Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis

Uffe B. Kjærulff and Anders L. Madsen Answers to Exercises

January 15, 2010

Answer to Exercise 10.1: We assume P(Rain = no) = P(Sprinkler = no) = 0.9.

- (a) $\varepsilon = \{\text{Holmes' lawn} = \text{wet}, \text{Gibbon's lawn} = \text{dry}, \text{Watson's lawn} = \text{dry}\}.$
- (b) We compute normalized likelihoods of the hypothesis given each subset of the evidence

$Gibbon's\ lawn = dry$	$Holmes'\ lawn = wet$	$Watson's\ lawn = dry$	Sprinkler = yes
			1
		+	1
	+		5.05
	+	+	9.88
+			1
+		+	1
+	+		9.88
+	+	+	10.0

(c) We compute Bayes' factor for each subset of the evidence

$Gibbon's\ lawn = dry$	$Holmes'\ lawn = wet$	$Watson's\ lawn = dry$	Sprinkler = yes
			1
		+	81.1
	+		0.92
	+	+	73.66
+			81.1
+		+	7290.1
+	+		73.66
+	+	+	6620.69

(d) We perform a what-if analysis on each evidence node

Evidence change	P(Sprinkler = yes)
$\overline{\text{Gibbon's lawn}} = \text{wet}$	0.89
Holmes' lawn = dry	0.01
$Watson's\ lawn = wet$	0.89

(e) For each finding ε_X , we compute P(Sprinkler = yes), $P(Sprinkler = yes | \varepsilon \setminus \{\varepsilon_X\})$ and $P(Sprinkler = yes | \varepsilon)$

Finding	P(Sprinkler = yes)	$P(Sprinkler = yes \varepsilon \setminus \{\varepsilon_X\})$	$P(Sprinkler = yes \epsilon)$
Gibbon's lawn = dry	0.1	0.9879	0.9999
$Holmes' \ lawn = wet$	0.1	0.1	0.9999
$Watson's\ lawn = dry$	0.1	0.9879	0.9999

Answer to Exercise 10.2:

- (a) $\varepsilon = \{ Smoker = yes, Asia = yes, Dyspnea = yes \}.$
- (b) We compute normalized likelihoods of the hypothesis given each subset of the evidence

Smoker = yes	Asia = yes	Dyspnoa = yes	Bronchitis = yes
			1
		+	1.85
	+		1
	+	+	1.80
+			1.33
+		+	1.96
+	+		1.33
+	+	+	1.93

(c) We compute Bayes' factor for each subset of the evidence

Smoker = yes	Asia = yes	Dyspnoa = yes	Bronchitis = yes
			1
		+	0.99
	+		1
	+	+	1.0
+			0.73
+		+	0.73
+	+		0.73
+	+	+	0.73

(d) We perform a what-if analysis on each evidence node

Evidence change	P(Bronchitis = yes)
Smoker = no	0.72
Asia = no	0.88
Dyspnoa = no	0.26

(e) For each finding ε_X , we compute P(Bronchitis = yes), $P(Bronchitis = yes | \varepsilon \setminus \{\varepsilon_X\})$ and $P(Bronchitis = yes | \varepsilon)$

Finding	P(Bronchitis = yes)	$P(Bronchitis = yes \varepsilon \setminus {\varepsilon_X})$	$P(Bronchitis = yes \varepsilon)$
Smoker = yes	0.45	0.81	0.87
Asia = yes	0.45	0.88	0.87
Dyspnoa = yes	0.45	0.60	0.87

Answer to Exercise 10.3:

- (a) P(Disease = true | Test = true) = 0.0196.
- (b) $f(t) = \frac{19.6*t}{18.6*t+0.98}$
- (c) $f'(t_0) = 19.3$.
- (d) $(-\infty, 0.046)$.

Answer to Exercise 10.4:

- (a) $f(t) = \frac{-1.086*t + 1.099}{-0.986*t + 1.099}$ computed for initial value P(Rain = yes) = 0.1.
- (b) $f'(t_0) = -0.135$.
- (c) $f(t) = \frac{0.112*t}{-0.986*t+1.099}$ computed for initial value $P(\mathsf{Rain} = \mathsf{yes}) = 0.1$.
- (d) $(-\infty, 0.81667)$ computed for initial value P(Rain = yes) = 0.1.