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Abstract: A Bayesian Network is a probabilistic graphical model that represents a set of variables and 

their probabilistic dependencies. Formally, Bayesian Networks are directed acyclic graphs whose nodes 

represent variables, and whose arcs encode the conditional dependencies between the variables. Nodes 

can represent any kind of variable, be it a measured parameter, a latent variable or a hypothesis. They are 

not restricted to representing random variables, which forms the "Bayesian" aspect of a Bayesian 

network. Efficient algorithms exist that perform inference and learning in Bayesian Networks. Bayesian 

Networks that model sequences of variables are called Dynamic Bayesian Networks.  Harel et. al (2007) 

provide a comparison between Markov Chains and Bayesian Networks in the analysis of web usability 

from e-commerce data. A comparison of regression models, SEMs, and Bayesian networks is presented 

Anderson et. al (2004). In this paper we apply Bayesian Networks to the analysis of Customer 

Satisfaction Surveys and demonstrate the potential of the approach. Bayesian Networks offer advantages 

in implementing models of cause and effect over other statistical techniques designed primarily for testing 

hypotheses. Other advantages include the ability to conduct probabilistic inference for prediction and 

diagnostic purposes with an output that can be intuitively understood by managers.  
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1. Introduction 

A Bayesian Network is a probabilistic graphical model that represents a set of variables and 

their probabilistic dependencies. Formally, Bayesian Networks are directed acyclic graphs 

whose nodes represent variables, and whose arcs encode the conditional dependencies 

between the variables. Nodes can represent any kind of variable, be it a measured parameter, a 

latent variable or a hypothesis. They are not restricted to representing random variables, 

which forms the "Bayesian" aspect of a Bayesian network. Efficient algorithms exist that 

perform inference and learning in Bayesian Networks.  We begin with some theoretical 

background on Bayesian Networks (BN) and proceed with two applications of BN to 

customer satisfaction survey data analysis. The first example is from a survey of customers of 

a complex electronic product combining software, electronics and mechanical features. The 

product requires support at different levels and the survey is assessing satisfaction levels of 

customers from different features of the product and related services. The second example is 

from the Eurobarometer public opinion surveys conducted on behalf of the Directorate-

General for Education and Culture of the European Commission each Spring and Autumn. 

We focus on four services: fixed telephone, electricity supply, gas supply, water supply and, 

for each service, examine three aspects: accessibility,  price and quality.  we conclude with a 

discussion and some direction for further research. 

 

2. Theoretical Background: Bayesian Network 

Bayesian networks, also known as Belief Networks belong to the family of probabilistic 

Graphical Models (GM). These graphical structures are used to represent knowledge about an 

uncertain domain. In particular, each node in the graph represents a random variable, while 

the edges between the nodes represent probabilistic dependencies among the corresponding 
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random variables. These conditional dependencies in the graph are often estimated by using 

known statistical and computational methods. Hence, Bayesian networks combine principles 

from graph theory, probability theory, computer science and statistics.  

Bayesian networks (BN) correspond to another GM structure known as a directed acyclic 

graph (DAG) that is popular in the Statistics, the Machine Learning and the Artificial 

Intelligence societies. BN are both mathematically rigorous and intuitively understandable. 

They enable an effective representation and computation of the joint probability distribution 

over a set of random variables (Pearl, 2000).  

The structure of a directed acyclic graph is defined by two sets: the set of nodes (vertices) 

and the set of directed edges. The nodes represent random variables and are drawn as circles 

labelled by the variables names. The edges represent direct dependence among the variables 

and are drawn by arrows between nodes.  In particular, an edge from node Xi to node Xj 

represents a statistical dependence between the corresponding variables. Thus, the arrow 

indicates that a value taken by variable Xj depends on the value taken by variable Xi, or 

roughly speaking that variable Xi 'influences' Xj. Node Xi is then referred to as a 'parent' of Xj 

and, similarly, Xj is referred to as the 'child' of Xi. An extension of these genealogical terms is 

often used to define the sets of 'descendents'  – the set of nodes that can be reached on a direct 

path from the node, or 'ancestors' nodes – the set of nodes from which the node can be 

reached on a direct path. The structure of the acyclic graph guarantees that there is no node 

that can be its own ancestor or its own descendent.  Such a condition is of vital importance to 

the factorization of the joint probability of a collection of nodes as seen below. Note that 

although the arrows represent direct causal connection between the variables, the reasoning 

process can operate on BN by propagating information in any direction. 

A Bayesian network reflects a simple conditional independence statement. Namely that each 

variable is independent of its non-descendents in the graph given the state of its parents. This 
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property is used to reduce, sometimes significantly, the number of parameters that are 

required to characterize the joint probability distribution (JPD) of the variables. This reduction 

provides an efficient way to compute the posterior probabilities given the evidence (Lauritzen 

et al, 1988, Pearl, 2000, Jensen, 2001). 

In addition to the DAG structure, which is often considered as the "qualitative" part of the 

model, one needs to specify the "quantitative" parameters of the model. The parameters are 

described in a manner which is consistent with a Markovian property, where the conditional 

probability distribution (CPD) at each node depends only on its parents. For discrete random 

variables, this conditional probability is often represented by a table, listing the local 

probability that a child node takes on each of the feasible values – for each combination of 

values of its parents. The joint distribution of a collection of variables can be determined 

uniquely by these local conditional probability tables (CPT). 

Formally, a Bayesian network B is an annotated acyclic graph that represents a joint 

probability distribution over a set of random variables V. The network is defined by a pair 

Θ= ,GB , where G is the directed acyclic graph whose nodes nXXX ,...,, 21  represents 

random variables, and whose edges represent the direct dependencies between these variables. 

The graph G encodes independence assumptions, by which each variable iX  is independent 

of its non-descendents given its parents in G. The second componentΘ  denotes the set of 

parameters of the network. This set contains the parameter ( )iiBx xP
ii

πθ π =   for each 

realization ix  of iX  conditioned on iπ , the set of parents of iX  in G. Accordingly, B defines 

a unique joint probability distribution over  V, namely: 

( ) ( )
iiX

n
iiiB

n
inB XPXXXP πθπ 1121 ,...,, == ∏=∏=        

For simplicity of representation we omit the subscript B henceforth.  

If Xi has no parents, its local probability distribution is said to be unconditional, otherwise it is 
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conditional. If the variable represented by a node is observed, then the node is said to be an 

evidence node, otherwise the node is said to be hidden or latent. 

The complexity of a domain may be reduced by models and algorithms that describe an 

approximated reality. When variable interactions are too intricate for application of an 

analytic model, we may represent current knowledge about the problem, such as a cause 

generating at least one effect (Pearl, 2000), where the final effect is the target of the analysis; 

for example in Figure 1 the network topology (Lauritzen and Spiegelhalter, 1988) of cause 

and effect is built by choosing a set of variables (i.e. “Visit Africa”, “Smoking”) that describe  

the domain (a patient presents some problems and the physician wants to identify his/her 

disease and the correct therapy). 

The domain knowledge allows experts to draw an arc to a variable from each of its direct 

causes (i.e. visiting Africa may cause tuberculosis). 

Given a BN that specified the JPD in a factored form, one can evaluate all possible 

inference queries by marginalization, i.e., summing out over 'irrelevant' variables. Two types 

of inference support are often considered: predictive support for node iX  , based on evidence 

nodes connected to Xi through its parent nodes (called also top-down reasoning), and 

diagnostic support for node iX , based on evidence nodes connected to iX  through its 

children nodes (called also bottom-up reasoning). In general, the full summation (or 

integration) over discrete (continuous) variables is called exact inference and known to be an 

NP-hard problem. Some efficient algorithms exist to solve the exact inference problem in 

restricted classes of networks. In many practical settings the BN is unknown and one needs to 

learn it from the data. This problem is known as the BN learning problem, which can be stated 

informally as follows: Given training data and prior information (e.g., expert knowledge, 

causal relationships), estimate the graph topology (network structure) and the parameters of 

the JPD in the BN.  
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Learning the BN structure is considered a harder problem than learning the BN parameters. 

Moreover, another obstacle arises in situations of partial observablity when nodes are hidden 

or when data is missing. In the simplest case of known BN structure and full observability, the 

goal of learning is to find the values of the BN parameters (in each CPD) that maximize the 

(log)likelihood of the training dataset. This dataset contains m cases that are often assumed to 

be independent. Given training dataset { }mxxΣ ,...,
1111

= , where ( )Tlnl x,...,x 1=lx , and the 

parameter set ( )nθθΘ ,...,
1111

= , where iθ  is the vector of parameters for the conditional 

distribution of variable iX  (represented by one node in the graph), the log-likelihood of the 

training dataset is a sum of terms, one for each node: 

 ( ) ( )iilim n
xPL θπ , loglog ∑ ∑=ΣΘ       

The log-likelihood scoring function decomposes according to the graph structure, hence, one 

can maximize the contribution to the log-likelihood of each node independently. Another 

alternative is to assign a prior probability density function to each parameter vector and use 

the training data to compute the posterior parameter distribution and the Bayes estimates. To 

compensate for zero-occurrences of some sequences in the training dataset, one can use 

appropriate (mixtures of) conjugate prior distributions, e.g., the Dirichlet prior for the 

multinomial case as in the above backache example or the Wishart prior for the Gaussian 

case. Such an approach results in a maximum a-posteriori estimate and known also as the 

equivalent sample size (ESS) method.  

============================================================  

Figure 1: An example of a causal network (Lauritzen and Spiegelhalter, 1988).  

=============================================================  

Bayesian Networks are gaining popularity within a wide range of application areas such as 

risk management (Cornalba et al, 2007), web data analysis (Harel et al, 2008) and 

management science in general (Rugerri et al, 2007, Kenett et al, 2008). Availability of 
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software for analyzing Bayesian Networks is further expanding their role in decision analysis 

and decision support systems (Jensen, 2001). 

3. Application to Customer Satisfaction Data Analysis 

3.1. The Annual Customer Satisfaction Survey 

In this Section a BN is implemented in order to analyze customer satisfaction survey data 

from a complex electronic product combining software, electronics, and mechanical features, 

The product requires support at different levels. The survey is assessing satisfaction levels of 

customers from different features of the product and related services. An important issue in 

product customer satisfaction surveys is to find which aspects of the product and services 

influence overall satisfaction, the recommendation levels and the repurchasing intentions. BN 

is a useful tool to analyze such impact with the advantage that it produces graphical output 

that are easy to understand and make it simple to conduct probabilistic inference for 

prediction.  

In order to show these advantages, a BN has been applied to data collected from 266 

companies (customers) participating in an Annual Customer Satisfaction Survey. The data 

refers to a questionnaire composed of 81 questions. The dataset and the questionnaire are 

available on http://www.economia.unimi.it/projects/CSProject/.  

For each customer we have several demographic variables such as: Country, Segmentation, 

Age of  equipment and Profitability.  

A basic frequency analysis shows that the majority of customers come from Germany, do 

not belong to a specific industry sector and have a Break-Even Profitability; while age of  

equipment and customer seniority have an heterogeneous distribution.  

The first part of the questionnaire evaluates Overall Satisfaction, with a score going from 1 

(very low satisfaction) to 5 (very high satisfaction) and two specific variables (questions): 1) 
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repurchasing intention and recommendation level measured with a score going from 1 (very 

unlikely) to 5 (very likely). We observe that 64.9% are very likely to repurchase products.  

In the second part of the questionnaire, there is a set of questions (items) grouped according 

to different dimensions: Equipment, Sales Support, Technical Support, Training, Supplies and 

Media,, Customer Portal, Administrative Support, Terms-Conditions and Prices and Site 

Planning and Installation. For each question  we have two types of scores: the item evaluation 

score, going from 1 (Strongly disagree) to 5 (Strongly agree), and the item importance level 

(low=1, medium=2, high=3, and Not Applicable). For each dimension, there is an overall 

evaluation. The dimension with the highest level of satisfaction is Training and the one with 

the lowest level is Terms-Condition and Prices. We consider the overall evaluation for each 

dimensions.  

The data is analyzed with a basic BN presented in Figure 2. The network combines 

background information with a learned network generated using the Greedy Thick Thinning 

algorithm implemented in the GeNIe version 2.0 software  (http://genie.sis.pitt.edu).  

============================================================  

Figure 2: Bayesian Network from Customer Satisfaction Survey data 

============================================================ 

  Note that the dimensions that influence Overall Satisfaction, Recommendation level and 

Repurchasing intention are Suppliers, Equipment and Technical Support. The other 

dimensions appear independent to each other. Moreover Overall Satisfaction, 

Recommendation and Repurchasing are influenced by the country of the customer. A bar plot 

representation of the nodes of the BN is shown in Figure 3. 

============================================================  

Figure 3: Bar chart of Bayesian Network on Customer Satisfaction  Survey data 

=============================================================  
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  On the basis of the network we can perform various diagnostic checks. Figure 4 presents 

distributions of various variables conditioned on the Recommendation being at it's highest 

level. 

============================================================  

Figure 4: Diagnostic distributions conditioned on the Recommendation being at its highest 

level. 

============================================================= 

It is important to observe that Overall Satisfaction and Repurchasing change in the same 

direction than Recommendation. Note also that the percentages of Technical Support are 7%, 

13%, 16%, 38% and 26% in Figure 3 and 5%, 8%, 9%, 42% and 37% in Figure 4,  so high 

level of Recommendation correspond to high satisfaction level from Technical Support. This 

information has a practical relevance, an intervention to improve the Technical support may 

increase Repurchase, Recommendation and Overall Satisfaction.    

3.2. Service Quality:  Europeans Opinion about Utilities 

In this Section we use BNs to analyse the opinion of Europeans about Utilities that emerges 

from Eurobarometer Survey.  The satisfaction of citizen depends on the country macro 

variables, on the year considered, on the privatization level of  the service, on the social and 

demographical characteristics of the consumer (Fiorio et. al 2007). Moreover various aspects 

of service can be evaluated in different way and can influenced each other. The same services 

do not seem to be independent between them, in fact they have been proposals for indices of 

total satisfaction that combine the services (Ferrari and Salini, 2007). In this complex 

situation, characterized by a high number of variable, with nonlinear relationships and 

combined dependencies, a BN is an appropriate model. Again, BNs provide a causal 

explanation using observable variables within a single multivariate model and analysis of 

nonlinear relationships contained in ordinal measurements. 
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In the next subsection we present the Eurobarometer Survey data. In the second part we 

construct a BN analysis and comment on the results.  

3.2.1. Eurobarometer Survey Data  

Eurobarometer public opinion surveys (henceforth, EB) have been conducted on behalf of 

the Directorate General for Education and Culture of the European Commission each Spring 

and Autumn, since the Autumn of 1973. They have included Greece, since the Autumn of 

1980, Portugal and Spain, since the Autumn of 1985, the former German Democratic 

Republic, since the Autumn of 1990 and Austria, Finland and Sweden, from the Spring of 

1995 onwards. 

An identical set of questions is asked to a representative sample of the population over 

fifteen years old in each Member State. In each household, the respondent is drawn at 

random. All interviews are face-to-face in people's homes and in the appropriate national 

language. A detailed analysis of the Eurobarometer data can be found on the official 

Eurobarometer Web site.
1
 The questions concern various aspects, including support and 

benefit for EU membership, support for an EU constitution, satisfaction with EU democracy 

and the single currency, general outlook on life and so on. 

The regular sample in standard Eurobarometer surveys is 1000 people per country except 

Luxembourg (600) and the United Kingdom (1000 in Great Britain and 300 in Northern 

Ireland). In order to monitor the integration of the five new Länder into unified Germany and 

the European Union, 2000 persons have been sampled in Germany since the Eurobarometer 

34: 1000 in East Germany and 1000 in West Germany. 

In each of the 15 Member States, the survey is carried out by national institutes associated 

with the “INRA (Europe) European Coordination Office”. This network of institutes was 
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selected by tender. All institutes are members of the “European Society for Opinion and 

Marketing Research” (ESOMAR) and comply with its standards. 

Each survey comes with a set of weights obtained, using marginal and intercellular 

weighting, carried out on the basis of the population description provided by EUROSTAT in 

the Regional Statistics Yearbook (data for 1997 or 1996).  

In the years 2000, 2002 and 2004 the Eurobarometer surveys included some questions 

relating to Services of General Interest (henceforth, SGI). The SGI considered are mobile 

telephone services, fixed telephone services, electricity supply services, gas supply services, 

water supply services, postal services, transport services within towns/cities and rail services 

between towns/cities. The criteria used to analyse these services are accessibility, the price of 

the services, the quality of the services, the clarity of the information aimed at EU Consumers, 

how fair the terms and conditions of the contracts applied to the services are, Consumer 

complaints and how they are handled and Customer Service.  

In this application we consider four Services: fixed telephone, electricity supply, gas supply, 

water supply and, for each service, examine three aspects: accessibility,  price and quality. 

The data from three years (2000, 2002, 2004) is pooled, and the analysis is carried out on the 

entire data set in order to obtain a comparison between countries and years. Hence the final 

data set is structured in the following way: the rows (near 47.000) represent the respondents 

belonging to different Countries (near 15.000 for each year in each question), the columns 

refer to items (12 dimensions): the accessibility of the fixed telephone service (SGIaccT), the 

accessibility of the electricity supply service (SGIaccE), the accessibility of the gas supply 

service (SGIaccG), the accessibility of the water supply (SGIaccW), the price of the fixed 

telephone service (SGIpriT), the price of the electricity supply service (SGIpriE), the price of 

the gas supply service (SGIpriG), the price of the water supply (SGIaccW), the quality of the 

fixed telephone service (SGIquaT), the quality of the electricity supply service (SGIquaE), the 
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quality of the gas supply service (SGIquaG), the quality of the water supply (SGIquaW).  We 

have three levels for accessibility (not accessible, difficult to access, easy to access), three 

levels for price (excessive, unfair, fair) and four levels for quality (very bad, fairly bad, fairly 

good, very good).   

3.2.2. Bayesian Network on Eurobarometer Data  

The data was analyzed using a basic BN presented in Figure 5 The network combines 

background information with a learned network generated using the Greedy Thick Thinning 

algorithm implemented in the GeNIe version 2.0 software. 

============================================================  

Figure 5: Bayesian Network on Eurobarometer Survey data  

============================================================ 

It is important to notice that "country" seems to influence only electricity supply service, 

which affects all the other services. "Year" influences electricity supply service and fixed 

telephone service.  Relating to the aspects of service, accessibility is connected to quality and 

price and quality is connected to price for all services. Moreover, it is evident that services are 

not independent from each other. Looking as an example to the price of fixed telephone 

service (SGIpriT), it also depends on access, quality and price of all the other services.  A bar 

plot representation of the node of BN is shown in Figure 6. 

============================================================  

Figure 6: Bar plot BN on Eurobarometer Survey data 

============================================================ 

  One the basis of the network, as in the previous case, we can perform various diagnostic 

checks. Figures  7 and 8 present distributions of various variables conditioned on the Country, 

Italy and Ireland respectively.  
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============================================================  

Figure 7:  Evidence for Italy  

  ============================================================= 

============================================================  

Figure 8: Evidence for Ireland  

============================================================ 

  Generally, the opinion in Ireland is better than in Italy.  For example the percentage of "Fair" 

for the price of gas service is 75% in Ireland versus 52% for Italy. Also for the price of fixed 

telephone, 66% "Fair" in Ireland and 46% in Italy. For the quality of water, it happens that 

only the 19% of Italian think that it is "very good" versus 62% in Ireland. Figure 9 presents 

distributions of price of fixed telephone conditioned on the quality and access of fixed 

telephone being at their highest level.  

============================================================  

Figure 9: Diagnostic distributions of price of fixed telephone service conditioned on the 

access of fixed telephone service and quality of fixed telephone service being at their highest 

level. 

=============================================================  

  Good quality and easy access positively influence the opinion about price, in fact the 

distribution of price of fixed telephone service change from 58% of Fair, 31% of Unfair and 

11% of Excessive (see Figure 6) to 73% of Fair, 21% of Unfair and 7% of Excessive. This is 

importance evidence for suppliers and legislators. Figure 10 presents distributions of price of 

fixed telephone conditioned on the price of the other services being at its highest level.  

Unfair prices on the other services make to get worse the judgment on prices also of the 

fixed telephone. Probably the dissatisfaction generates a hostile climate and greater 

expectations. With 100% of prices considered "unfair" in the other services, the distribution of 
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price considerations of fixed telephone will be 19% as Fair, 76% of Unfair and 5% of 

Excessive. 

============================================================ 

Figure 10: Diagnostic distributions of price of fixed telephone service conditioned on the 

price of electricity supply service, price of water supply service and price of gas supply 

service being at their lowest level 

============================================================ 

4. Conclusions 

 Bayesian Networks have been rarely used so far in analyzing customer satisfaction data. In 

this paper we demonstrate the advantages of the approach and, hopefully, raise awareness to 

such possibilities. Other techniques include Rasch models, Decision Trees, Structural 

Equation Models, Neural Networks and Analytical Hierarchical Processes. Hopefully this 

paper will trigger further research and applications of such techniques in analyzing data from 

customer satisfaction surveys. 
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Figure 1: An example of a causal network (Lauritzen and Spiegelhalter, 1988).  
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Figure 2: Bayesian Network from Customer Satisfaction Survey data  

 

 

 

Figure 3: Bar chart of Bayesian Network on Customer Satisfaction  Survey data 
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Figure 4: Diagnostic distributions conditioned on the Recommendation being at it's highest 

level. 

 

 

Figure 5: Bayesian Network on Eurobarometer Survey data  
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Figure 6: Bar chart Bayesian Network on Eurobarometer Survey data 

 

 

Figure 7: Evidence for Italy 
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Figure 8: Evidence for Ireland 

 

 

Figure 9: Diagnostic distributions of price of fixed telephone service conditioned on the 

access of fixed telephone service and quality of fixed telephone service being at their highest 

level. 
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Figure 10: Diagnostic distributions of price of fixed telephone service conditioned on the 

price of electricity supply service, price of water supply service and price of gas supply 

service being at their lowest level 
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