Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis

Uffe B. Kjærulff and Anders L. Madsen
Answers to Exercises
January 15, 2010

Answer to Exercise 10.1: We assume $\mathrm{P}($ Rain $=$ no $)=\mathrm{P}($ Sprinkler $=\mathrm{no})=$ 0.9 .
(a) $\varepsilon=\left\{\right.$ Holmes $^{\prime}$ lawn $=$ wet, Gibbon's lawn $=$ dry, Watson's lawn $=$ dry $\}$.
(b) We compute normalized likelihoods of the hypothesis given each subset of the evidence

Gibbon's lawn=dry	Holmes' lawn = wet	Watson's lawn = dry	Sprinkler =yes
			+
	+	+	1
+	+	+	5.05
+		+	9.88
+	+		1
+	+	+	1

(c) We compute Bayes' factor for each subset of the evidence

Gibbon's lawn = dry	Holmes' lawn = wet	Watson's lawn = dry	Sprinkler = yes
			1
	+	+	81.1
+	+	+	0.92
+		+	73.66
+	+		81.1
+	+	+	7290.1

(d) We perform a what-if analysis on each evidence node

Evidence change	$\mathrm{P}($ Sprinkler $=$ yes $)$
Gibbon's lawn $=$ wet	0.89
Holmes' lawn $=$ dry	0.01
Watson's lawn $=$ wet	0.89

(e) For each finding ε_{X}, we compute $\mathrm{P}($ Sprinkler $=$ yes $), \mathrm{P}($ Sprinkler $=$ yes $\mid \varepsilon \backslash$ $\left.\left\{\varepsilon_{X}\right\}\right)$ and $P($ Sprinkler $=$ yes $\mid \varepsilon)$

Finding	$P($ Sprinkler $=$ yes $)$	$P\left(\right.$ Sprinkler $=$ yes $\left.\mid \varepsilon \backslash\left\{\varepsilon_{X}\right\}\right)$	$P($ Sprinkler $=$ yes $\mid \varepsilon)$
Gibbon's lawn $=$ dry	0.1	0.9879	0.9999
Holmes' lawn $=$ wet	0.1	0.1	0.9999
Watson's lawn $=$ dry	0.1	0.9879	0.9999

Answer to Exercise 10.2:

(a) $\varepsilon=\{$ Smoker $=$ yes, Asia $=$ yes, Dyspnea $=$ yes $\}$.
(b) We compute normalized likelihoods of the hypothesis given each subset of the evidence

Smoker $=$ yes	Asia $=$ yes	Dyspnoa $=$ yes	Bronchitis $=$ yes
			+
	+		1.85
	+	+	1
+			1.80
+	+	+	1.33
+	+	+	1.96
+	+	1.33	
			1.93

(c) We compute Bayes' factor for each subset of the evidence

Smoker $=$ yes	Asia $=$ yes	Dyspnoa $=$ yes	Bronchitis $=$ yes	
				1
	+	+	0.99	
+	+	+	1	
+			1.0	
+	+	+	0.73	
+	+	+	0.73	
			0.73	
			0.73	

(d) We perform a what-if analysis on each evidence node

Evidence change	$P($ Bronchitis $=$ yes $)$
Smoker $=$ no	0.72
Asia $=$ no	0.88
Dyspnoa $=$ no	0.26

(e) For each finding ε_{X}, we compute $P($ Bronchitis $=$ yes $), P($ Bronchitis $=$ yes $\mid \varepsilon \backslash$ $\{\varepsilon x\})$ and $P($ Bronchitis $=$ yes $\mid \varepsilon)$

Finding	$\mathrm{P}($ Bronchitis $=$ yes $)$	$\mathrm{P}\left(\right.$ Bronchitis $=$ yes $\left.\mid \varepsilon \backslash\left\{\varepsilon_{\chi}\right\}\right)$	$\mathrm{P}($ Bronchitis $=$ yes $\mid \varepsilon)$
Smoker $=$ yes	0.45	0.81	0.87
Asia $=$ yes	0.45	0.88	0.87
Dyspnoa $=$ yes	0.45	0.60	0.87

Answer to Exercise 10.3:

(a) $\mathrm{P}($ Disease $=$ true \mid Test $=$ true $)=0.0196$.
(b) $f(t)=\frac{19.6 * t}{18.6 \times t+0.98}$.
(c) $f^{\prime}\left(t_{0}\right)=19.3$.
(d) $(-\infty, 0.046)$.

Answer to Exercise 10.4:
(a) $f(t)=\frac{-1.086 * t+1.099}{-0.986 * t+1.099}$ computed for initial value $P($ Rain $=$ yes $)=0.1$.
(b) $f^{\prime}\left(t_{0}\right)=-0.135$.
(c) $f(t)=\frac{0.112 * t}{-0.986 * t+1.099}$ computed for initial value $P($ Rain $=$ yes $)=0.1$.
(d) $(-\infty, 0.81667)$ computed for initial value $P($ Rain $=y e s)=0.1$.

