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Abstract. Bayesian network are powerful probabilistic graphical models for mod-

elling uncertainty. Among others, classification represents an important applica-

tion: some of the most used classifiers are based on Bayesian networks. Bayesian

networks are precise models: exact numeric values should be provided for quan-

tification. This requirement is sometimes too narrow. Sets instead of single distri-

butions can provide a more realistic description in these cases. Bayesian networks

can be generalized to cope with sets of distributions. This leads to a novel class

of imprecise probabilistic graphical models, called credal networks. In particu-

lar, classifiers based on Bayesian networks are generalized to so-called credal

classifiers. Unlike Bayesian classifiers, which always detect a single class as the

one maximizing the posterior class probability, a credal classifier may eventually

be unable to discriminate a single class. In other words, if the available infor-

mation is not sufficient, credal classifiers allow for indecision between two or

more classes, this providing a less informative but more robust conclusion than

Bayesian classifiers.
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1 Introduction

Bayesian network [63] are powerful and widespread tools for modelling uncertainty

about a domain. These probabilistic graphical models provide a compact and intuitive

quantification of uncertain knowledge. After its specification, a Bayesian network can

be queried by appropriate inference algorithms in order to extract probabilistic informa-

tion about the variables of interest. Among others, classification represents an important

application of Bayesian networks. Some of the most used classifiers proposed within the

Bayesian theory of probability, like the naive Bayes classifier (Section 8) and the tree-

augmented naive Bayes classifier (Section 11) can be regarded as learning/inference

algorithms for Bayesian networks with particular topologies.

Bayesian networks are precise models, in the sense that exact numeric values should

be provided as probabilities needed for the model parameters. This requirement is some-

times too narrow. In fact, there are situations where a single probability distribution
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cannot properly describe the uncertainty about the state of a variable.1 In these cases,

sets instead of single distributions provide an alternative and more realistic description.

E.g., in some cases we may prefer to model our knowledge by interval-valued proba-

bilistic assessments, these corresponding to the specification of the set of distributions

compatible with these assessments. Sets of this kind, which are generally required to be

closed and convex by some rationality criteria, are called credal sets [57]. Approaches

where probabilities are quantified in this way are said to be imprecise [75].

Bayesian networks can be generalized in order to cope with credal sets. This leads

to a novel class of imprecise probabilistic graphical models, generalizing Bayesian net-

works, and called credal networks [35]. Expert knowledge is mostly qualitative and

it can be therefore naturally described by credal sets instead of single distributions:

this makes knowledge-based (or expert) systems represent one of the more natural ap-

plication of credal networks (e.g., [2, 4, 5]). But even when the focus is on learning

probabilities from data, a credal set may offer a more reliable model of the uncertainty,

especially when coping with small or incomplete data sets. Thus, classifiers based on

Bayesian networks can be profitably extended to become credal classifiers based on

credal networks. Unlike Bayesian classifiers, which always detect a single class as the

one maximizing the posterior class probability2, a credal classifier works with sets of

distributions and may eventually be unable to discriminate a single class as that with

highest probability. In other words, if the available information is not sufficient to iden-

tify a single class, credal classifiers allow for indecision between two or more classes,

this representing a less informative but more robust conclusion than Bayesian classi-

fiers.

This chapter describes the main tools of the theory of credal networks in Sections 2–

6; it starts by reviewing the general theory of Bayesian network (Section 2) and the fun-

damental concept of credal set (Section 3), to then illustrate the design and the quan-

tification of the network (Section 4), the query through specific inference algorithms

(Section 5), and an environmental application (Section 6). In the second part of the

chapter (Sections 7–14) we show how credal networks can be used for classification.

In particular, we show how the naive Bayes classifier and the Tree-Augmented Naive

(TAN) have been extended to deal with imprecise probabilities, yielding respectively

the Naive Credal Classifier (NCC) and the credal TAN (Sections 8–12); this part in-

cludes experimental results in texture recognition (Section 9.1) and a discussion of the

metrics to evaluate credal classifiers empirically (Section 10). Finally, we review some

further credal classifiers (Section 13) and the available software (Section 14).

1 As an example, a condition of ignorance about the state of a variable is generally modelled

by a uniform distribution, while a more robust model of this ignorance is the whole set of

distributions we can specify over this variable.
2 In the Bayesian framework, the only exception to that is when a condition of indifference

among two or more classes appears. This corresponds to the situation where the classifier

assigns the highest probability to more than a class.
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2 Bayesian Networks

We deal with multivariate probabilistic models defined over a collection of variables3

X := {X0,X1, . . . ,Xk}. In particular, we consider graphical probabilistic models, in the

sense that we assume a one-to-one correspondence between the elements of X and the

nodes of a directed acyclic graph (DAG) G .4 Accordingly, in the following we use the

terms node and variable interchangeably. The parents of a variable are the variables cor-

responding to its immediate predecessors according to G . Notation Πi is used to denote

the parents of Xi, for each Xi ∈ X. Similarly, we define the children and, by iterating this

relation, the descendants of any variable. The graph G should be intended as a compact

description of the conditional independence relations occurring among the variables in

X. This is achieved by means of the Markov condition for directed graphs: every vari-

able is independent of its non-descendant non-parents conditional on its parents. These

conditional independence relations can be used to specify a probabilistic model over the

whole set of variables X by means of local probabilistic models, involving only smaller

subsets of X (namely, a variable together with its parents, for each submodel). This fea-

ture, characterizing directed probabilistic graphical models, will be shared by both the

Bayesian networks reviewed here and the credal networks introduced in Section 4.

For each Xi ∈X, the set of its possible values is denoted as ΩXi
. Here we focus on

the case of categorical variables, i.e., we assume |ΩXi
|<+∞ for each Xi ∈ X. Similarly,

notation ΩΠi
is used for the set of possible values of the joint variable Πi, corresponding

to the parents of Xi. We denote by P(Xi) a probability mass function over Xi, and by

P(xi) the probability that Xi = xi, where xi is a generic element of ΩXi
. Finally, in the

special case of a binary variable Xi, we set ΩXi
:= {xi,¬xi}, while the (vertical) array

notation is used to enumerate the values of a probability mass functions, i.e., P(Xi) =
[. . . ,P(xi), . . .]

T . This formalism is sufficient to introduce the definition of Bayesian

network, which is reviewed here below. For a deeper analysis of this topic, we point the

reader to Pearl’s classical textbook [63].

Definition 1. A Bayesian network over X is a pair 〈G ,P〉 such that P is a set of condi-

tional mass functions P(Xi|πi), one for each Xi∈X and πi∈ΩΠi
.

As noted in the previous section, we assume the Markov condition to make G rep-

resent probabilistic independence relations between the variables in X. Hence, the con-

ditional probability mass functions associated to the specification of the Bayesian net-

work can be employed to specify a joint mass function P(X) by means of the following

factorization formula:

P(x) =
k

∏
i=0

P(xi|πi), (1)

for each x ∈ ΩX, where for each i = 0,1, . . . ,k the values (xi,πi) are those consistent

with x.

3 In the sections about classification, the first variable in this collection will be identified with

the class and the remaining with the attributes. Notation X := (C,A1, . . . ,Ak) will be therefore

preferred.
4 A directed graph is acyclic if it does not contains any directed loop.



IV

Bayesian networks provide therefore a specification of a joint probability mass func-

tion, describing the probabilistic relations among the whole set of variables. The spec-

ification is compact in the sense that only conditional probability mass functions for

the variables conditional on (any possible value of) the parents should be assessed.

Once a Bayesian network has been specified, a typical task we might consider consists

in querying the model to gather probabilistic information about the state of a variable

given evidence about the states of some others. This inferential task is called updating

and it corresponds to the computation of the posterior beliefs about a queried variable

Xq, given the available evidence XE =xE :5

P(xq|xE) =
∑xM∈ΩXM

∏
k
i=0 P(xi|πi)

∑xM∈ΩXM
,xq∈ΩXq

∏
k
i=0 P(xi|πi)

, (2)

where XM := X \ ({Xq} ∪ XE) and the values of xi and πi are those consistent with

x = (xq,xM,xE). The variables in XM are marginalized out of Equation (2) because their

values are not available or, in other words, they are missing, and this missingness is

independent of the actual values of the variables. This represents a special case of the

missing at random assumption for missing data, which will be discussed in Section 5.3

and Section 9.2.

The evaluation of Equation (2) is an NP-hard task [23], but in the special case of

polytrees, Pearl’s local propagation scheme allows for efficient updating [63]. A poly-

tree is a Bayesian network based on a singly connected directed acyclic graph, which is

a graph that does not contain any undirected loop.

Bayesian networks are powerful means to model uncertain knowledge in many sit-

uations. Yet, the specification of a model of this kind requires the precise assessments

of the conditional probabilities associated to every variable for any possible value of

the parents. Some authors claim this requirement is too strong [75]: an imprecise prob-

abilistic evaluation corresponding for instance to an interval and in general to a set of

possible estimates would represent a more realistic model of the uncertainty. Thus, we

consider a generalization of Bayesian networks in which closed convex sets of proba-

bility mass functions instead of single mass functions are provided.

3 Credal Sets

Walley’s behavioral theory of imprecise probabilities [75] provides a complete proba-

bilistic theory, based on coherent lower previsions, that generalizes to imprecision de

Finetti’s classical theory [43]. A coherent lower prevision can be equivalently expressed

by (the lower envelope of) a closed convex set of linear previsions, which are expec-

tations with respect to a finitely additive probability, and hence in one-to-one relation-

ship with mass function in the case of finite supports. Accordingly, we formalize our

imprecise probabilistic approaches in terms of closed convex sets of probability mass

functions as stated in the following section.

5 A notation with uppercase subscripts (like XE ) is employed to denote vectors (and sets) of

variables in X.
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3.1 Definition

Following Levi [57], we call credal set a closed convex set of probability mass func-

tions. A credal set for a random variable X is denoted by K(X). We follow Cozman [35]

in considering only finitely generated credal sets, i.e., obtained as the convex hull of a

finite number of mass functions for a certain variable. Geometrically, a credal set of this

kind is a polytope. Such credal set contains an infinite number of mass functions, but

only a finite number of extreme mass functions: those corresponding to the vertices of

the polytope, which are in general a subset of the generating mass functions. In the fol-

lowing, the set of vertices of K(X) is denoted as ext[K(X)]. Enumerating the elements

of ext[K(X)] is then a way to describe a credal set. It is easy to verify that credal sets

over binary variables cannot have more than two vertices, while no bounds characterize

the possible number of vertices of credal sets over variables with three or more states.

Given a non-empty subset Ω
∗
X ⊆ ΩX , an important credal set for our purposes is the

vacuous credal set relative to Ω
∗
X , i.e., the set of all the mass functions for X assigning

probability one to Ω
∗
X . We denote this set by KΩ∗

X
(X). The vertices of KΩ∗

X
(X) are the

|Ω ∗
X | degenerate mass functions assigning probability one to the single elements of Ω

∗
X .

(0,1,0)

(0,0,1)

(1,0,0)

(a)

(0,1,0)

(0,0,1)

(1,0,0)

(b)

(0,1,0)

(0,0,1)

(1,0,0)

(c)

Fig. 1. Geometric representation of credal sets over a ternary variable X (i.e., ΩX = {x′,x′′,x′′′}).

The representation is in a three-dimensional space with coordinates [P(x′),P(x′′),P(x′′′)]T .

The blue polytopes represent respectively: (a) the vacuous credal set KΩX
(X); (b) the credal

set defined by constraint P(x′′′) > P(x′′); (c) a credal set K(X) such that ext[K(X)] =
{[.1, .3, .6]T , [.3, .3, .4]T , [.1, .5, .4]T }.

3.2 Basic Operations with Credal Sets

Given x̃ ∈ ΩX , the lower probability for x̃ according to credal set K(X) is

PK(x̃) := min
P(X)∈K(X)

P(x̃). (3)

If there are no ambiguities about the credal set considered in Equation (3), the su-

perscript K is removed and the corresponding lower probability is simply denoted as

P(x̃). Walley shows that inferences based on a credal set are equivalent to those based

only on its vertices [75]. This makes optimization in Equation (3) a combinatorial task.

As an example, for the credal set in Figure 1(c), we have P(x′) = .1, P(x′′) = .3 and

P(x′′′) = .4.
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By simply replacing the minimum with the maximum in Equation (3), we can define

the upper probability P. Lower/upper probabilities for any event (including conditional

events) in ΩX can be similarly considered. The conjugacy6 P(x̃) = 1−P(ΩX \ {x̃})
holds, and makes it possible to focus our attention on lower probabilities. Lower/upper

expectations can be also considered when coping with generic functions of variable X .

Let us also describe how the basic operations of marginalization and conditioning

can be extended from probability mass functions to credal sets. Given a joint credal set

K(X ,Y ), its marginal over X is denoted by K(X) and is obtained by the convex hull

of the collection of mass functions P(X), obtained marginalizing out Y from P(X ,Y ),
for each P(X ,Y ) ∈ K(X ,Y ). In practical situations, instead of considering all the joint

probability mass functions of K(X ,Y ), marginalization can be obtained by considering

only the vertices, and then taking the convex hull, i.e.,

K(X) = CH

{

P(X) : P(x) = ∑
y∈ΩY

P(x,y),∀x ∈ ΩX ,∀P(X ,Y ) ∈ ext[K(X ,Y )]

}

, (4)

where CH denotes the convex hull operator. Concerning conditioning with credal sets,

we simply perform elements-wise application of Bayes’ rule. The conditional credal

set is the union of all the conditional mass functions. As in the case of marginalization,

the practical computation of a conditional credal set from a joint can be obtained by

considering only the vertices of the joint and then taking the convex hull. An expression

analogous to that in Equation (4) can be written to compute the conditional credal set

K(X |Y = y) from K(X ,Y ). Note that, in order to apply Bayes’ rule, we should assume

non-zero probability for the conditioning event (Y = y). This corresponds to having

P(y)> 0 for each P(Y ) ∈ K(X) (or equivalently for each P(Y ) ∈ ext[K(Y )]), and hence

P(y) > 0. When this condition is not satisfied, other conditioning techniques can be

considered. We point the reader to [75, App. J] for a discussion on this issue.

Finally, let us discuss how independence can be intended when knowledge is de-

scribed by credal sets. In fact, the standard notion of independence (or stochastic inde-

pendence) among two variables X and Y , as adopted within the Bayesian framework,

states that X and Y are independent if their joint probability mass function P(X ,Y ) fac-

torizes, i.e., P(x,y) = P(x) ·P(y), for each x ∈ ΩX and y ∈ ΩY . But what should we

assume if the knowledge about the two variables is described by a set K(X ,Y ) instead

of a single joint mass function P(X ,Y )? A possible answer is provided by the notion

of strong independence: X and Y are strongly independent if they are stochastically

independent for each P(X ,Y ) ∈ ext[K(X ,Y )]. Conditional independence is similarly

defined. In the above definition we replace P(X ,Y ) with P(X ,Y |z) and K(X ,Y ) with

K(X ,Y |z), and then, if the relation is satisfied for each z ∈ ΩZ , we say that X and Y are

strongly independent given Z. Strong independence is not the only concept of indepen-

dence proposed for credal sets. We point the reader to [32] for an overview and [22] for

recent developments about other notions of independence in the imprecise-probabilistic

framework.

6 We use the same notation for the subsets of the possibility space and the corresponding indi-

cator functions. Accordingly, we can regard set ΩX \{x̃} even as function of X returning one

when X 6= x̃ and zero otherwise.
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3.3 Credal Sets from Probability Intervals

According to the discussion in Section 3.1, a credal set can be specified by an explicit

enumeration of its (extreme) probability mass functions. Alternatively, we can consider

a set of probability intervals over ΩX :

IX = {Ix : Ix = [lx,ux],0 ≤ lx ≤ ux ≤ 1,x ∈ ΩX} , (5)

The set of intervals can be then used as a set of (linear) constraints to specify the fol-

lowing credal set:

K(X) =

{

P(X) : P(x) ∈ Ix,x ∈ ΩX , ∑
x∈ΩX

P(x) = 1

}

. (6)

Not all the credal sets can be obtained from a set of probability intervals as in Equa-

tion (6), but intervals are often a convenient tool to adopt. IX is said to avoid sure

loss if the corresponding credal set is not empty and to be coherent (or reachable) if

ux′ +∑x∈ΩX ,x 6=x′ lx ≤ 1 ≤ lx′ +∑x∈ΩX ,x 6=x′ ux, for all x ∈ ΩX . IX is coherent if and only

if the intervals are tight, i.e., for each lower or upper bound in IX there is a mass func-

tion in the credal set at which the bound is attained [75, 14]. Note that for reachable

sets of probability intervals, P(x) = lx and P(x) = ux, for each x ∈ ΩX . As an example,

the credal set in Figure 1(c) is the one corresponding to the reachable set of probability

intervals with Ix′ = [.1, .3], Ix′′ = [.3, .5] and Ix′′′ = [.4, .6]. Standard algorithms can com-

pute the vertices of a credal set for which a probability interval has been provided [9].

However, the resulting number of vertices is exponential in the size of the possibility

space [71].

3.4 Learning Credal Sets from Data

Probability intervals, and hence credal sets, can be inferred from data by the impre-

cise Dirichlet model, a generalization of Bayesian learning from i.i.d. multinomial data

based on imprecise-probability modeling of prior ignorance. The bounds for the proba-

bility that X = x are given by

Ix =

[

n(x)

s+∑x∈ΩX
n(x)

,
s+n(x)

s+∑x∈ΩX
n(x)

]

, (7)

where n(x) counts the number of instances in the data set in which X = x, and s is a

hyperparameter that expresses the degree of caution of inferences, usually chosen in the

interval [1,2] (see [76] for details and [10] for a discussion on this choice). To support

this interpretation of s, note that if s = 0, the credal set associated through Equation (6)

to the probability intervals in Equation (7) collapses to a “precise” credal set made of a

single extreme point, corresponding to the maximum likelihood estimator. On the other

side, if s → ∞, the corresponding credal set tends to the vacuous credal set KΩX
(X).

The probability intervals as in Equation (7) are always reachable. As an example, the

credal set in Figure 1(c) can be learned through Equation (7) from a complete dataset

about X , with counts n(x′) = 1, n(x′′) = 3, n(x′′′) = 4 and s = 2. Unlike this example,
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there are reachable sets of probability intervals that cannot be regarded as the output of

Equation (7) (no matter which are the counts in the data set).

Although in this chapter we only consider the imprecise Dirichlet model, other

methods have been also proposed in the literature for learning credal sets from multi-

nomial data (see for instance [20] for an alternative approach and a comparison).

4 Credal Networks

In the previous section we presented credal sets as a more general and expressive model

of uncertainty with respect to single probability mass functions. This makes it possible

to generalize Bayesian networks to imprecise probabilities. Here we report the basics

of the theory for this class of models. We point the reader to [35] for an overview of

these models, and to [64] for a tutorial on this topic.

4.1 Credal Network Definition and Strong Extension

The extension of Bayesian networks to deal with imprecision in probability is achieved

by means of the notion of credal set. The idea is simple: to replace each conditional

probability mass function in Definition 1 with a conditional credal set. This leads to the

following definition.

Definition 2. A credal network over X is a pair 〈G ,K〉, where K is a set of conditional

credal sets K(Xi|πi), one for each Xi ∈ X and πi ∈ ΩΠi
.

In the same way as Bayesian networks specify a (joint) probability mass function over

their whole set of variables, credal networks, as introduced in Definition 2, can be used

to specify a (joint) credal set over the whole set of variables. According to [35], this

corresponds to the strong extension K(X) of a credal network, which is defined as the

convex hull of the joint mass functions P(X), with, for each x ∈ ΩX:

P(x) =
k

∏
i=0

P(xi|πi),
P(Xi|πi) ∈ K(Xi|πi),
for each Xi ∈ X,πi ∈ Πi.

(8)

Here K(Xi|πi) can be equivalently replaced by ext[K(Xi|πi)] according to the following

proposition [8].

Proposition 1. Let {Pj(X)}v
j=1 = ext[K(X)], where K(X) is the strong extension of a

credal network 〈G ,K〉 are joint mass functions obtained by the product of vertices of

the conditional credal sets, i.e., for each x ∈ ΩX:

Pj(x) =
k

∏
i=0

Pj(xi|πi), (9)

for each j=1, . . . ,v, where, for each i=0, . . . ,k and πi ∈ ΩΠi
, Pj(Xi|πi)∈ ext[K(Xi|πi)].

According to Proposition 1, we have that the vertices of the strong extension of a

credal network can be obtained by combining the vertices of the conditional credal sets

involved in the definition of credal network. Note that this makes the number of vertices

of the strong extension exponential in the input size.
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Example 1 (A simple credal network). Consider a credal network associated to the

graph in Figure 2. According to Definition 2, the specification requires the assessment

of the (unconditional) credal set K(X0), and two conditional credal sets (one for each

value of parent X0) for X1 and X2. Note also that, according to Proposition 1, the ver-

tices of the strong extension K(X0,X1,X2) cannot be more than 25.

X0

X1 X2

Fig. 2. A credal network over three binary variables. Concerning quantification, we

set ext[K(X0)] = {[.2, .8]T , [.5, .5]T }, ext[K(X1|x0)] = {[.3, .7]T , [.4, .6]T }, ext[K(X1|¬x0)] =
{[.1, .9]T , [.2, .8]T }, ext[K(X2|x0)] = {[.5, .5]T , [.6, .4]T }, ext[K(X2|¬x0)] = {[.7, .3]T , [.8, .2]T }.

The key for the decomposition, as in Equation (1), of the joint probability mass func-

tion associated to a Bayesian network are the stochastic conditional independence rela-

tions outlined by the graph underlying the network according to the Markov condition.

Similarly, the decomposition characterizing the strong extension of a credal network

follows from the strong conditional independence relations associated to the graph.

Other joint credal sets, alternative to the strong extension, might correspond to different

notions of independence adopted in the semantic of the Markov condition. We point

the reader to [21], for an example of credal networks based on a different notion of

independence.

4.2 Non-Separately Specified Credal Networks

In the definition of strong extension as reported in Equation (8), each conditional prob-

ability mass function is free to vary in its conditional credal set independently of the

others. In order to emphasize this feature, credal networks of this kind are said to be

with separately specified credal sets, or simply separately specified credal networks.

Separately specified credal networks are the most commonly used type of credal

network, but it is possible to consider credal networks whose strong extension cannot

be formulated as in Equation (8). This corresponds to having relationships between the

different specifications of the conditional credal sets, which means that the possible

values for a given conditional mass function can be affected by the values assigned to

some other conditional mass functions. A credal network of this kind is called non-

separately specified.

Some authors considered so-called extensive specifications of credal networks [66],

where instead of a separate specification for each conditional mass function associated

to Xi, the probability table P(Xi|Πi), i.e., a function of both Xi and Πi, is defined to

belong to a finite set of tables. This corresponds to assume constraint between the spec-

ification of the conditional credal sets K(Xi|πi) for the different values of πi ∈ ΩΠi
. The
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strong extension of an extensive credal network is obtained as in Equation (8), by sim-

ply replacing the separate requirements for each single conditional mass function with

extensive requirements about the tables which take values in the corresponding finite

set (and then taking the convex hull).

Example 2 (Extensive specification of a credal network). Consider the credal network

defined in Example 1 over the graph in Figure 2. Keep the same specification of the

conditional credal sets, but this time use the following (extensive) constraints: when the

first vertex of K(X1|x0) is chosen, the first vertex of K(X1|¬x0) has to be chosen too;

similarly for the second vertex of K(X1|x0) and for variable X2. This corresponds to

assume the following possible values for the conditional probability tables:

P(X1|X0) ∈

{[

.3 .1

.7 .9

]

,

[

.4 .2

.6 .8

]}

P(X2|X0) ∈

{[

.5 .7

.5 .3

]

,

[

.6 .8

.4 .2

]}

. (10)

Extensive specifications are not the only kind of non-separate specification we can

consider for credal networks. In fact, we can also consider constraints between the spec-

ification of conditional credal sets corresponding to different variables. This is a typical

situation when the quantification of the conditional credal sets in a credal network is

obtained from a data set. A simple example is illustrated below.

Example 3 (Learning from incomplete data). Given three binary variables X0, X1 and

X2 associated to the graph in Figure 3, we want to learn the model probabilities from

the incomplete data set in Table 1, assuming no information about the process making

the observation of X1 missing in the last instance of the data set. A possible approach

is to learn two distinct probabilities from the two complete data sets corresponding to

the possible values of the missing observation,7 and use them to specify the vertices of

the conditional credal sets of a credal network.

X0 X1 X2

Fig. 3. The graph considered in Example 3.

X0 X1 X2

x0 x1 x2

¬x0 ¬x1 x2

x0 x1 ¬x2

x0 ∗ x2

Table 1. A data set about three binary variables; “∗” denotes a missing observation.

7 The rationale of considering alternative complete data sets in order to conservatively deal with

missing data will be better detailed in Section 5.3.
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To make things simple we compute the probabilities for the joint states by means of

the relative frequencies in the complete data sets. Let P1(X0,X1,X2) and P2(X0,X1,X2)
be the joint mass functions obtained in this way, which define the same conditional mass

functions for

P1(x0) = P2(x0) =
3
4

P1(x1|¬x0) = P2(x1|¬x0) = 0

P1(x2|¬x1) = P2(x2|¬x1) = 1;

and different conditional mass functions for

P1(x1|x0) = 1

P1(x2|x1) =
2
3

P2(x1|x0) =
2
3

P2(x2|x1) =
1
2
.

(11)

We have therefore obtained two, partially distinct, Bayesian network specifications over

the graph in Figure 3. The conditional probability mass functions of these networks are

the vertices of the conditional credal sets for the credal network we consider. Such

a credal network is non-separately specified. To see that, just note that if the credal

network would be separately specified the values P(x1|x0) = 1 and P(x2|x1) =
1
2

could

be regarded as a possible instantiation of the conditional probabilities, despite the fact

that there are no complete data sets leading to this combination of values.

Although their importance in modelling different problems, non-separate credal net-

works have received relatively little attention in the literature. Most of the algorithms

for credal networks inference are in fact designed for separately specified credal net-

works. However, two important exceptions are two credal classifiers which we present

later: the naive credal classifier (Section 9) and the credal TAN (Section 12).

Furthermore, in a recent work [8] it has been shown that non-separate credal net-

works can be equivalently described as separate credal networks augmented by a num-

ber of auxiliary parents nodes enumerating only the possible combinations for the con-

strained specifications of the conditional credal sets. This can be described by means of

the two following examples.

Example 4 (Separate specification of non-separate credal networks). Consider the ex-

tensive credal network in Example 2. Nodes X1 and X2 are characterized by an extensive

specification. Thus we add to the model two auxiliary variables X3 and X4, that become

parents of X1 and X2 respectively. The resulting graph is that in Figure 4(a). Each aux-

iliary node should index the tables in the specification of its children. In Equation (10)

we have two tables for each node. Thus, we assume nodes X3 and X4 to be binary, and

we redefine the following quantification for nodes X1 and X2: P(X1|X0,x3) = P1(X1|X3)
and P(X1|X0,¬x3) = P2(X1|X3), where P1 and P2 are the two tables in the specification.

We similarly proceed for X2. Finally, regarding nodes X2 and X3, we set a vacuous spec-

ification, i.e., K(X2) := KΩX2
(X2) and similarly for X3. Note that this credal network is

separately specified. Let K(X0,X1,X2,X3,X4) denote the strong extension of this net-

work, and K(X0,X1,X2) the joint credal set obtained by marginalizing out X3 and X4.

The result in [8] states that K(X0,X1,X2) coincides with the strong extension of the

extensive credal network of Example 2.

We similarly proceed for the credal network in Example 3. The constraints between

P1 and P2 in Equation (11) correspond to a non-separate specification of the values



XII

of the conditional probabilities of X1 and X2. As in the previous case, we add to the

graph in Figure 3 an auxiliary node X3, which is a parent of both X1 and X2, and for the

quantification we proceed as in the previous example. This leads to the credal network

in Figure 4 (b).

X0X3

X1

X4

X2

(a)

X0 X1 X2

X3

(b)

Fig. 4. Modelling non-separately specific conditional credal sets with control nodes (in pink).

This procedure can be easily applied to any non-separate specification of a credal

network. We point the reader to [8] for details.

5 Computing with Credal Networks

5.1 Credal Networks Updating

By perfect analogy with what we have done for Bayesian networks in Section 2, we

can query a credal network in order to gather probabilistic information about a variable

given evidence about some other variables. This task is still called updating and consists

in the computation of the posterior probability P(xq|xE) with respect to the network

strong extension K(X). Equation (2) generalizes as follows:

P(xq|xE) = min
j=1,...,v

∑xM
∏

k
i=0 Pj(xi|πi)

∑xM ,xq ∏
k
i=0 Pj(xi|πi)

, (12)

where {Pj(X)}v
j=1 are the vertices of the strong extension. A similar expression with

a maximum replacing the minimum defines upper probabilities P(xq|xE). Note that,

according to Proposition 1, for separately specified credal networks, the number v of

vertices of the strong extension is exponential in the input size. Thus, Equation (12)

cannot be solved by exhaustive iteration of updating algorithms for Bayesian networks.

In fact, exact updating displays higher complexity than Bayesian networks: credal net-

works updating is NP-complete for polytrees8, and NPPP-complete for general credal

networks [37]. Nevertheless, a number of exact and approximate algorithm for credal

networks updating has been developed. A summary about the state of the art in this field

is reported in Section 5.2.

8 We extend to credal networks the notion of polytree introduced for Bayesian networks in

Section 2.
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Algorithms of this kind can be used to compute, given the available evidence xE ,

the lower and upper probabilities for the different outcomes of the queried variable Xq,

i.e., the set of probability intervals {[P(xq|xE),P(xq|xE)]}xq∈ΩXq
. In order to identify the

most probable outcome for Xq, a simple interval dominance criterion can be adopted.

The idea is to reject a value of Xq if its upper probability is smaller than the lower

probability of some other outcome. Clearly, this criterion is not always intended to

return a single outcome as the most probable for Xq. In general, after updating, the

posterior knowledge about the state of Xq is described by the set Ω
∗
Xq

⊆ ΩXq , defined as

follows:

Ω
∗
Xq

:=
{

xq ∈ ΩXq : ∄x′q ∈ ΩXqs.t.P(xq|xE)< P(x′q|xE)
}

. (13)

Criteria other than interval dominance have been proposed in the literature and for-

malized in the more general framework of decision making with imprecise probabilities

[72]. Most of these criteria require the availability of the posterior credal set:

K(Xq|xE) = CH
{

Pj(Xq|xE)
}v

j=1
. (14)

As an example, the set of non-dominated outcomes Ω
∗∗
Xq

according to the maximality

criterion [75] is obtained by rejecting the outcomes whose probabilities are dominated

by those of some other outcome, for any distribution in the posterior credal set in Equa-

tion (14), i.e.,

Ω
∗∗
Xq

:=
{

xq ∈ ΩXq : ∄x′q ∈ ΩXqs.t.P(xq|xE)< P(x′q|xE)∀P(Xq|xE) ∈ ext[K(Xq|xE)]
}

.
(15)

Maximality is more informative than interval dominance, i.e., Ω
∗∗
Xq

⊆Ω
∗
Xq

. Yet, most

of the algorithms for credal networks only returns the posterior probabilities as in Equa-

tion (12), while the posterior credal set as in Equation (14) is needed by maximality. No-

table exceptions are the models considered in Section 9 and Section 12, for which the

computation of the set as in Equation (15) can be performed without explicit evaluation

of the posterior credal set. In other cases, a procedure to obtain an (outer) approximation

of the credal set in Equation (14) can be used [3].

5.2 Algorithms for Credal Networks Updating

Despite the hardness of the problem, a number of algorithms for exact updating of

credal networks have been proposed. Most of these methods generalize existing tech-

niques for Bayesian networks. Regarding Pearl’s algorithm for efficient updating on

polytree-shaped Bayesian networks [63], a direct extension to credal networks is not

possible. Pearl’s propagation scheme computes the joint probabilities P(xq,xE) for each

xq ∈ ΩXq ; the conditional probabilities associated to P(Xq|xE) are then obtained using

the normalization of this mass function. Such approach cannot be easily extended to

credal networks, because P(Xq|xE) and P(Xq|xE) are not normalized in general. A re-

markable exception is the case of binary credal networks, i.e., models for which all the

variables are binary. The reason is that a credal set for a binary variable has at most

two vertices and can therefore be identified with an interval. This enables an efficient
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extension of Pearl’s propagation scheme. The result is an exact algorithm for polytree-

shaped binary separately specified credal networks, called 2-Updating (or simply 2U),

whose computational complexity is linear in the input size.

Another approach to exact inference is based on a generalization of the variable

elimination techniques for Bayesian networks. In the credal case, this corresponds to a

symbolic variable elimination, where each elimination step defines a multilinear con-

straint among the different conditional probabilities where the variable to be eliminated

appears. Overall, this corresponds to a mapping between credal networks updating and

multilinear programming [14]. Similarly, a mapping with an integer linear program-

ming problem can be achieved [13]. Other exact inference algorithms examine potential

vertices of the strong extension according to different strategies in order to produce the

required lower/upper values [15, 35, 66, 67].

Concerning approximate inference, loopy propagation is a popular technique that

applies Pearl’s propagation to multiply connected Bayesian networks [61]: propagation

is iterated until probabilities converge or for a fixed number of iterations. In [53], Ide

and Cozman extend these ideas to belief updating on credal networks, by developing

a loopy variant of 2U that makes the algorithm usable for multiply connected binary

credal networks. This idea has further exploited by the generalized loopy 2U, which

transforms a generic credal network into an equivalent binary credal network, which is

indeed updated by the loopy version of 2U [6]. Other approximate inference algorithms

can produce either outer or inner approximations: the former produce intervals that en-

close the correct probability interval between lower and upper probabilities [18, 68, 49,

71], while the latter produce intervals that are enclosed by the correct probability inter-

val [15, 34]. Some of these algorithms emphasize enumeration of vertices, while others

resort to optimization techniques (as computation of lower/upper values for P(xq|xE) is

equivalent to minimization/maximization of a fraction containing polynomials in prob-

ability values). Overviews of inference algorithms for imprecise probabilities have been

published by Cano and Moral (e.g., [17]).

5.3 Modelling and Updating with Missing Data

In the updating problem described in Equation (12), the evidence xE is assumed to re-

port the actual values of the variables in XE . This implicitly requires the possibility

of making perfectly reliable observations. Clearly, this is not always realistic. An ex-

ample is the case of missing data: we perform an observation but the outcome of the

observation is not available. The most popular approach to missing data in the literature

and in the statistical practice is based on the so-called missing at random assumption

(MAR, [58]). This allows missing data to be neglected, thus turning the incomplete data

problem into one of complete data. In particular, MAR implies that the probability of

a certain value to be missing does not depend on the value itself, neither on other non-

observed values. For instance, the temporary breakdown of a sensor produces MAR

missing data, because the probability of missing is one, regardless of the actual value9.

As a further example, consider a medical center where test B is performed only if test

9 In this case, the data are missing completely at random (MCAR), which is a special case of

MAR [54]
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A is positive; the missingness of B is MAR because its probability to be missing only

depends on the observed value of A. Yet, MAR is not realistic in many cases. Consider

for instance an exit poll performed during elections, where the voters of the right-wing

party sometimes refuse to answer; in this case, the probability of an answer to be miss-

ing depends on its value and thus the missingness is non-MAR. Ignoring missing data

that are non-MAR can lead to unreliable conclusions; in the above example, it would

underestimate the proportion of right-wing voters. However, it is usually not possible

to test MAR on the incomplete observations; if MAR does not appear tenable, more

conservative approaches than simply ignoring missing data are necessary in order to

avoid misleading conclusions.

De Cooman and Zaffalon have developed an inference rule based on much weaker

assumptions than MAR, which deals with near-ignorance about the missingness process

[39]. This result has been extended by Zaffalon and Miranda [82] to the case of mixed

knowledge about the missingness process: for some variables the process is assumed

to be nearly unknown, while it is assumed to be MAR for the others. The resulting

updating rule is called conservative inference rule (CIR).

To show how CIR-based updating works, we partition the variables in X in four

classes: (i) the queried variable Xq, (ii) the observed variables XE , (iii) the unobserved

MAR variables XM , and (iv) the variables XI made missing by a process that we ba-

sically ignore. CIR leads to the following credal set as our updated beliefs about the

queried variable: 10

K(Xq||
XI xE) := CH

{

Pj(Xq|xE ,xI)
}

xI∈ΩXI
, j=1,...,v

, (16)

where the superscript on the double conditioning bar is used to denote beliefs updated

with CIR and to specify the set of missing variables XI assumed to be non-MAR, and

Pj(Xq|xE ,xI) = ∑xM
Pj(Xq,xM|xE ,xI). The insight there is that, as we do not know the

actual values of the variables in XI and we cannot ignore them, we consider all their

possible explanation (and then we take the convex hull).

When coping only with the missing-at-random variables (i.e., if XI is empty), Equa-

tion (16) becomes a standard updating task to be solved by some of the algorithms

in Section 5.2. Although these algorithms cannot be applied to solve Equation (16) if

XI is not empty, a procedure to map a conservative inference task as in Equation (16)

into a standard updating task as in Equation (12) over a credal network defined over

a wider domain has been developed [7]. The transformation is particularly simple and

consists in the augmentation of the original credal network with an auxiliary child for

each non-missing-at-random variable, with an extensive quantification. This procedure

is described by the following example.

Example 5 (CIR-based updating by standard updating algorithms). Consider the credal

network in Example 1. Assume that you want to update your beliefs about X0, after the

observation of both X1 and X2. The observation of X1 is x1, while the outcome of the

10 This updating rule can be applied also to the case of incomplete observations, where the out-

come of the observation of XI is missing according to a non-missing-at-random process, but

after the observation some of the possible outcomes can be excluded. If Ω
′
XI

⊂ ΩXI
is the set

of the remaining outcomes, we simply rewrite Equation (16), with Ω
′
XI

instead of ΩXI
.
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observation of X2 is missing, and the MAR assumption seems not tenable. Accordingly

we update the model by means of conservative inference rule as in Equation (16) to

compute K(X0||
X2 x1). In order to map this CIR-based updating task into a standard up-

dating, let us perform the following transformation. As described in Figure 5, we first

augment the network with an auxiliary binary variable X3, which is a child of X2. Then

we extensively quantify the relation between these two nodes as:

P(X3|X2) ∈

{[

0 1

1 0

]

,

[

1 0

0 1

]}

, (17)

which can be indeed formulated as a separate specification by augmenting the network

with a binary node X4, which is a parent of X3, according to the procedure described

in Example 4. The result in [7] states that K(X0||
X2 x1) = K(X0|x1,x3), where x3 is the

state corresponding to the first row of the tables in Equation (17). The lower and up-

per probabilities associated to the posterior credal set can be therefore computed by

standard updating.

X0

X1 X3

X4

X2

Fig. 5. Modelling non-missing-at-random observation of X2 in credal network.

6 An Application: Assessing Environmental Risk by Credal

Networks

In the previous sections we gave the reader a number of theoretical tools for both mod-

elling and interacting with credal networks. In this section, we want to present a real-

world application of these methods consisting in a specific risk analysis task.11 The

credal network merges into a single coherent framework different kinds of domain

knowledge: deterministic equations, human expertise, and historical data are used to

quantify the network in its different parts. After the model specification, risk analysis

can be automatically performed by means of some of the updating algorithms in Section

5.2.

6.1 Debris Flows

Debris flows are among the most dangerous and destructive natural hazards that affect

human life, buildings, and infrastructures (see Figure 6). They are gravity-induced mass

11 We point the reader to [64] for a gentle introduction to the issues related to the practical im-

plementation of a credal network in knowledge-based expert systems.
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movements intermediate between landslides and water floods. The flow is composed of

a mixture of water and sediment with a characteristic mechanical behavior varying with

water and soil content. According to [31], prerequisite conditions for most debris flows

include an abundant source of unconsolidated fine-grained rock and soil debris, steep

slopes, a large but intermittent source of moisture (rainfall or snow-melt), and sparse

vegetation. As mentioned in [48], several hypotheses have been formulated to explain

mobilization of debris flows and this aspect still represents a research field. Accord-

ing to the model proposed by [70], the mechanism to disperse the materials in flow

depends on the properties of the materials (like granulometry and the internal friction

angle), channel slope, flow rate and water depth, particle concentration, etc., and, conse-

quently, the behavior of flow is also various. Unfortunately, not all the triggering factors

considered by this model can be directly observed, and their causal relations with other

observable quantities can be shaped only by probabilistic relations. In fact, the analysis

of historical data and the role of human expertise are still fundamental for hazard iden-

tification as many aspects of the whole process are still poorly understood. For these

reasons, a credal network seems to be a particularly suitable model for approaching a

problem of this kind.

Fig. 6. Debris flows examples.

6.2 The Credal Network

In order to implement a credal network able to estimate the level of risk of a debris

flow happening in a particular area, we first define the Movable Debris Thickness as the
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depth of debris likely to be transported downstream during a flood event. Such variable

represents an integral indicator of the hazard level. Then we identify a number of trig-

gering factors which may affect the value of this thickness. Once we have identified the

factors, the specification of the directed acyclic graph associated to these variables can

be achieved assuming a causal interpretation to the arcs of the graph.12 Figure 7 depicts

the resulting graph. We point the reader to [5] for a detailed description of the different

variables in this model. Here let us only report the information we need to understand

the key features of both the modelling and the inference with a model of this kind.

Permeability Geology Landuse Geomorphology

Soil

Type

Max Soil

Capacity

Soil

Moisture

Response

Function

Basin

Area

Effective

Soil Cap.

Rainfall

Intensity

Rainfall

Duration

Effective

Intensity

Critical

Duration

Peak

Flow

Channel

Width

Granulometry

Water

Depth

Local

Slope

Stream

Index

Theoretical

Thickness

Movable

Thickness

Available

Thickness

Fig. 7. A credal network for environmental risk analysis.

12 Remember that, according to the Markov condition, the directed graph is a model of condi-

tional independence relations. The causal interpretation is therefore not always justified.
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Credal networks have been defined only for categorical variables.13 Some of the

variables in the network are natively categorical. This is for instance the case of vari-

able Land Use, whose six possible values are: Forest, Pasture, Rivers and water bodies,

Improductive vegetation, Bare soils and rocks, Edificated surfaces. Some other vari-

ables, like for example the Movable Debris Thickness are numerical and continuous. A

discretization like that in Table 2 is therefore required.

Range Risk Level Symbol

< 10 cm low risk <
10−50 cm medium risk =
> 50 cm high risk >

Table 2. Discretization of variable Movable Debris Thickness and corresponding interpretation in

terms of actual level of risk. The same discretization has been used also for variables Theoretical

Thickness and Available Thickness.

Regarding the probabilistic quantification of the conditional values of the variables

given the parents, as we have based our modelling on a geomorphological model of the

triggering of the debris flow, we have deterministic equations for most of the variables in

the network. Given an equation returning the numerical value of a child given the values

of the parents, we can naturally induce the quantification of the corresponding condi-

tional probabilities. A quantification of this kind is clearly precise (i.e., described by

a single conditional probability table) and in particular deterministic (i.e., the columns

corresponding to the different conditional mass functions assign all the mass to a sin-

gle outcome and zero to the others). As an example, the Movable Debris Thickness is

the minimum between the Theoretical Thickness and the Available Thickness and this

corresponds to the following conditional probability table (where the symbols in Table

2 are used to denote the states of the variables):

Theoretical < = > < = > < = >
Available < < < = = = > > >

< 1 1 1 1 0 0 1 0 0

Movable = 0 0 0 0 1 1 0 1 0

> 0 0 0 0 0 0 0 0 1

For some other variables, including also all the root (i.e., parentless) nodes, we have

not relations of this kind. In this cases, we used, when available, historical dataset, from

which we obtained conditional credal sets by means of the imprecise Dirichlet model

as in Equation (7). Note that, especially in the conditional case, the amount of data can

be relatively small, and the difference between the credal sets we learn by means of the

imprecise Dirichlet model and the precise is not trivial. This is a further justification

for our choice of modelling the problem by means of a credal instead of a Bayesian

network.

13 In a certain sense, the work in [11] can be implicitly regarded as an exception of this statement.

Yet, research on credal network with continuous variable is still in its early stage.
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Finally, the counterpart of the role of human expertise in the evaluation is the fact

that some of the credal set we quantify in our model cannot be obtained from data nei-

ther from deterministic relations. In these cases, we ask an expert to report his knowl-

edge. Notably, the possibility of expressing his beliefs by intervals of probability instead

of single values makes the description much more realistic.14 Overall, we achieve in this

way the quantification of a credal network over the directed acyclic graph in Figure 7.

The practical application of a model of this kind consists in the computation of the

posterior probability intervals for the three different level of the risk given the observed

values for some of the other variables in the network for the particular scenarion un-

der consideration. The updating has been provided by means of the algorithm in [14].

The histograms in Figure 10 report the posterior intervals obtained for three different

scenarios. Note that, according to the interval-dominance criterion in the scenario (a)

we can reject the second and the third histogram, and conclude that a level of high risk

occurs. Regarding (b), the high risk dominates the low risk, which is therefore rejected,

but there is an indecision between high and medium risk, while in the scenario (c) no

dominance is present and we are in a situation of complete indecision between the three

different levels of risk. This kind of analysis can be automatically performed by the

credal network on extensive areas, this providing an importanting support to the experts

for this problem. Figure 9 reports an extensive analysis for the basin in Figure 8.

0 300 600 900 1'200150

Meters

Fig. 8. Acquarossa Creek Basin (area 1.6Km2, length 3.1Km).

14 We thanks Dott. Andrea Salvetti, the environmental expert who was involved in this quantifi-

cation task and in many other aspects of this project.
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Fig. 9. Spatially distributed identifications for the basin in Figure 8 and rainfall return periods of

10 (left) and 100 (right) years. The points for which the credal network predicts the lower class

of risk are depicted in gray, while black refers to points where higher levels of risk cannot be

excluded.
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Fig. 10. Posterior probability intervals for the three level of risk (colors red, yellow and green

correspond respectively to high, medium and low risk).
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7 Credal Classifiers

In the rest of this chapter we show how credal networks can be used to deal with a

classical field of data mining, namely classification. Classification is the problem of

predicting the class of a given object, on the basis of some attributes (features) of it.

A historical example is the iris problem designed by Fisher in 1936: the goal is to

predict the species of Iris (among three possible categories) on the basis of four features,

namely the length and the width of the sepal and the petal.

Training a probabilistic classifier corresponds to estimating from data the joint dis-

tribution P(C,A), where C denotes the class variable and A = {A1, . . . ,Ak} the set of

k features. In the Bayesian framework, the estimation of the joint distribution starts by

initializing it to an initial value (the prior), which represents the beliefs of the investiga-

tor before analyzing the data; the prior thus enables to model domain knowledge. Then

the likelihood function is computed from the data, modelling the evidence coming from

the observations. Prior and likelihood are multiplied, leading to a posterior joint distri-

bution. As described in Section 2, when dealing with Bayesian networks, one does not

need to specify the full joint; it is enough to specify the local conditional distributions,

and the network automatically represents the joint. A trained classifier is assessed by

checking its accuracy at classifying instances. To classify an instance characterized by

the assignment a = {a1, . . . ,ak} of the features, the conditional distribution P(C|a) is

computed from the posterior joint.

A traditional criticism of Bayesian methods is the need for specifying a prior distri-

bution. In fact, prior information is generally difficult to quantify; moreover one often

prefers to let the data speak by themselves, without introducing possibly subjective prior

beliefs. As for classification in particular, Bayesian classifiers might happen to return

prior-dependent classifications, i.e., the most probable class varies under different pri-

ors. As the choice of any single prior entails some arbitrariness, prior-dependent classi-

fications are typically unreliable: in fact, they translate the arbitrariness of the choice of

the prior into arbitrariness of the conclusions. Prior-dependent classifications are more

frequent on small data sets; on large data sets, classifications are less sensitive on the

choice of the prior. Nevertheless, as shown in Section 9.1, unreliable prior-dependent

classifications can be present also in large data sets. Most often, one deals with the

choice of the prior by setting a uniform prior, because it looks non-informative; yet,

such an approach has important drawbacks, as shown in the following example, in-

spired to [78].

Let us consider a bag containing blue marbles and red marbles; no drawings have

been made from the urn. Which is the probability of getting a red (or blue) marble in the

next draw? Using the uniform prior, one should assign the same probability 0.5 to both

colors. This underlies the (very strong) assumption that the urn contains an equal num-

ber of red and blue marbles; in the subjective interpretation of probability, this means

that one is equally available to bet an amount of money 0.5 on either red or blue, in

a gamble with reward 1 and 0 for respectively a correct and a wrong prediction. In

fact, the uniform prior is a model of prior indifference. However, we are ignorant about

the content of the urn rather than indifferent between the two colors; in this condition,

the only reliable statement is that the proportion of red (or blue) marbles is comprised

between 0 and 1. Walley’s ’theory of imprecise probability [77] states that such prior
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ignorance should be represented by a set of prior distributions rather than by a single

prior. The adoption of a set of priors (letting the proportion of blue and red vary be-

tween 0 and 1) prevents betting on any of the two colors, which is more sensible, under

ignorance, than being equally available to bet on both.

Credal classifiers extend Bayesian classifiers to imprecise probabilities; they repre-

sent prior-ignorance15 by specifying a (credal) set of priors, often using the IDM [78].

The credal set of the IDM is then turned into a set of posterior by element-wise appli-

cation of Bayes’ rule: in fact, training a credal classifier corresponds to update the set

of priors with the likelihood, yielding a set of posteriors. Credal classifiers detect prior-

dependent instances by checking whether the most probable class is consistent or not

across the set of posteriors. If the instance is prior-dependent, a credal classifier returns

a set of classes, drawing a less informative but more robust conclusion than a Bayesian

classifier.

However, besides prior-ignorance, there is another kind of ignorance involved in the

process of learning from data, i.e., ignorance about the missingness process (MP). Usu-

ally, classifiers ignore missing data, assuming missing data to be MAR. In general there

is no way to verify the MAR assumption on the incomplete data; furthermore assuming

MAR when it does not hold can cause to a large decrease of accuracy [65]. However,

credal classifiers have been also extended to conservatively deal with non-MAR miss-

ing data [29], relying on CIR, namely by considering all the data sets consistent with

the observed incomplete data set.

Other classifiers, besides the credal ones, suspend the judgment on doubtful in-

stances. For instance, a rejection rule can be set on any classifier, refusing to classify

the instances (and hence returning the whole set of classes), where the probability of

the most probable class is below a certain threshold. A more sophisticated approach has

been developed by del Coz et al. [33]: their algorithm determines which set of classes

to return (possibly a single class), on the basis of the posterior distribution computed by

the classifier; this algorithm can be therefore applied to any probabilistic classifier. The

returned set of classes is identified in order to maximize the F-measure of the issued

classifications.

However, both the rejection rule and the algorithm of [33] work on a single prob-

ability distribution; instead, credal classifiers deal with a set of posterior distributions.

The practical difference can be appreciated by considering a classifier trained on a very

small learning set. The credal classifier will be very likely to suspend the judgment on

any new instance, as most instances are going to be prior-dependent. On the contrary,

a traditional classifier equipped with the rejection rule or with the algorithm of [33]

blindly trusts the computed posterior distribution, without considering that for instance

on small data sets it might be largely sensitive on the choice of the prior.

8 Naive Bayes

The naive Bayes classifier (NBC) [40] “naively” assumes the features A1, . . . ,Ak to

be independent given the class C. According to the Markov condition introduced in

15 More precisely, prior near-ignorance; full ignorance is not compatible with learning, as shown

in Section 7.3.7 of Walley [77].
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C

A1 A2 . . . Ak

Fig. 11. The naive Bayes classifier.

Section 2, these conditional independence relations can be graphically depicted by the

directed graph in Figure 11. These assumptions introduce a severe bias in the estimate

of probabilities, as the real data generation mechanism does not generally satisfy such

condition. As a consequence of such unrealistic assumption, NBC is often overconfident

in its predictions, assigning a very high probability to the most probable class [50]; this

phenomenon is emphasized if redundant features are present.

Despite the simplistic naive assumption, NBC performs surprisingly well under 0-1

loss16[40, 50]. A first reason is that the bias of the probability estimates may not matter

under 0-1 loss: given two classes c′ and c′′ (c′ being the correct one), even a severe bias

in the estimate of P(c′) will not matter, provided that P(c′)> P(c′′) [46]. The good per-

formance of NBC can be further explained by decomposing the misclassification error

into bias and variance [46]: NBC has indeed high bias, but this problem is often success-

fully remediated by low variance. Especially on small data sets, low variance is more

important than low bias; in this way, NBC can outperform more complex classifiers.

Instead, more parameterized classifiers tend to outperform NBC on large data sets. The

low variance of NBC is due to the low number of parameters, which is a consequence

of the naive assumption, which prevents modelling correlations between features. For

instance, in comparison with C4.5 (which has lower bias but higher variance), NBC is

generally more accurate on smaller sample sizes, but generally outperformed on larger

data sets [55].

A further factor which contributes to the good performance of NBC is feature se-

lection, which typically removes the most correlated features and thus makes the naive

assumption more realistic. In fact, NBC can be even very competitive, when trained

with a carefully designed feature set. For instance, the CoIL challenge [74] was won

by a NBC entry [41], which outperformed more complicated models such as SVMs or

neural networks. The data set of the competition was characterized by several correlated

features and noisy data; a later analysis of the contest [74] showed that variance was a

much bigger problem than bias for this data set. However, key factors for the success

of NBC were feature selection and the introduction of a particular feature, obtained by

taking the Cartesian product of two important features, which enabled NBC to account

for the interactions between such two features. In [44], a criterion aimed at removing

irrelevant or redundant features on the basis of conditional mutual information is de-

signed; under this feature selection, NBC is competitive with SVMs and boosting in

several problems.

16 This loss function is also known as misclassification error: if the most probable class is the

correct one the loss is zero and one otherwise.
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Further strengths of NBC are computational speed and easy handling of missing

data, at least under the MAR assumption. However, if MAR is not assumed, the com-

putation becomes quite complicated; see for instance the algorithms designed in [65].

NBC has been recognized as one of the ten most influential data mining algorithms

[80] and in fact there have been also countless NBC variants designed to improve its

performance; comprehensive references can be found for instance in [50] and [51].

8.1 Mathematical Derivation

Let us denote by C the classification variable (taking values in ΩC) and as A1, . . . ,Ak

the k feature variables (taking values from the finite sets ΩA1
, . . . ,ΩAk

).

We denote by θc,a the chance (i.e., the unknown probability about which we want to

make inference) that (C,A1, . . . ,Ak) =(c,a), by θai|c the chance that Ai = ai given that

C = c, by θa|c the chance that A1, . . . ,Ak = (a1, . . . ,ak) conditional on c.

The naive assumption of independence of the features given the class can be ex-

pressed as:

θa|c =
k

∏
i=1

θai|c . (18)

We denote by n(c) and n(ai,c) the observed counts of C = c and of (Ai,C) = (ai,c);
by n the vector of all such counts. We assume for the moment the data set to be com-

plete. The likelihood function can be expressed as a product of powers of the theta-

parameters:

L(θ |n) ∝ ∏
c∈ΩC



θ
n(c)
c

k

∏
i=1

∏
ai∈ΩAi

θ
n(ai,c)
ai|c



 . (19)

Observe that for all c ∈ ΩC and i = 1, . . . ,k, the counts satisfy the structural constraints

0 ≤ n(ai,c)≤ n(c), ∑c∈ΩC
n(c) = n and ∑ai∈ΩAi

n(ai,c) = n(c), with n total number of

instances.

The prior is usually expressed as a product of Dirichlet distributions. Under this

choice, the prior is analogous to the likelihood, but the counts n(·) are replaced every-

where by st(·)−1, where s> 0 is the equivalent sample size, which can be interpreted as

the number of hidden instances. The parameters t(·) can be interpreted as the proportion

of units of the given type; for instance, t(c′) is the proportion of hidden instances for

which C = c′, while t(ai,c
′) is the proportion of hidden instances for which C = c′ and

A = ai. This is a non-standard parameterization of the Dirichlet distribution, introduced

in [77] because of its convenience when dealing with the IDM; the usual parameteriza-

tion is instead α(·) = st(·).
We consider in particular the Perks prior, as in [81, Section 5.2]:

t(c) =
1

|ΩC|
; t(ai,c) =

1

|ΩC||ΩAi
|
. (20)

However, in some cases the uniform prior is modeled adopting the Laplace estimator

[79, Chapter 4.2], which is different from Equation (20): it sets α(c) = st(c) = 1 ∀c and
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α(ai,c) = st(ai,c) = 1 ∀c, i, which corresponds to initialize all counts n(c) and n(ai,c)
to 1 before analyzing the data. For instance, the WEKA implementation [79] of NBC

is done in this way. However, there are slightly different versions also for the Laplace

estimator; see for instance [56].

By multiplying the prior density and the likelihood function, we obtain a posterior

density for θc,a, which is again a product of independent Dirichlet densities:

P(θc,a|n, t) ∝ ∏
c∈ΩC



θ
n(c)+st(c)−1
c

k

∏
i=1

∏
ai∈ΩAi

θ
n(ai,c)+st(ai,c)−1

ai|c



 . (21)

compared to the likelihood (19), the parameters n(·) are replaced by n(·)+ st(·). The

joint probability of c and a can be computed by taking expectation from the posterior :

P(c,a|n, t) = E(c,a|n, t) = P(c|n, t)
k

∏
i=1

P(ai|c,n, t) (22)

where

P(c|n, t) = E[θc|n, t] =
n(c)+st(c)

n+s
, (23)

P(ai|c,n, t) = E[θai|c|n, t] =
n(ai,c)+st(ai,c)

n(c)+st(c) . (24)

A problem of NBC, and more in general of any Bayesian classifier, is that sometimes

the classifications is prior-dependent, namely the most probable class varies with the

parameters t(·). Most often, one chooses the uniform prior trying to be non-informative;

yet, we have already argued that prior-dependent classifications are fragile and that the

uniform prior does not satisfactorily model prior ignorance. To address this issue, NCC

is based on a set of priors rather than on a single prior.

9 Naive Credal Classifier (NCC)

NCC extends NBC to imprecise probabilities by considering a (credal) set of prior den-

sities, instead of a unique prior. This prior credal set is modeled through the Imprecise

Dirichlet Model (IDM) [77] and expresses prior near-ignorance [77, Section 4.6.9]; 17

it is then turned into a set of posteriors (posterior credal set) by element-wise application

of Bayes’ rule.

NCC specifies a joint credal set using the IDM; this is obtained by allowing each

parameter of type t(·) to range within an interval, rather than being fixed to a single

value. In particular the IDM contains all the densities for which t varies within the

polytope T , defined as follows:

T =



















∑c∈ΩC
t(c) = 1

t(c)> 0 ∀c ∈ ΩC

∑a∈ΩA
t(a,c) = t(c) ∀c ∈ ΩC

t(a,c)> 0 ∀a ∈ ΩA,c ∈ ΩC.

(25)

17 Indeed, full ignorance is not compatible with learning; see Section 7.3.7 of [77] and [86].
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Such constraints are analogous to the structural constraints which characterize the

counts n(·). The third constraint introduces a link between the credal set K(C) and

the credal sets K(Ai|c), with c ∈ ΩC, so that the corresponding credal network is not

separately specified. Since the t(·) vary within an interval, also the posterior probability

of class c lies within an interval. For instance, the upper and lower probability of c and

a are:18

P(c,a|n, t) : = inf
t∈T

P(c,a|n, t)

P(c,a|n, t) : = sup
t∈T

P(c,a|n, t) .

While a traditional classifier returns the class with the highest posterior probability,

credal classifiers return the classes which are non-dominated. The two criteria intro-

duced in Section 5.1 can be considered to assess whether class c′ dominates class c′′.

According to interval-dominance c′ dominates c′′ if P(c′,a|n, t)> P(c′′,a|n, t). Instead,

according to maximality, c′ dominates c′′ if P(c′,a|n, t)> P(c′′,a|n, t) for all the values

of t ∈ T . Maximality is more powerful than interval-dominance, because it sometimes

detect dominances which cannot be spotted using interval-dominance. Once the domi-

nance criterion is chosen, the set of non-dominated classes is identified through repeated

pairwise comparisons, as shown in the following pseudo-code:

/ / S i n c e NCC i s based on m a x i m a l i t y , we d e n o t e t h e s e t

/ / o f non−domina ted c l a s s e s as Ω
∗∗
C .

/ / With i n t e r v a l −dominance , i t s h o u l d be d e n o t e d as Ω
∗
C .

Ω
∗∗
C := ΩC ;

f o r c′ ∈ ΩC{
f o r c′′ ∈ ΩC , c′′ 6= c′{

i f ( c′ d o m i n a t e s c′′ ){
remove c′′ from Ω

∗∗
C ;

}
}

}
re turn Ω

∗∗
C ;

In the following we sketch the test of dominance for NCC under maximality, designed

in [81]. According to maximality, c′ dominates c′′ iff:

inf
t∈T

P(c′,a|n, t)

P(c′′,a|n, t)
> 1, (26)

18 Unlike Equation (3), these optimizations are over the open polytope T . For this reason, infima

and suprema are considered instead of minima and maxima.
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and assuming P(c2,a|n, t) > 0. Problem (26) can be re-written [81] considering Equa-

tions (23–24) as:

inf
t∈T

{

[

n(c′′)+ st(c′′)

n(c′)+ st(c′)

]k−1 k

∏
i=1

n(ai,c
′)+ st(ai,c

′)

n(ai,c′′)+ st(ai,c′′)

}

. (27)

As proved in [81], the infimum of problem (27) is obtained by letting t(ai,c
′)→ 0

and t(ai,c
′′) → t(c′′). The values of these parameters at the optimum are extreme, as

they touch the boundary of the IDM. The remaining parameters t(c′) and t(c′′) are

optimized by noting that the infimum is achieved when t(c′)+ t(c′′) = 1, which allows

to express t(c′′) as 1− t(c′′). The final step to solve problem (27) involves a convex

optimization over the single parameter t(c′); see [81] for more details.

The classification is determinate or indeterminate if there are respectively one or

more non-dominated classes. The set of non-dominated classes returned by NCC always

contains the most probable class identified by NBC, as the uniform prior is included in

the IDM; 19 this also means that NCC, when determinate, returns the same class of

NBC. On the other hand, if there are more non-dominated classes, the classification

issued by NBC is prior-dependent. The non-dominated classes are incomparable and

thus cannot be further ranked.

NCC has been originally introduced by [81]; applications of NCC to real-world

case studies include diagnosis of dementia [87] and prediction of presence of parasites

in crops [83]; it has been then extended with a sophisticated treatment of missing data

in [29].

In the following, we show a comparison of NBC and NCC in texture recognition;

the data set is complete and thus indeterminate classifications are only due to prior-

dependent instances.

9.1 Comparing NBC and NCC in Texture Recognition

The goal of texture classification is to assign an unknown image to the correct texture

class; this requires an effective description of the image (i.e., obtaining good features)

and a reliable classifier. Texture classification is used in many fields, among which

industrial applications, remote sensing and biomedical engineering. We compare NBC

and NCC on the public OUTEX [62] data set of textures; the results presented in this

section are taken from [26], where more details and experiments are described. The

data set contains 4500 images from 24 classes of textures, including different kinds of

canvas, carpets, woods etc.; some samples are shown in Fig. 12. We use the standard

Local Binary Patterns (LBP) [62] as descriptors; they are computed by assigning each

pixel to a category comprised between 1 and 18, on the basis of a comparison between

its gray level and the gray level of the neighboring pixels. The features of an image are

constituted by the percentage of pixels assigned to the different categories; therefore,

18 features are created for each image. There are no missing data.

19 This is guaranteed with the Perks prior of Equation (20), but not with the Laplace estimator,

which is not included into the IDM; yet, empirically this is most often the case also with the

Laplace estimator.
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Fig. 12. Examples of some textures: each image refers to a different class.

We evaluate the classifiers through cross-validation, discretizing the features via

supervised discretization [42]; the feature are discretized on average in some 10 bins.

As our aim is to compare NBC and NCC rather than finely tuning the classifiers for

maximum performance, we do not perform feature selection.

NBC achieves 92% accuracy, which can be considered satisfactory: for instance,

SVMs are only slightly better, achieving 92.5%. However, NBC is unreliable on the

prior-dependent instances, which amount to about 5% of the total. On these instances,

NBC achieves only 56% accuracy, while NCC returns on average 2.5 classes, achieving

85% accuracy. On the non-prior dependent instances, both NBC and NCC achieve 94%

accuracy.

Prior-dependent instances are present even on this large data set because each condi-

tional probability distribution of type P(A j|C) requires to estimate some 240 parameters

(24 classes * 10 states of the feature after discretization); since some combinations of

the value of the class and of the feature rarely appear in the data set, the estimate of

their probability is sensitive on the chosen prior.

Experiments at varying size of the training set are presented in Fig.13. At each

size of the training set, NBC is characterized by a mix of good accuracy on the in-

stances which are not prior-dependent, and bad accuracy on the prior-dependent ones;

see Fig.13(a). Thanks to indeterminate classifications, NCC is instead much more ac-

curate than NBC on the prior-dependent instances: see Fig.13(b). With increasing size

of the training set, NCC becomes more determinate, steadily reducing both the percent-

age of indeterminate classification and the average number of classes returned when

indeterminate; see Fig. 13(c).

Summing up, NBC is generally little accurate on the instances indeterminately clas-

sified by NCC; NCC preserves its reliability on prior-dependent instances thanks to in-

determinate classifications; the determinacy of NCC increases with the size of the train-

ing set; indeterminate classifications can convey valuable information, when a small
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Fig. 13. Experiments with varying sizes of the training set. Plots (a) and (b) show the accuracy of

NBC and NCC on instances which are prior dependent (dashed) and non prior-dependent (solid);

plot (c) shows the percentage of indeterminate classifications (solid) and the average number of

classes returned by NCC when indeterminate (dashed).

subset of classes is returned out of many possible ones. Such results are consistent with

those obtained [29] on the classical UCI data sets.

However, NBC provides no way of understanding whether a certain instance is

prior-dependent. One could try to mimic the behavior of NCC by setting a rejection

rule on NBC, outputting more classes if the probability of the most probable class does

not exceed a certain threshold. Yet, a rejection rule is likely to be little effective with

NBC, which generally returns high probability for the most probable class. In the tex-

ture application, NCC detects about half of the prior-dependent instances among those

which are classified by NBC with probability higher than 95%. As discussed in [29,

Section 4.4], an instance is less likely to be prior-dependent as the probability computed

by NBC for the most probable class increases, but such correlation is not determinis-

tic: there are prior dependent instances classified by NBC with high probability, and

non-prior dependent ones classified by NBC with a relatively small margin. Overall,

the prior-dependency analysis performed by NCC is much more sophisticated than any

rejection rule.
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9.2 Treatment of Missing Data

Very often, real data sets are incomplete, because some values of the feature variables

are not present.20 Dealing with incomplete data sets rests on the assumptions done about

the process responsible for the missingness. This process can be regarded as one that

takes in input a set of complete data, which is generally not accessible for learning,

and that outputs an incomplete data set, obtained by turning some values into miss-

ing. Learning about the missingness process’ behavior is usually not possible by only

using the incomplete data. This fundamental limitation explains why the assumptions

about the missingness process play such an important role in affecting classifiers’ pre-

dictions. Moreover, a missingness process may also be such that the empirical analysis

of classifiers is doomed to provide misleading evidence about their actual predictive

performance, and hence, indirectly, about the quality of the assumptions done about the

missingness process. This point in particular has been discussed in [29, Section 4.6]

and [86, Section 5.3.2]. For these reasons, assumptions about the missingness process

should be stated with some care.

In the vast majority of cases, common classifiers deal with missing values (some-

times implicitly) assuming that the values are MAR [69]. However, assuming MAR

when it does not hold can decreases the classification accuracy.

The NCC has been one of the first classifiers [81, Section 3], together with Ramoni

and Sebastiani’s robust Bayes classifier [65] (a robust variant of NBC to deal with miss-

ing data), to provide a way to conservatively deal with non-MAR missing data in the

training set. Both approaches are based on very weak, and hence tenable, assumptions

about the missingness process; in fact, they regard as possible any realization of the

training set, which is consistent with the incomplete training set; this way of dealing

with missing data has been pioneered in statistics by Manski [60].

In particular, according to the conservative inference rule, introduced in Section 5.3,

conservative treatment of missing data requires to compute many likelihoods, one per

each complete data sets consistent with the incomplete training set. In particular, the

approach of [81] is equivalent to inferring many NCCs: one per each complete data sets

consistent with the incomplete training set; the classification is given by the union of

the set of non-dominated classes produced by all the NCCs.21 In [81] specific proce-

dures are designed, which perform the computation exactly and in linear time w.r.t. the

amount of missing data, avoiding to enumerate the (exponentially many) complete data

sets and to infer many NCCs. The imprecision introduced by missing data leads to an

increase in the indeterminacy of the NCC, which is related to the amount of missing-

ness. In other words, the NCC copes with the weak knowledge about the missingness

process by weakening the answers to maintain reliability.

In [29] the treatment of missing data has further improved, allowing NCC to deal

with non-MAR missing data also in the instance to classify and not only in the training

set, and to deal with a mix of MAR and non-MAR features (treating the first group

according to MAR and the second in a conservative way), using CIR. The resulting

classifier is called NCC2. Distinguishing variables that are subject to the two types of

20 We do not consider here the case of missing values of the class variable.
21 Strictly speaking, this straightforward explanation is valid for the case of two classes.
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processes is important because treating MAR variables in a conservative way leads to

an excess of indeterminacy in the output that is not justified. In fact, the experimen-

tal results of NCC2 [29] show that the indeterminacy originated from missing data is

compatible with informative conclusions provided that the variables treated in a conser-

vative way are kept to a reasonable number (feature selection can help in this respect,

too). Moreover, they show that the classifiers that assume MAR for all the variables are

often substantially unreliable when NCC2 is indeterminate.

Formal justifications of the rule NCC2 uses to deal with missing values can be

found in [29]. This work discusses also, more generally, the problem of incompleteness

for uncertain reasoning.

10 Metrics for Credal Classifiers

Before introducing further credal classifiers, it is useful to review the metrics which can

be used to compare them. The overall performance of a credal classifier can be fully

characterized by four indicators [29]:

– determinacy, i.e., the percentage of instances determinately classified;

– single-accuracy, i.e., the accuracy on the determinately classified instances;

– set-accuracy, i.e., the accuracy on the indeterminately classified instances;

– indeterminate output size: the average number of classes returned on the indetermi-

nately classified instances.

However, set-accuracy and indeterminate output size are meaningful only if the data set

has more than two classes.

These metrics completely characterize the performance of a credal classifier, but do

not allow to readily compare two credal classifiers. Two metrics suitable to compare

credal classifiers have been designed in [30]. The first one, borrowed from multi-label

classification,22 is the discounted-accuracy:

d-acc =
1

nte

nte

∑
i=1

(accurate)i

|Zi|
,

where (accurate)i is a 0-1 variable, showing whether the classifier is accurate or not on

the i-th instance; |Zi| is the number of classes returned on the i-th instance and nte is the

number of instances of the test set. However, discounting linearly the accuracy on the

output size is arbitrary. For example, one could instead discount on |Zi|
2.

The non-parametric rank test overcomes this problem. On each instance, it ranks

two classifiers CL1 and CL2 as follows:

– if CL1 is accurate and CL2 inaccurate: CL1 wins;

– if both classifiers are accurate but CL1 returns less classes: CL1 wins;

– if both classifiers are wrong: tie;

– if both classifiers are accurate with the same output size: tie.

22 The metric is referred to as precision in [73].
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The wins, ties and losses are mapped into ranks and then analyzed via the Friedman

test. The rank test is more robust than d-acc, as it does not encode an arbitrary function

for the discounting; yet, it uses less pieces of information and can therefore be less

sensitive. Overall, a cross-check of the both indicators is recommended.

Instead, an open problem is how to compare a credal classifier with a classifier

based on traditional probability. So far, this comparison has been addressed by compar-

ing the accuracy achieved by the Bayesian classifier on the instances determinately and

indeterminately classified by the credal classifier, thus assessing how good the credal

classifier is at isolating instances which cannot be safely classified with a single class.

This produces a statistics of type: on the prior-dependent instances, the Bayesian classi-

fier achieves 60% accuracy returning a single class, while the credal classifier achieves

90% accuracy, returning two classes. But which one is better? Moreover, returning a

very similar probability for the most probable and the second most probable class (for

the Bayesian ) should be considered equivalent to returning two classes (for the credal).

A metric able to rigorously compare credal and Bayesian classifier could be very im-

portant to allow credal classifiers to become widespread.

11 Tree-Augmented Naive Bayes (TAN)

In [47], NBC and Bayesian Networks (BNs) whose topology has been learned from

data, have been compared in classification; surprisingly BNs, despite their much higher

flexibility, did not outperform NBC. This can be explained through the bias-variance

decomposition of the misclassification error, which we already mentioned in Section 8:

BNs have much lower bias than NBC, but this effect is often not felt, because of their

high variance. However, these results were the inspiration for developing an effective

compromise between BNs and NBC, yielding the so-called tree-augmented naive Bayes

(TAN) [47], which is defined as follows (see also Figure 14):

– each feature has the class as a parent;

– each feature can also have an additional second parent, constituted by another fea-

ture.

C

A1 A2 A3 A4

Naive Bayes

C

A1 A2 A3 A4

TAN

Fig. 14. TAN can model dependencies between features, unlike naive Bayes.

In [47], TAN has been shown to be generally more accurate than both NBC and

BNs. More recent results [59] point out a flaw regarding the usage of BNs in [47];

however, even after fixing this problem, the results confirm that TAN is generally more
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accurate than both NBC and BNs (although the advantage of TAN over BNs is less

marked than previously reported, and moreover BNs are now shown to be indeed more

accurate than NBC).

This justifies the interest for designing a credal TAN. Before reviewing its develop-

ment it is however necessary to discuss the different variants of the IDM which can be

used for classification.

11.1 Variants of the Imprecise Dirichlet Model: Local and Global IDM

Given a credal network, three kinds of IDM can be used: the global, the local and the

recently introduced Extreme Dirichlet Model (EDM) [16]. In the following, we show

the differences between these approaches, using the example network C → A.

Let us focus on the class node. The constraints which define the set of Dirichlet

distributions for the IDM (both local and global) are:

TC =

{

∑c∈ΩC
t(c) = 1

t(c)> 0 ∀c ∈ ΩC.
(28)

As in Equation (7), the credal set K(C) contains the mass functions of type P(C),
which allows the probability of class c to vary within the interval:

P(c) ∈

[

n(c)

s+∑c∈ΩC
n(c)

,
s+n(c)

s+∑c∈ΩC
n(c)

]

. (29)

The EDM restricts the set of priors defined by Eq.(28) to its most extreme elements,

i.e., each t(c) can be only zero or one. Consequently, the probability of class c corre-

sponds either to the upper or to the lower bound of the interval in Equation (29).

Let us now move to conditional probabilities. The local IDM defines the polytope

similarly to Equation (28):

TA|C =

{

∑a∈ΩA
t(a,c) = 1 ∀c ∈ ΩC

t(a,c)> 0 ∀a ∈ ΩA,∀c ∈ ΩC.
(30)

Note that there is no relation between the t(a,c) and the t(c) previously used for the

class node. For each c ∈ ΩC, the credal set K(A|c) contains the mass functions of type

P(A|c), which let its probabilities vary as follows:

P(a|c) ∈

[

n(a,c)

s+n(c)
,

s+n(a,c)

s+n(c)

]

. (31)

The credal sets {K(A|c)}c∈ΩC
and K(C) are thus specified one independently of the

others. Following the terminology of Section 4.2, the model is a separately specified

credal network.

Instead, to understand the estimate of the conditional probabilities under the global

IDM, we should recall that it is based on a set of joint Dirichlet distributions, defined
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by the constraints (already given in Section 8):

TA,C =



















∑c∈ΩC
t(c) = 1

t(c)> 0 ∀c ∈ ΩC

∑a t(a,c) = t(c) ∀c ∈ ΩC

t(a,c)> 0 ∀a ∈ ΩA,∀c ∈ ΩC.

(32)

In particular, the third constraint introduces a link between t(a,c) and t(c), which is

missing in the local IDM; therefore, the network is not separately specified. Given the

value of t(c), the credal set K(A|c) contains the mass functions P(A|c) such that:

P(a|c) ∈

[

n(c,a)

st(c)+n(c)
,

st(c)+n(c,a)

st(c)+n(c)

]

. (33)

The global IDM estimates narrower intervals than the local, as can be seen by compar-

ing Equation (33) and Equation (31)23: this implies less indeterminacy in classification.

Yet, the global IDM poses challenging computational problems; so far, exact compu-

tation with the global IDM has been possible only with NCC. Instead, the local IDM

can be computed for any network and is in fact the common choice for general credal

networks; yet, it returns wider intervals.

The EDM restricts the global IDM to its extreme distributions; it therefore allows

t(a,c) to be either 0 or t(c), keeping the constraint ∀c ∈ ΩC : ∑a∈ΩA
t(a,c) = t(c) inher-

ited from the global IDM. The extreme points of the EDM corresponds in this case to

the bounds of the interval in Equation (33); but in general, they are a inner approxima-

tion of the extremes of the global IDM [16]. From a different viewpoint, the EDM can

be interpreted as treating the s hidden instances as s rows of non-MAR missing data, but

with the additional assumption that such rows are all identical to each other; ignorance

is due to the fact that it is unknown which values they contain.

The approximation provided by the EDM has been experimentally validated [25]

by comparing the classification produced by NCC under the global IDM and the EDM;

NCC produces almost identical results in the two settings, and thus the EDM appears

as a reliable approximation of the global IDM, with the advantage of a simplified com-

putation.

12 Credal TAN

As already discussed, the computational problems posed by the global IDM are quite

challenging and imply a large computational overload for non-naive topologies. Thus,

over years alternative solutions have been investigated.

A credal TAN was firstly proposed in [84], using the local IDM. The classifier was

indeed reliable and very accurate when returning a single class but it was excessively

cautious because of the local IDM. We refer to this algorithm as TANC*.

In [25], a credal TAN has been designed using the EDM; we refer this algorithm as

TANC. As shown in Fig.15(a), TANC is more determinate than TANC*, because the

23 Recall that ∑c t(c) = 1 and that t(c)> 0 ∀c ∈ ΩC.



XXXVI

EDM is an inner approximation of the global IDM, which in turn computes narrower

intervals than the local IDM. More important, TANC consistently achieves higher dis-

counted accuracy than TANC*, as shown in Fig.15(b); therefore, it realizes a better

trade-off between informativeness and reliability. However, the two classifiers have the

same performance on the kr-kp data set, which contains few thousands of instances and

only binary features; in this case, the model of prior ignorance has little importance.

iris

bre
as
t-w

dia
be
tes

ve
hic
le

ge
rm
an

sp
lic
e

kr-
kp

40%

50%

60%

70%

80%

90%

100%

Determinacy

TANC*
TANC

(a)

iris

bre
as

t-w

dia
be

tes

ve
hic

le

ge
rm

an
sp

lic
e

kr-
kp

0.5

0.6

0.7

0.8

0.9

1.0
Discounted Accuracy

TANC*
TANC

(b)

Fig. 15. Comparison of TANC* and TANC. Plot (a) shows the determinacy (% of determinate

classifications) of the classifiers on different data sets, while plot (b) shows their discounted ac-

curacy.

TANC is moreover good at spotting instances over which the Bayesian TAN be-

comes unreliable, similarly to how NCC does with NBC. In [25], experiments over

some 40 UCI data sets show an average drop of 30 points of accuracy for the Bayesian

TAN between the instances determinately and indeterminately classified by TANC. In-

stead, TANC preserves reliability also on the prior-dependent instances, 24 thanks to

indeterminate classifications.

Although TANC is consistently more determinate than TANC*, it becomes some-

times largely indeterminate, especially on small data sets characterized by many classes

and/or categorical values of the features. In fact, the TAN architecture (learned using a

MDL criterion implemented within WEKA [79]), sometimes assigns the second parent

to a feature, even though the resulting contingency table contains many counts which

are numerically small. When parsed by TANC, they generate prior-dependent classifi-

cations and thus indeterminacy.

This also causes TANC to be slightly outperformed by NCC, as shown by the

scatter-plot of the discounted accuracy of Fig.16; therefore, TANC looses the advantage

which the Bayesian TAN has over NBC. In [25], it is hypothesized that an algorithm for

learning the structure more suitable for TANC should return less parameterized struc-

tures and could allow a significant performance improvement. Such algorithm should

24 Note that different credal classifiers, encoding a different probabilistic assumptions, might

judge the same instance as prior-dependent or not. Thus, an instance is not prior-dependent

per se, but according to the judgment of a certain credal classifier.
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be able to return even a naive structure, if for instance modelling further dependencies

makes the joint distribution too sensitive on the prior. Previous attempts for structure

learning based on imprecise probability can be found in [85]; yet this field has not been

extensively explored and constitutes an interesting area for future research.
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Fig. 16. Discounted accuracy of TANC and NCC.

TANC is moreover able to conservatively deal with non-MAR missing data [25].

However, the treatment of missing data is at an earlier stage compared to that of NCC,

as all missing data are currently treated as non-MAR (it is currently no possible to

deal with a mix of MAR and non-MAR features) and moreover the current algorithms

are not yet developed to deal with non-MAR missing data in the instance to classify.

Preliminary results [25] show that, when faced with incomplete training sets, TANC is

much more indeterminate than NCC but achieves a similar discounted accuracy.

13 Further Credal Classifiers

13.1 Lazy NCC (LNCC)

Besides the TAN approach, a further possibility of reducing the bias due to the naive

assumption is to combine NCC and lazy learning; this has been explored in [30].

Lazy learning defers the training, until it has to classify an instance (query). In order

to classify an instance, a lazy algorithm:

1. ranks the instances of the training set according to the distance from the query;

2. trains a local classifier on the k instances nearest to the query and returns the clas-

sification using the local classifier;

3. discards the locally trained classifier and keeps the training set in memory in order

to answer new queries.

Lazy classifiers are local, as they get trained on the subset of instances which are

nearest to the query. The parameter k (bandwidth) controls the bias-variance trade-off

for lazy learning. In particular, a smaller bandwidth implies a smaller bias (even a sim-

ple model can fit a complex function on a small subset of data) at a cost of a larger
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variance (as there are less data for estimating the parameters). Therefore, learning lo-

cally NBC (or NCC) can be a winning strategy as it allows reducing the bias; moreover,

it also reduces the chance of encountering strong dependencies between features [45].

In fact, a successful example of lazy NBC is given in [45].

However, an important problem dealing with lazy learning is how to select the

bandwidth k. The simplest approach is to empirically choose k (for instance, by cross-

validation on the training set) and to then use the same k to answer all queries. However,

the performance of lazy learning can significantly improve if the bandwidth is adapted

query-by-query, as shown in [12] in the case of regression.

LNCC tunes the bandwidth query-by-query using a criterion based on imprecise

probability. After having ranked the instances according to their distance from the

query, a local NCC is induced on the kmin closest instances (for instance, kmin = 25)

and classifies the instance. The classification is accepted if determinate; otherwise, the

local NCC is updated by adding a set of further kupd instances (we set kupd = 20) to its

training set. The procedure continues until either the classification is determinate or all

instances have been added to the training of the local NCC. Therefore, the bandwidth

is increased until the locally collected data smooth the effect of the choice of the prior.

The naive architecture makes it especially easy updating LNCC with the kupd instances;

it only requires to update the counts n(·) that are internally stored by LNCC.

By design LNCC is thus generally more determinate than NCC; this also helps

addressing the excessive determinacy which sometimes characterizes also NCC [24]. In

[30] that generally LNCC outperforms NCC, both according to the discounted accuracy

and the rank test.

13.2 Credal model averaging (CMA)

Model uncertainty is the problem of having multiple models which provide a good

explanation of the data, but lead to different answers when used to make inference. In

this case, selecting a single model underestimates uncertainty, as the uncertainty about

model selection is ignored. Bayesian model averaging (BMA) [52] addressed model

uncertainty by averaging over a set of candidate models rather than selecting a single

candidate; each model is given a weight corresponding to its posterior probability.

In case of NBC, given k features, there are 2k possible NBCs, each characterized

by a different subset of features; we denote by M the set of such models and by m a

generic model of the set. Using BMA, the posterior probability P(c,a|n, t) is computed

by averaging over all the 2k different NBCs, namely by marginalizing m out:

P(c,a|n, t) ∝ ∑
m∈G

P(c,a|n, t,m)P(n|m)P(m), (34)

where P(m) and P(n|m) =
∫

P(n|m, t)P(t|m)dt are respectively the prior probability

and the marginal likelihood of model m; the posterior probability of model m is P(m|n, t)∝

P(n|m, t)P(m|t).
BMA implies two main challenges [19]: the computation of the exhaustive sum of

Eq.(34) and the choice of the prior distribution over the models.

The computation of BMA is difficult, because the sum of Eq. (34) is often in-

tractable; in fact, BMA is often computed via algorithms which are both approximated
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and time-consuming. However, Dash and Cooper [36] provide an exact and efficient

algorithm to compute BMA over 2k NBCs.

As for the choice of the prior, a common choice is to assign equal probability to

all models; however, this is criticized from different standpoints even in the literature

of BMA (see the rejoinder of [52]). Moreover, as already discussed, the specification

of any single prior implies arbitrariness and entails the risk of issuing prior-dependent

classifications. Our view is that this problem should be addressed by using a credal set

rather than a single prior. However, in the following it is understood that by BMA we

mean BMA learned with the uniform prior over the models.

Credal set Credal model averaging (CMA) [27] extends to imprecise probabilities the

BMA over NBCs of [36], substituting the single prior over the models by a credal set.

The prior probability of model m is expressed by Dash and Cooper [36] as:

P(g) = ∏
i∈m

Pi ∏
i/∈m

(1−Pi), (35)

where Pi is the probability of feature i to be relevant for the problem, while i ∈ g and

i /∈ g index respectively the features included and excluded from model g. By setting

Pi := 0.5 for all i, all models are given the same prior probability.

CMA is aimed at modelling a condition close to prior ignorance about the relative

credibility of the 2k NBCs, which also implies ignorance about whether each feature

is relevant or not; the credal set K(M) of prior over the models is given by all the

mass function obtained by letting vary each Pi within the interval ε < Pi < 1− ε (the

introduction of the ε > 0 is necessary to enable learning from the data).

Denoting as P(M) a generic mass function over the graphs, the test of credal-

dominance test of CMA is:

inf
P(M)∈K(M)

∑g∈G P(c1|g,n)P(n|g)P(g)

∑g∈G P(c2|g,n)P(n|g)P(g)
> 1. (36)

The computation of the dominance test is accomplished by extending to imprecise prob-

ability the BMA algorithm by [36]; see [27] for more details.

Since K(M) contains the uniform prior over the models, the set of non-dominated

classes of CMA always contains the most probable class identified by BMA; for the

same reasons CMA, when determinate, returns the same class of BMA.

The experiments of [27] shows that the accuracy of BMA sharply drops on the in-

stances where CMA gets indeterminate. The finding that a Bayesian classifier is little

accurate on the instances indeterminately classified by its counterpart based on impre-

cise probabilities is indeed consistent across the various credal classifiers which we

have developed.

A possible research direction is the development of CMA for NCC, namely impre-

cise averaging over credal classifiers. Yet, attempts in this direction seem to involve

quite difficult and time-consuming computations.
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14 Open Source Software

JNCC2 [28] is the Java implementation of NCC; it is available from www.idsia.ch/

~giorgio/jncc2.html and has a command-line interface. This software has been

around since some years and is stable.

A second open-source software is a plug-in for the WEKA [79] environment; it im-

plements NCC, LNCC, CMA and the credal version of classification trees [1]. Thanks

to the WEKA environment, all the operations with credal classifiers can be performed

graphically and moreover many powerful tools (e.g., feature selection) become avail-

able to be readily used with credal classifiers. This software is available from http:

//decsai.ugr.es/~andrew/weka-ip.html; it is very recent and thus should be

seen as more experimental.
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15 Conclusions

Credal networks generalize Bayesian networks, providing a more robust probabilistic

representation; in some cases, a single probability distribution cannot robustly describe

uncertainty. Being able to work with a set of distributions rather than with a single dis-

tribution, credal networks can for instance robustly deal with the specification of the

prior and with non-MAR missing data. Credal networks are naturally suited to model

expert knowledge, as often the experts feel more confident in assigning to an event an

interval of probability rather than a point-wise probability; in fact, knowledge-based

systems are a natural application of credal networks. However, credal networks have

been also thoroughly developed for classification. The main feature of credal classi-

fiers is that they suspend the judgment returning a set classes; this happens for instance

when the instance is prior-dependent or when too much uncertainty arises from miss-

ing data, when MAR cannot be assumed. Extensive experiments, performed both on

public benchmark data sets and in real-world applications show that on the instances

indeterminately classified by a credal network, the accuracy of its Bayesian counterpart

(namely, a BN with the same graph, learned with the uniform distribution) drops. Direc-

tions for future research include the development of a more rigorous metric to compare

credal and traditional probabilistic classifier and algorithms for structure learning espe-

cially tailored for credal networks.
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