Eq. (3) in section 2.1, is used

to score the whole network, and then the common reinforcement signal at t, β(t), is computed

using Eq. (4).

β 	 ,0 (4)

Where, BICt and BICt-1 are the scores of the constructed networks in the current iteration, t, and

the previous iteration, t-1, respectively; BICmax is the maximum score, and BICmin is the minimum

score, which are gained up to the current iteration, t.

4- Update the action probability vector

At each stage, t, the learning algorithm updates the action probability distribution of every

automata using following equation, 1 		 1, … , (5)

where 0 < λ <1 is a constant parameter, and is a unit vector of appropriate dimension (here the

dimension is three that is the number of actions of each learning automaton) with αjth component

unity.		 ∈ 0,1 , and this algorithm is known as Linear Reward-Inaction (LR-I) algorithm.

5-Termination

Step 1, 2, 3 and 4 are repeated until the stage number exceeds a pre-specified threshold Thmax, or

the score of the constructed BN becomes greater than a certain pre-defined score BICopt, or for a

pre-defined iterations maxit, the score of a constructed BN does not change. Here the latest state is

used as the termination criteria.

However maximizing the expected value of the common payoff β, which depends on the BIC

value, is the main goal of the team of learning automata; reaching a Nash equilibrium is another

important goal in a game. For good discussion on the rationality of Nash equilibrium, please refer to

[33]. To explain more, let = { , , 	is the action set of automaton Aj for	1 . Define

S=∏ ; for any a = (a1, …, am)	∈	S, we define its neighborhood in S as ∈ |∃ ,. .		 , ∀ , 	 . Thus, the neighbors of any m-tuple of actions are the set of all

action choices that differ only in one action. It is easy to see that a specific m-tuple of actions a∈S is a

Nash equilibrium for this game with a common payoff if and only if β(a) β(x), ∀ ∈ . The

corresponding β which is the highest is called βop. It has been proven that the automata team would

converge to one of the Nash equilibrium, if all the automata use LR-I (with sufficiently small value for

the step size parameter) [33].

4.2	Structure	training	based	on	a	competitive	game	of	learning	automata		
In the rest of this section, we will introduce a competitive game of learning automata for BN

structure training. In a competitive game, each learning automaton receives its reinforcement signal,

βj(t), from the environment; it means that the scoring function should give different scores. Then, all

automata update their probability vectors according to their own reinforcement signals and a common

learning algorithm. The pseudo code of the proposed algorithm is given in Algorithm 2.

Algorithm2: Pseudo code of the proposed algorithm with different payoffs

1: Let n be the number of random variables, and m be the number of LAs, i.e. .

2: Let t be the iteration counter and initially set to 0 and It.max be the maximum number of iterations for running

 the algorithm.

3: Set the initial actions probability distribution of each learning automaton to be uniform.

4: Do the following steps from 5 to 8 for It.max

5: Generate LAs’ actions, (α1(t), α2(t), …, αm(t)).

6: Build the structure of the BN based on LAs’ actions and remove all cycles from the constructed network.

7: Calculate Ij(t) for each edge in the BN as the mutual information of its two nodes.

8: Update the actions probability distribution of the corresponding learning automata based on the reinforcement

 signal βj(t).

The search procedure of this algorithm is the same as the previous one. At each stage t, automaton

Aj, chooses an action αj(t), independently and at random according to . The chosen set of m

actions is used to build a BN structure. Like before, the selected action of each automaton determines

either the corresponding edge should not appear in the BN, or it should appear and in this case, it also

determines the direction of the edge. After cycles detecting and removing by a colored DFS algorithm

[32], the constructed network should be evaluated. Here scoring function produces m scores (for m

learning automata); and these scores are individually given to the automata, as their payoffs or

reinforcement signals, . In order to generate the reinforcement signal of each learning

automaton, which is assigned to an edge, mutual information of the nodes of the edge, at stage t is

computed using Eq. (6), and the training datasets. , ∑ , ,, (6)

Where 	and are the corresponding nodes. The mutual information measures the amount of

information flows between two nodes. It is also used in some of the BN constructing algorithms that

belong to the first category of the researches (As mentioned in section 1, the first category of the

researches is based on analyzing dependency relationships among nodes [2].). The reinforcement

signal of the corresponding automaton, Aj at time t, is one either , and the chosen action

is → , or , and the chosen action is 	 ; otherwise, is zero; where is a

certain threshold value.

After computing the , the learning algorithm updates the action probability distribution of

each automaton using the following equation, 1 		 1, … , ′ (7)

Where 0 < λ <1 is a constant parameter and is a unit vector of appropriate dimension, (here the

dimension is three that is the number of actions of each learning automaton) with αjth component

unity. In this section, we assumed that		 ∈ 0,1 , but the learning algorithm is still LR-I. All steps

are repeated for a certain number of iterations, called It.max.

The same as the game with a common payoff, it is expected that the algorithm reaches a Nash

equilibrium; despite the fact that, each automaton has its own payoff and tries to improve it. The m-

tuple of actions (a1, …, am) is called a Nash equilibrium of this game if for each j, 1≤j≤m, , … , , , , … , , … , ∀ ∈ (8)

Where is the payoff function for automaton Aj (, … , | , 1
), and is the action set of Aj.

It is proven in [33] that, if the learning algorithms of all the learning automata are LR-I, this game

would converge to a Nash equilibrium.

					5	Experimental	Results	
In this section the proposed LA-based algorithms are evaluated. To do this, we have designed two

categories of experiments. At first, a well-known BN named ALARM [34], is chosen; and two LA-

based algorithms are employed to construct the ALARM network using its available datasets. Then

constructed networks are evaluated and the proposed algorithms are compared with each other and

with other BN structure training algorithms. Second, since classification is one of the important

applications of BNs, for 25 chosen datasets the classification accuracies of the proposed algorithms

are compared against other algorithms.

5.1	Results	on	the	ALARM	Network	
To evaluate the performance of the algorithms, experiments have been designed in following steps

the same as [1]:

Step1: Determine a well-known BN (structure and conditional probabilities) and simulate it,

obtaining its database of cases D, which must reflect the conditional independence relations

between the variables.

Step2: Using the LA-based algorithms, try to obtain the networks BNLA-CP and BNLA-DP, which

maximize the probabilities P(D| BNLA-CP) and P(D| BNLA-DP).

Step3: Evaluate the BNLA-CP and the BNLA-DP, and then compare them with other BNs’ structures,

which are constructed by other algorithms (all algorithms are described in section 5.1).

The BN used in the experiments is the ALARM network. ALARM network is a medical diagnostic

alarm message system for patient monitoring; it contains 37 nodes and 46 arcs (see figure 2).

Research

network

from the

5.1.1	Se
First,

λ on the

database

value of

5.1.2	Co
In ne

using th

game of

different

missed.

their nod

used 100

Then

3000, an

I.
II.
III.

BIC

network

structure

0

0

0

N
o
rm

a
li
ze
d

 B
IC

hers in this

k with the sa

e database th

ensitivity	an
, we start wit

performance

e with 5000

f the paramet

Fig

onstruct	the
ext experime

he available t

f LAs with

t payoffs) w

A subsequen

des are actua

000 cases an

n, different su

nd 5000 case

BIC as a

Hammin

Computa

C is measured

k. Hamming

e of the origi

0

0.1

0.2

0.3

0.1 0.2 0.

field have u

ame structure

hat was gener

nalysis	
th a sensitivi

e of the LA-C

cases is con

ter λ for LA-

g3. Analysis t

e	ALARM	ne
ents, the pro

training sam

a common

which are ide

nt analysis ha

ally independ

nd nodes orde

ubsets of the

es. For each d

a scoring met

ng distance be

ation time.

d by Eq. (3).

Distance di

inal network

.3 0.4 0.5 0.6

λ
(a)

used datasets

e but differe

rated by Edw

Fig2.

ity analysis o

CP and the L

nsidered. Fig

CP is betwee

the effect of p

etwork	
oposed algor

mples. Both a

payoff) and

entical to the

as revealed t

dent in the e

ering.

e dataset are

database of c

tric,

etween the c

 The interpre

irectly comp

k. We have d

0.7 0.8 0.9 1

s which were

ent probabili

ward Herskov

The ALARM

on the learnin

LA-DP and a

gure 3 repres

en 0.4 and 0.

parameter λ f

rithms are e

algorithms co

BNLA-DP (b

e ALARM,

that missing

employed da

considered;

cases, the foll

constructed n

etation of BI

pares the str

defined the H

1

e generated

ty distributio

vits [35].

M network

ng parameter

also to find th

sents the res

.5, and for LA

for (a) LA-CP

mployed to

onstruct the

ased on the

except that

arcs are not

atabase. It is

 the subsets

lowing value

networks, and

IC is: the hig

ructure of th

Hamming Di

0

0.05

0.1

0.15

0.2

0.25

N
o
rm

a
li
ze
d

 B
IC

from three v

ons [2]. We

r λ, in order

he best value

sults. It can b

A-DP is betw

P and (b) LA-

construct th

networks B

competitive

two arcs {2

supported by

similar to th

are made by

es are measu

d the original

gher this para

he constructe

stance betwe

0.1 0.2 0.3

versions of A

use 5000 fi

to study the

e of it. To do

be seen that

ween 0.3 and

-DP

he ALARM

NLA-CP (base

e game of L

1-31 and 12

y the 5000 c

he result of [

y the first 50

ured;

l ALARM ne

ameter, the b

ed network

een two DAG

0.4 0.5 0.6 0

λ
(b)

ALARM

irst cases

effect of

o this, the

t the best

d 0.4.

network

ed on the

LAs with

2-32} are

ases, and

2] which

00, 1500,

etwork,

better the

with the

Gs as the

.7 0.8 0.9 1

number of the following operators required to make the DAGs match: add, remove, or reverse a

directed edge. The lower Hamming distance indicates the more similar network with the ALARM

network. LA-CP and LA-DP are also compared based on their computation time. They are

implemented in .Net framework in a PC which has a single CPU of Intel(R) Core™ 2 Duo 3.33GHz

and a 1GB memory. In order to measure the computation time, each algorithm is executed with no

prior limitation in the number of iterations, until no improvement in BIC is observed.

Table 1 represents the average results. For all datasets with 500, 1500, 3000, and 5000 cases, the

algorithms are implemented 10 times independently. As the results indicate, using databases of 3000

and 5000 cases, both LA-based algorithms perform well and construct acceptable networks (networks

with low Hamming distance and high BIC score); however, for databases of 500 and 1500 cases, the

performance of LA-DP decreases, compared with LA-CP. Such results were predictable because in

LA-DP scoring metric is the mutual information between the corresponding nodes of each edge, and

in this situation, in order to have a reliable scoring metric, the volume of data should be large enough.

The computation time is also measured for both algorithms, and LA-CP has consumed less time in

comparison with LA-DP.

Table1. Average results of proposed algorithms after 10 runs

Number of cases

Parameters\

Networks

500 1500 3000 5000

BNLA-CP BNLA-DP BNLA-CP BNLA-DP BNLA-CP BNLA-DP BNLA-CP BNLA-DP

Normalized BIC 0.039822 0.01235 0.15461 0.068914 0.238 0.15055 0.23853 0.235064

Hamming Distance 17.7 35.0 4.1 19.0 2.0 7.3 2.0 2.0

Computation time 71.30 141.91 81.19 152.54 96.52 166.94 116.14 189.62

5.1.3	Compare	with	other	structure	training	algorithms	
At the end of this section, the proposed LA-based algorithms are compared against other BN

structure training algorithms. Below all implemented algorithms are described:

 Proposed algorithm based on a game of learning automata with a common payoff, called

LA-CP.

 Proposed algorithm based on a competitive game of learning automata with different

payoffs, called LA-DP.

 3-phase network construction algorithm which is based on computing the mutual

information of attributes pairs.

 Max-Min Hill climbing algorithm [6].

 Genetic algorithm which finds the best order of variables and then starts the search process

[3].

 Ant-colony optimization [36] called ACO.

Many other BN structure training algorithms exist; A* search-based algorithm with a shortest

path perspective [37], and multiple exact algorithms [38-40] are some examples. However, it is

impossible and unnecessary to compare the proposed algorithms with all the structure training

algorithms; so we have selected more comprehensive algorithms, which also stand in the same class

with ours.

Table2. Compare the proposed algorithms with other algorithm

 Normalized BIC Hamming Distance Computation time

LA-DP 0.23506 2.0 189.62

LA-CP 0.23853 2.0 116.14

3-phase 0.06232 9.5 671.35

Max-Min hill climbing 0.20781 2.0 308.02

Genetic algorithm-based 0.14404 2.6 284.15

Ant- colony optimization 0.14402 2.6 259.12

Datasets of 5000 cases are considered, and the performance metrics are defined like the previous

experiments. Algorithms are implemented with no prior limitation in time and until no improvement

in the score is observed. Table2 shows the results after 10 independent runs.

5.2	Evaluate	the	predictive	ability	of	the	proposed	algorithms	in	classification	
A constructed BN is an efficient device to perform probabilistic inference; therefore, predictive

ability in different applications is one of the important issues in the field of BNs. Classification is one

of the important applications of BNs which is used in varied fields such as recommender systems for

estimating users' ratings based on their implicit preferences, bank direct marketing for predicting

clients' willingness of deposit subscription, disease diagnosis for assessing patients' breast cancer risk,

simultaneous fault diagnosis problem, and classification problems with continuous attributes [41-43].

In this section first we briefly explain about BNs classifiers in section 5.2.1, and then choosing

datasets of different applications, we evaluate the classification accuracy and the classification time of

different algorithms in sections 5.2.2 and 5.2.3.

5.2.1	BN	classifiers	
Suppose that each training sample is a vector of attributes (X1, X2 … Xv-1, C). The goal of

classification is predicting the right value of class variable c=xv having (x1, x2 … xv-1). If the

performance measure is the percentage of correct predictions on the test samples (classification

accuracy), correct prediction for (x1, x2 … xv-1) is the class that maximizes P(c|x1, x2 … xv-1). If there is

a BN over (x1, x2 … xv-1, C), we can compute these probabilities by inference on it. After the structure

of a BN is specified, estimating the parameters so that the network can provide the best prediction for

the value of the class variable in the test samples is important; however, it is out of the scope of this

study, and we simply use Maximum Likelihood (ML) to estimate the parameters' values.

Table3. Datasets and their samples

Number

Of

samples

Number

Of

attributes

Number

Of

classes

Dataset

Number

Of

samples

Number

Of

Attributes

Number

Of

classes

Dataset

150 4 3 Iris 690 14 2 australian

15000 16 26 letter 683 10 2 breast

148 18 4 lymphography 2130 36 2 chess

300 10 2 mofn-3-7-10 296 13 2 cleve

768 8 2 pima 128 6 2 corral

3866 9 7 shuttle-small 653 15 2 crx

435 16 2 vote 768 8 2 diabetes

4435 36 6 satimage 1066 10 2 flare

1540 19 7 segment 1000 20 2 german

562 35 19 soybean-large 214 9 7 glass

846 18 4 vehicle 163 9 2 glass2

300 21 3 waveform-21 270 13 2 heart

 80 19 2 hepatitis

5.2.2	Comparison	the	classification	accuracy	of	different	classifiers			
In order to evaluate and compare the classification accuracy of the proposed algorithms, 25

datasets are used, which consist of 21 datasets from UCI [44] and others from [45]. Table3 shows a

brief description of these datasets.

All implemented classifiers are described as follows.

 LA-CP and LA-DP classifiers,

 Naїve Bayes classifier,

 TAN classifier,

 3-phase network construction algorithm as a classifier,

 Hill climbing-based classifier,

 And Genetic algorithm-based classifier [3].

The ACO-based algorithm is eliminated in the following experiments because its performance is

very similar to the performance of the GA-based algorithm. We also compare the performance of the

proposed algorithm with two simple and well-known classifiers, named Naїve Bayes and TAN.

Furthermore, in order to construct more efficient networks in classification, another scoring

function is used, which is proposed in [46] and called classification rate,

| | ∑ : ,| |∈ (9)

where, |D| is the number of training samples. The equation simply represents the rate of samples

that are classified correctly by the network. And : , 1 if BN classifier :

which is trained with D, predicts the right value of class variable having attributes : .

Table4 represents the classification error rate of implemented algorithms for different datasets; the

best results are highlighted. Experiments are repeated 10 times with a fixed execution time, and the

results are averaged. Average error rates (which are 0.133864 for LA-CP, 0.146492 for LA-DP,

0.18094 for NB, 0.1586 for TAN, 0.159376 for 3-phase, 0.171016 for HC, and 0.146768 for GA)

indicate that LA-CP and LA-CP have performed better than other classifiers, on average. Moreover,

for 14 datasets LA-CP, and for five datasets LA-DP, have shown the superior results. For remaining

datasets, HC on two datasets, TAN on two datasets, 3-phase on one dataset, and BN on one dataset,

have shown the best results. However, for all 11 datasets the differences between the best results and

the results achieved by LA-CP are negligible; and the slight differences between them are justifiable

by considering the stochastic nature of the algorithms.

In addition, figure4 represents the scatter charts of comparing the algorithms. Firstly, we compare

LA-CP with LA-DP, and then, since the LA-CP shows much better performance, we compare it with

other algorithms. In Figure4, points above the line y=x, show wherever LA-CP has better performance

in comparison with the other algorithm.. Figure5 shows bar chart, which compares the average error

rate of all algorithms on different datasets. It is clear that LA-CP is indicating better results.

5.2.3	Comparison	the	classification	time	of	different	classifiers		
Finally, the classification time of different algorithms are measured. All algorithms are

implemented and run in .Net framework in a PC which has a single CPU of Intel(R) Core™ 2 Duo

3.33GHz and a 1GB memory. To measure the execution time, algorithms are run with no prior

limitation in time until no improvement is observed. Table5 shows the results after 10 independent

runs for seven chosen dataset. Chosen datasets are: Letter, Chess, German, Hepatitis, Breast, Glass2,

and Iris. The best results are highlighted. Results again show that LA-CP requires less time for

classification.

Table4. Average error rate for different datasets

algorithms

datasets
LA-CP LA-DP NB TAN 3-phase HC GA

Australian 0.1341 0.1149 0.1489 0.1751 0.1296 0.1391 0.1205

Breast 0.0210 0.0411 0.0245 0.0351 0.0425 0.0668 0.0522

Chess 0.0312 0.0469 0.1266 0.076 0.0422 0.0966 0.0459

Cleve 0.1894 0.1863 0.1791 0.2164 0.1997 0.182 0.1826

Corral 0.0041 0.0197 0.1277 0.0143 0.0119 0 0.0177

Crx 0.1392 0.1401 0.1505 0.1631 0.158 0.137 0.146

Diabetes 0.2168 0.268 0.2571 0.2384 0.2666 0.255 0.2743

Flare 0.1823 0.174 0.2024 0.178 0.1804 0.181 0.1762

German 0.2412 0.2551 0.2458 0.2609 0.2643 0.3085 0.2573

Glass 0.3012 0.3992 0.4412 0.4578 0.4173 0.4412 0.4061

Glass2 0.1634 0.2413 0.2236 0.2249 0.2691 0.2329 0.1758

Heart 0.1526 0.1751 0.155 0.1847 0.1874 0.2221 0.1789

Hepatitis 0.09382 0.1728 0.193 0.1302 0.1618 0.1967 0.1529

Iris 0.0401 0.0411 0.0699 0.0763 0.042 0.0414 0.063

Letter 0.23 0.1061 0.3068 0.1752 0.183 0.1896 0.1256

Lymphography 0.1396 0.1554 0.1662 0.1784 0.1635 0.2247 0.1542

Mofn-3-7-10 0.0800 0.0866 0.1328 0.085 0.0859 0.0859 0.0928

Pima 0.1375 0.1823 0.2571 0.2384 0.2666 0.255 0.182

Satimage 0.1771 0.1867 0.1915 0.1395 0.1745 0.184 0.1743

Segment 0.0944 0.0662 0.1221 0.0675 0.0571 0.0831 0.0592

Shuttle-small 0.0090 0.0041 0.014 0.0093 0.0047 0.0145 0.0066

Soybean-large 0.0629 0.0786 0.0852 0.0644 0.0754 0.0922 0.0765

Vehicle 0.2836 0.2987 0.3892 0.2718 0.2922 0.3451 0.2994

Vote 0.0319 0.0374 0.0991 0.0509 0.0417 0.0467 0.0424

Waveform-21 0.1892 0.1846 0.2142 0.2534 0.267 0.2543 0.2068

Average 0.133864 0.146492 0.18094 0.1586 0.159376 0.171016 0.146768

Fig4. Scatter chart to compare the classification error of LA-CP with (a) LA-DP, (b) Naїve Bayes, (c) TAN, (d) 3-phase, (e) Hill Climbing-based, and (f)

Genetic algorithm-based classifiers; points above y=x show better performance of the LA-CP.

-0.2

1E-15

0.2

0.4

0.6

-0.2 1E-15 0.2 0.4 0.6

L
A

-D
P

LA-CP
(a)

-0.2

1E-15

0.2

0.4

0.6

-0.2 1E-15 0.2 0.4 0.6

3
-p

h
a
s
e

LA-CP
(d)

-0.2

1E-15

0.2

0.4

0.6

-0.2 1E-15 0.2 0.4 0.6

N
B

LA-CP
(b)

-0.2

1E-15

0.2

0.4

0.6

-0.2 1E-15 0.2 0.4 0.6

H
C

LA-CP
(e)

-0.2

1E-15

0.2

0.4

0.6

-0.2 1E-15 0.2 0.4 0.6

T
A

N

LA-CP
(C)

-0.2

1E-15

0.2

0.4

0.6

-0.2 1E-15 0.2 0.4 0.6

G
A

LA-CP
(f)

Fig5. Average classification error rate

Table5. Comparing the execution time in classification

algorithms

datasets
LA-DP LA-CP NB TAN 3-phase HC GA

Letter 386.49 136.09 676.42 458.59 898.81 608.64 458.59

Chess 195.93 71.93 357.36 288.45 570.22 309.88 288.45

German 88.12 33.12 148.42 95.45 164.80 106.32 95.45

Hepatitis 64.99 21.99 52.54 88.43 93.01 89.34 88.43

Breast 21.42 13.42 82.73 28.43 241.09 35.13 28.43

Glass2 18.14 7.14 28.45 24.39 49.41 26.14 24.39

Iris 8.42 4.32 19.90 14.54 29.29 16.12 14.54

6.	Conclusion		
In this paper two novel learning automata-based algorithms are proposed, for structure training in BNs.

They try to perform a guided search through the space of the possible network structures. In order to

construct a BN, the first algorithm uses a team of learning automata in a game with a common payoff,

named LA-CP, and the second, named LA-DP, uses a competitive game with different payoffs. In both,

there is one learning automaton for each possible edge in the undirected related graph, and each learning

automaton tries to learn the existence or not existence of the corresponding edge. In each stage, one BN is

constructed based on the selected actions of the learning automata; then each learning automaton update

its action probability vector based on the evaluation of the constructed network in LA-CP, and the

evaluation of each edge in LA-DP. Some experiments have been developed to evaluate the performances

of the algorithms. The first class of experiments is designed to compare two proposed algorithms with

each other. Results show that LA-CP has superior performance; and the performance of LA-DP depends

on the volume of the training dataset because it uses the mutual information as a scoring metric to

evaluate each edge separately. Next, in order to compare the proposed algorithms with other BN structure

training algorithms, some algorithms, which sit in the same class with ours, are selected. Comparison is

done for both structure training, and classification accuracy, which is an important application of the BN.

LA‐CP

NB

3‐phase
HC

GA

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Experimental results for structure training indicate the better performance of the proposed algorithms

compared with others. Measures are the quality of the constructed networks, which is evaluated by using

BIC and Hamming distance, and also the execution time. Furthermore, to examine the classification

accuracy of the proposed algorithms, classification error of different BNs on 25 datasets from [44-45] are

measured. Experimental results show that the LA-CP performs better than other classifiers, on average.

Structure learning of BNs and Bayesian classifiers are still active fields of research; writers are eager

to continue their study in this field and improve some features of LA-based algorithms; for example,

speed up the convergence rate, reduce the number of learning automata, and etc. Moreover, other class of

BN, which is known as Dynamic BN, is an interesting research topic; and structure learning of DBNs

based on learning automata, will be the subject of the writers’ next investigation.

References	
[1] P. Larranaga, M. Poza, Y. Yarramendi, R.H. Murga, and C.M.H. Kuijpers, “Learning of Bayesian Networks by

Genetic Algorithms: A Performance Analysis of Control Parameters”, IEEE Transactions, Pattern Analysis and

Machine Intelligence, Vol. 18, pp. 912-926, 1996.

[2] J. Cheng, D.A. Bell, and W. Liu, “An Algorithm for Bayesian Belief Network Construction from Data”, In

Proceedings of AI & STAT’97, pp. 83-90, 1997.

[3] P. Larranaga, C.M.H. Kuijpers, R.H. Murga, and Y. Yurramendi, “Learning Bayesian Network Structures by

Searching for the Best Ordering with Genetic Algorithms”, IEEE Transactions on, Systems, Man and

Cybernetics, Vol. 26, pp. 487-493, 1996.

[4] J.W. Myers, K.B. Laskey, and T.S. Levitt, “Learning Bayesian Networks from Incomplete Data with Stochastic

Search Algorithms”, UAI Conference, pp.476-485, 1999.

[5] N. Rezvani, and M.R. Meybodi, “A Learning Automata-based Technique for Training Bayesian Networks”,

Proceeding of international conference CACTE, pp. 201-212, 2009.

[6] I. Tsamardinos, L.E. Brown, and C.F. Aliferis, “The Max-Min Hill-Climbing Bayesian Network Structure

Learning Algorithm”, Mach Learn, Vol. 65, pp. 31-78, 2006.

[7] D. Heckerman, “Learning with Bayesian Networks”, ICML’95, 1995.

[8] K.P. Murphy, “An Introduction to Graphical Models”, Technical Report, Intel Research Technical Report, 2001.

[9] Lam, W. & Bacchus, F., “Learning Bayesian Belief Networks: An Approach Based on the MDL Principle”,

Elsevier, Computational Intelligence, Vol. 10, pp. 269-293, 1994.

[10] M. Gallagher, I. Wood, J. Keith, “Bayesian Inference in Estimation of Distribution Algorithms”, In Proceeding

of the IEEE Congress on Evolutionary Computation, pp. 127-133, 2007.

[11] D.M. Chickering, D. Geiger, D. Heckerman, “Learning Bayesian Network is NP-hard”, Technical Report

MSR-TR-94-14, 1994.

[12] D. Heckerman, D. Geiger, D.M. Chickering, “A tutorial on Learning with Bayesian Networks”, Innovations in

Bayesian Networks, Chapter 3, Springer, Berlin, pp. 33-82, 2008.

[13] C.W. Ahn, R.S. Ramakrishna, “ On the Scalability of Real-coded Bayesian Optimization Algorithm”, IEEE

Transactions, Evol. Comut. Vol. 12, pp. 307-322, 2008.

[14] C.W. Ahn, R.S. Ramakrishna, D.E. Goldberg, “Real-coded Bayesian Optimization Algorithm: Bringing the

Strength of BOA into the Continuous World”, Lecture Notes in Computer Science, Vol. 3102, pp. 840-851,

2004.

[15] D. Heckerman, D. Geiger, D.M. Chickering, “Learning Bayesian Networks: The Combination of Knowledge

and Statistical Data”, Technical Report MSR-TR-94-09, 1995.

[16] C.W. Ahn, “Advances in Evolutionary Algorithms: Theory, Design and Practice”, Studies in Computational

Intelligence, Springer, 2006.

[17] M.A.L. Thathachar, P.S. Sastry, “Varieties of Learning Automata: an Overview”, IEEE Transactions on

System, Man, and Cybernetics,. Vol. 32, pp. 711-722, 2002.

[18] K.S. Narendra,and M.A.L. Thathachar, , “Learning Automata: An Introduction”, Prentice-Hall, Inc. Upper

Saddle River, NJ, USA, 1989.

[19] K. Najim, and A.S. Poznyak, “Learning Automata: Theory and Applications”

Pergamon Press, Inc. Elmsford, NY, USA, 1994.

[20] H. Beigy, and M.R. Meybodi, “A New Continuous Action-set Learning Automata for Function Optimization”,

J. Franklin Inst. Vol. 343, pp. 27, 2006.

[21] G. Santharam, P.S. Sastry, and M.A.L. Thathachar, “Continuous Action Set Learning Automata for Stochastic

Optimization”, J. Franklin Inst. Vol. 331B, pp. 607-628, 1994.

[22] B.J. Oommen, and T.D. Roberts, “Continuous Learning Automata Solutions to the Capacity Assignment

Problem”, IEEE Transactions on Computer, Vol. 49, pp. 608-620, 2000.

[23] M.S. Obaidat, G.I. Papadimitriou, A.S. Pomportsis, and H.S. Laskaridis, “Learning automata-based bus

arbitration for shared-medium ATM switches”, IEEE Transactions on System, Man, and Cybernetics, Vol. 32,

PP. 815–820, 2002.

[24] G.I. Papadimitriou, M.S. Obaidat, and A.S. Pomportsis, “On the use of learning automata in the control of

broad-cast networks: a methodology”, IEEE Transactions on System, Man, and Cybernetics, Vol. 32, PP. 781–

790, 2002.

[25] H. Beigy, and M.R. Meybodi, “Cellular learning automata based dynamic channel assignment algorithms”,

Int. J. Comput. Intell. Appl. Vol. 8(3), PP. 287–314, 2009.

[26] H. Beigy, and M.R. Meybodi, “Utilizing distributed learning automata to solve stochastic shortest path

problems”, Int. J. Uncertain Fuzz Knowl. Based Syst. Vol. 14, PP. 591–615, 2006.

[27] O.C. Granmo, B.J. Oommen, S.A. Myrer, and M.G. Olsen, “Learning automata-based solutions to the

nonlinear fractional knapsack problem with applications to optimal resource allocation”, IEEE Transactions on

System, Man, and Cybernetics, Vol. 37, PP. 166–175, 2007.

[28] H. Beigy, and M.R. Meybodi, “Adaptive limited fractional guard channel algorithms a learning automata

approach”, Int. J. Uncertain. Fuzziness Knowl. Based Syst. Vol. 17(6), PP. 881–913, 2009.

[29] H. Beigy, and M.R. Meybodi, “A learning automata-based algorithm for determination of the number of

hidden units for three layer neural networks”, Int. J. Syst. Sci. Vol. 40, PP. 101–118, 2009.

[30] P.S. Sastry, G.D. Nagendra, and N. Manwani, “A team of continuous-action learning automata for

noisetolerant learning of half-spaces”, IEEE Transactions on System, Man, and Cybernetics, Vol. 40, PP. 19–

28, 2010.

[31] B.J. Oommen, and M.K. Hashem, “Modeling a student classroom interaction in a tutorial-like system using

learning automata”, IEEE Transactions on System, Man, and Cybernetics, Vol. 40, PP. 29–42, 2010.

[32] Amir Kamil, ”Graph Algorithms”, CS61B, Spring , UC Berkeley,2003

[33] P.S. Sastry, V.V. Phansalkar, and M.A.L. Thathachar, “Decentralized Learning of Nash Equilibria in Multi-

Person Stochastic Games with Incomplete Information”, IEEE Transactions on System, Man, and Cybernetics,

Vol. 24, pp. 769-777, 1994.

[34] I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper, “The ALARM Monitoring System: A

Case Study with Two Probabilistic Inference Techniques for Belief Networks”, Proceedings of

Second European Conference on Artificial Intelligence, pp. 247-256, 1989.

[35] E.H. Herskovits, “computer Based Probabilistic Network Construction”, doctoral dissertation,

Medical Information Sciences, Stanford Univ. 1991.

[36] De Campos, Luis M., Juan M. Fernandez-Luna, José A. Gámez, and José M. Puerta. "Ant colony optimization

for learning Bayesian networks." International Journal of Approximate Reasoning 31, no. 3 (2002): 291-311.

[37] Yuan, Changhe, Brandon Malone, and Xiaojian Wu. "Learning optimal Bayesian networks using A* search."

In IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, no. 3, p. 2186. 2011.

[38] Singh, Ajit P., and Andrew W. Moore. "Finding optimal Bayesian networks by dynamic programming." (2005).

[39] Cussens, James, and Mark Bartlett. "Advances in Bayesian network learning using integer programming."

arXiv preprint arXiv:1309.6825 (2013).

[40] Jaakkola, Tommi, David Sontag, Amir Globerson, and Marina Meila. "Learning Bayesian network structure

using LP relaxations." In International Conference on Artificial Intelligence and Statistics, pp. 358-365. 2010.

[41] X. Z. Wang, Y. L. He, and D. D. Wang. Non-Naive Bayesian Classifiers for Classification Problems with

Continuous Attributes. IEEE Transactions on Cybernetics, 2014, 44(1): 21-39.

[42] Yulin He, Ran Wang, Sam Kwong, Xizhao Wang, Bayesian classifiers based on probability density estimation

and their applications to simultaneous fault diagnosis, Information Sciences, 2014, 259: 252-268.

[43] Feng, Guang, Jia-Dong Zhang, and Stephen Shaoyi Liao. "A novel method for combining Bayesian networks,

theoretical analysis, and its applications." Pattern Recognition 47, no. 5 (2014): 2057-2069.

[44]P.M. Murphy, and D. W. Aha, “UCI Repository of Machine Learning Databases”, Available:

http://www.ics.uci.edu/~mlearn/MLRepository.html, 1995.

[45] R. Kohavi, and G. John, “Wrappers for Feature Subset Selection”, Elsevier Science, Artificial Intelligence, Vol.

97, pp. 273-324, 1997.

[46] Pernkopf, Franz. "Bayesian network classifiers versus selective k-NN classifier." Pattern Recognition 38, no. 1

(2005): 1-10.

Appendix	A.	Experiments	Implementation	
In order to evaluate the performance of proposed algorithms and compare them with other algorithms,

required programs are implemented with C# on .Net Framework. We have implemented two main

elements called DataModel and BayesModel. In DataModel preprocess of datasets is done and an object

oriented model is used to maintain the datasets. BayesModel constructs a BN based on a given dataset and

then evaluates it. Figure 6 and figure 7 represent their class diagram.

Fig6. Dat

Fig7. Bayes

aModel class

Model class d

diagram

diagram

