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Abstract—Bayesian neural networks are powerful inference
methods by accounting for randomness in the data and the
network model. Uncertainty quantification at the output of
neural networks is critical, especially for applications such as au-
tonomous driving and hazardous weather forecasting. However,
approaches for theoretical analysis of Bayesian neural networks
remain limited. This paper makes a step forward towards
mathematical quantification of uncertainty in neural network
models and proposes a cubature-rule-based computationally-
efficient uncertainty quantification approach that captures layer-
wise uncertainties of Bayesian neural networks. The proposed
approach approximates the first two moments of the posterior
distribution of the parameters by propagating cubature points
across the network nonlinearities. Simulation results show that
the proposed approach can achieve more diverse layer-wise
uncertainty quantification results of neural networks with a fast
convergence rate.

Index Terms—Bayesian neural networks, uncertainty quantifi-
cation, cubature rules, variational inference, Bayesian rules

I. INTRODUCTION

During the past decades, Deep Neural Networks (DNNs)

have achieved state-of-the-art results in a broad range of

applications, including visual object recognition [1] and traffic

forecasting [2], [3], [4]. To some extent, DNN methods

revolutionised our way of coping with recognition and re-

gression problems, and are holding the promise of emerging

technologies like autonomous driving and hazardous weather

forecasting. In all these applications, safety concerns are

as relevant as accuracy to both researchers/developers and

end-users. Most work in the literature focuses on accuracy

improvement and network architecture adjustment [5], [6], [7],

which indeed have pushed the cutting-edge DNN related re-

search to a new era. However, we shall also point out that these

typical networks lack the ability to quantify the uncertainty

This work was supported by the National Science Foundation Awards
NSF ECCS-EPSRC-1903466 and NSF CCF-1527822. We are also grateful
to UK EPSRC support through EP/T013265/1 project NSF-EPSRC: ShiRAS.
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appreciate the support of NSFC (61703387).

associated with the network prediction, which is critical in ap-

plications, such as autonomous driving and hazardous weather

forecasting, where errors could cause severe consequences.

Therefore, endowing networks with the ability to quantify their

uncertainty is crucial to preventing undesirable and potentially

dangerous behaviors in downstream decision making.

The most popular technique on neural network uncertainty

quantification is a Bayesian treatment of the network weights

and biases, which is well known as Bayesian Neural Networks

(BNNs). In the BNN paradigm, network parameters, such

as weights and biases are no longer deterministic; Instead,

they are endowed with prior probabilistic distributions, e.g.,

Gaussian distributions. The random parameters then propagate

forward and the model uncertainty is estimated by Markov

Chain Monte Carlo (MCMC) sampling [8]. Neal introduced

the Hamiltonian Monte Carlo, which falls into the MCMC

paradigm, to learn BNN parameters by using the Hamilto-

nian dynamics-based sampling approach [9]. MCMC-based

sampling methods approximate the posterior with a fairly

high accuracy, but they also suffer from high computational

complexity [10].

Variational Inference (VI) has been proved to be the most

promising replacement of MCMC methods [11]. It explicitly

transforms an inference problem to an optimisation coun-

terpart. The philosophy of using a tractable distribution to

approximate the posterior mitigates the issue of dealing with

complex intractable integrals. Another benefit is that VI-

based methods are much less dependent on computational

resources compared with MCMC methods. Both advantages

contributed to the wide use of VI approaches in BNNs. For

instance, a closed-form solution for propagating moments

through Rectified Linear Unit (ReLU) activation functions

in a fully connected neural network is proposed in [12].

Gal [13] developed a theoretical framework casting dropout

training as approximate Bayesian inference. Recently, Dera

et al. [11] have developed the first statistical moments’ prop-

agation method for Convolutional Neural Networks (CNNs)

with a general choice of activation functions. In [11], after



the nonlinear activation functions, the mean and covariance

of the network parameters are approximated by their first-

order Taylor series. This approach simplifies the complexity of

computing statistical moments through nonlinearities but the

first-order approximation could jeopardize the accuracy.

In this paper, adopting the same framework of approx-

imating Bayesian posterior of BNNs with VI, we employ

the cubature rule to approximate the first and second mo-

ments of the weights and biases after nonlinear activation

functions. With the cubature rule, instead of approximating

the posterior by sampling using MCMC, or propagating the

mean and covariance as in [11] followed by a linearisation

approximation, we select a set of cubature points, which

are then propagated layer by layer to quantify the statistical

moments. The application of the cubature rule possesses the

potential of achieving third-order Taylor series accuracy [14],

which expands the spectrum of problems that can be dealt

with using the method in [11]. After the cubature points

are propagated, the obtained distribution is optimised by VI

to enhance the (distribution) approximation accuracy. At the

last layer, a regression unit is introduced to further improve

the accuracy of the network outputs. In our approach, layer-

wise uncertainty quantification becomes very simple since the

first two moments are identified by a set of cubature points.

The main contributions of this paper therefore include: 1) the

proposed approach for uncertainty quantification in BNNs with

the cubature rule. 2) Variational inference and the cubature

rule combined lead to inference with fast convergence and

computational efficiency.

The remainder of the paper is organised as follows. Section

II introduces the cubature rule and its application in nonlinear

integral approximation. Section III describes how variational

inference can be used to approximate intractable distributions

in Bayesian inference. The Bayesian neural network uncer-

tainty quantification problem is formulated in Section IV. In

Section V, we elaborate on how the cubature rule is applied

to approximate statistical moments. Section VI presents the

evaluation results and Section VII concludes this work.

II. CUBATURE RULE AND ITS APPLICATION IN

NONLINEAR APPROXIMATIONS

High-dimensional nonlinear integrals frequently emerge in

neural network research due to the complex nature of both the

problem of interest, including data, models, and the structure

of the network. In cases where the system/measurement noises

are subject to Gaussian distributions, we often come across a

Gaussian integral of the form

I (f) =

∫

RD

f (x) exp
(

−xTx
)

dx, (1)

defined in the Cartesian coordination system, where D is the

dimension of the input vector x, and f(·) is an arbitrary func-

tion. The integral in (1) can become intractable as D increases.

To deal with it, a number of numerical approximations of (1)

are proposed, such as particle filtering [15], [16] and Gaussian

regression [17]. Recently, the cubature rule [18] was applied

to numerically approximate the integral, which has achieved

at least third-order Taylor series accuracy [14].

Just like the particle filter, the main idea of using the

cubature rule to approximate the integral lies in transforming

it into a weighted sum. The key step is a spherical-radial

transformation [18] that maps a Cartesian vector x ∈ R
D to a

radius r and a direction vector θ, i.e., x = rθ with θTθ = 1,

so that xTx = r2 for r ∈ [0,∞). Thus, the Gaussian integral

can be rewritten as

I(f) =

∞
∫

0

∫

UD

f (rθ) rD−1 exp
(

−r2
)

dψ (θ) dr, (2)

where UD is the surface of the sphere defined by UD =
{

θ ∈ R
D
∣

∣θTθ = 1
}

and ψ (·) is the spherical surface mea-

sure or the area element on UD. Therefore, the radial integral

in (2) can be rewritten as

I(S) =

∞
∫

0

S (r) rD−1 exp
(

−r2
)

dr, (3)

where S (r), given in (4), is defined by the spherical integral

with the unit weighting function w (θ) = 1,

S (r) =

∫

UD

f (rθ)dψ (θ) . (4)

The spherical-radial integral can be numerically computed

by the spherical cubature rule and the Gaussian quadrature

rule. In brief, the radial integral can be computed numerically

by the mr-point Gaussian quadrature rule

∞
∫

0

f (r) rD−1 exp
(

−r2
)

dr ≈
mr
∑

i=1

wrif (ri), (5)

where wri is the radial weight. The spherical integral can be

computed numerically by the ms-point spherical rule

∫

RD

f (rθ)dψ (θ) ≈
ms
∑

j=1

wθjf (rjθj), (6)

where wθj is the spherical weight.

Hence, the third-degree spherical-radial rule entailing 2D
cubature points with mr = 1 and ms = 2D can be used to

numerically computed the standard Gaussian weighted integral

through

I (f) =

∫

RD

f (x)N (x;0,ΣI) d (x) ≈
2D
∑

i=1

wif (ξi), (7)

where the weight wi = 1
2D and the cubature points ξi =√

D [Ii,−Ii], with Ii the D-dimensional unit matrix. Note

that when N (·) is not a standard Gaussian distribution, the

cubature points need to be transformed. We will give the

transformed results in Section V. Please refer to [18] for more

details.



The cubature rule is substantially the unscented trans-

formation when the tune parameter κ is set to zero [14].

Therefore, the cubature rule-based approximation can achieve

the same third-order accuracy as the unscented transformation.

Theoretically, this can obtain better approximation results than

the method given in [11].

III. VARIATIONAL INFERENCE

In Bayesian inference, given a set of observed variables

y = {y1:o}, and a set of latent variables z = {z1:k}, we often

need to deal with the following posterior to make inferences.

p(z | y) = p(y | z)p(z)
p(y)

(8)

However, the denominator p(y) =
∫

p(z,y)dz is unavailable

in closed form or requires exponential time to compute [19].

Variational inference has been widely used to approximate

this kind of intractable posterior distributions [20]. A detailed

review of VI can be found in [19].

In VI, we propose a family Ξ of densities over the latent

variables, with each q(z;λ) ∈ Ξ a candidate approximation of

the conditional in (8), and λ is the parameter of the proposed

distribution. The philosophy of VI is turning the approximation

problem into an optimisation counterpart, where the best

approximate q∗(·) is obtained by minimising the Kullback-

Leibler divergence [21] as in

q∗(·) = argmin
λ

KL
(

q(z;λ)‖p(z|y)
)

, (9)

which is substantially a distance measure to evaluate diffusion

between q(z;λ) and p(z | y).
However, the Kullback-Leibler divergence is not com-

putable because it requires computing log p(y) (the same

reason why the posterior in (8) in not computable.). According

to [19], we have

log p(y) = log

∫

z

p(y, z)

≥ Eq [log p(y, z)]− Eq[log q(z;λ)].

(10)

The difference between the left and the right parts is called

Evidence Lower BOund (ELBO), which is denoted as

ELBO = log p(y)−KL
(

q(z;λ)‖p(z|y)
)

. (11)

From which we see that minimising the Kullback-Leibler

divergence is equivalent to maximising the ELBO.

Now the problem is reduced to determine the density family

Ξ to maximise the ELBO. The mean-field variational family

[19] has been among the most popular ones due to the

assumption that the latent variables are mutually independent

and each governed by a distinct factor in the variational density

as shown in

q(z;λ) =

k
∏

j=1

q(zj , ;λj). (12)

As long as q(zj , ;λj), j = 1, · · · , k are determined, we can

maximise the ELBO given in (10) to get q∗(·), and make

inferences thereafter.

IV. BAYESIAN NEURAL NETWORKS

It is widely agreed that the nonlinearity and high-

dimensionality in neural network models have made them

computationally demanding. In the BNN paradigm, the nonlin-

earity also makes the propagation of the moments challenging.

Put simply, a neural network can be represented by a nonlinear

function as

Y = f(X,W,b), (13)

where f is the neural network model, X is the input, W and b

are the concatenated weights and biases, and Y is the output.

In this paper, we assume X =
[

x1,x2, · · · ,xN

]

with the

corresponding output Y =
[

y1,y2, · · · ,yN

]

, where xi is of

dimension D × 1 and yi is of dimension D′ × 1, with i ∈
{1, · · · , N}. The dimension of X and Y are, therefore, D×N
and D′ ×N , respectively.

For clarity, we use x to denote an arbitrary input that is

fed into a neural network f(·). It is then passed through

the network layer by layer. In this paper, a layer is defined

by ‘input → linear-combination → nonlinear-activation’. The

output from the nonlinear-activation will be the ‘input’ to the

next layer. Equivalently, the process can be represented as

a
(l+1)
i = b

(l+1)
i 1+

C(l)
∑

j=1

W
(l+1)
i,j x

(l)
j , (14)

and

x
(l)
j = φ

(

a
(l)
j

)

, (15)

where W
(l+1)
i,j indicates the weight that transforms the j-th

element x
(l)
j from layer l to the i-th element in layer l + 1,

resulting in a
(l+1)
i after linear combination. The nonlinear

activation function is denoted by φ(·). The bold 1 is a unit

vector, b
(l+1)
i denotes the bias, and C(l) is the length of

the column vector x
(l)
j . Suppose that the l = 1, · · · , L − 1

layers are defined by (14) and (15), then the last layer L is

represented by

a
(L)
i = b

(L)
i 1+

C(L−1)
∑

j=1

W
(L)
i,j x

(L−1)
j , (16)

and

x
(L)
j = ϕ

(

a
(L)
j

)

, (17)

where ϕ(·) represents the activation function for layer L as

it is usually different from previous layers dependent on the

task, e.g., classification or regression.

In traditional neural networks, both W
(l)
i,j and b

(l)
i are

assumed to be deterministic. However, in the BNN paradigm,

both W
(l)
i,j and b

(l)
i are allowed to be random variables,

which enables Bayesian uncertainty quantification for neural

networks. For brevity, we assume that W
(l)
i,j is governed by a

Gaussian distribution, which is shown in (18). The same rule

applies to b
(l)
i as well as given in (19).



W
(l)
i,j ∼ N

(

m
w

(l)
i,j

, σ2

w
(l)
i,j

)

, (18)

b
(l)
i ∼ N

(

m
b
(l)
i

, σ2

b
(l)
i

)

, (19)

where m
w

(l)
i,j

and m
b
(l)
i

are the respective means of W
(l)
i,j and

b
(l)
i . The corresponding variances are denoted by σ2

w
(l)
i,j

and

σ2

b
(l)
i

. The random weights and biases are then passed through

the network, propagating uncertainty to the final outputs. The

left side of Fig. 1 shows a general BNN, with a detailed sub-

structure shown in the left side. Those curves are the bias and

weight distributions.

V. CUBATURE APPROXIMATION OF STATISTICAL

MOMENTS

A. Cubature rules for Mean and Variance Approximation

Although we assume both the weights and the biases are

subject to Gaussian distributions, it remains a challenge to

capture the distributions after the nonlinear activation function.

In this paper, we exploit the cubature rule to approximate the

first and second moments of the distribution after nonlinear

activation function [18].

Taking (14, 15, 18, and 19) and the Central Limit Theorem

(CLT) into consideration, we know that a
(l)
i follows a Gaussian

distribution as well when the network is rather wide [22] or

deep [23]. Wu et al. [24] also empirically demonstrate that the

claim is approximately valid even when (weak) correlations

appear between the elements of φ(·) during training. The CLT

could be violated when a network is not wide(deep) enough,

or the sample numbers are limited. VI becomes a powerful

tool to approximation the distributions in such scenarios. In

this paper, given the assumption that all the weights and biases

are independent Gaussian random variables, we have the mean

and variance of a
(l)
i as

E
(

a
(l)
i

)

= 〈a(l)i 〉 = m
b
(l)
i

1+

C(l−1)
∑

j=1

m
w

(l)
i,j

x
(l−1)
j , (20)

V
(

a
(l)
i

)

= 〈a(l)i ,a
(l)
i 〉 = σ2

b
(l)
i

+

C(l−1)
∑

j=1

[

x
(l−1)
j σ

w
(l)
i,j

]2

. (21)

E
(

φ(a
(l)
i )

)

=
1

√

2π det
(

V
(

a
(l)
i

)

)

∫

φ(α) exp
[

−

(

α− E
(

a
(l)
i

)

)2

2V
(

a
(l)
i

)

]

dα

=

∫

√

√

√

√

√

V
(

a
(l)
i

)

π det
(

V
(

a
(l)
i

)

)φ(α) exp(−β2)dβ

=

∫

g(β) exp(−β2)dβ.

(22)

The linear combination a
(l)
i is then passed to a generic

activation function φ(·) as shown in (15). The mean of φ(a
(l)
i )

can be written as (22), where g(β) =

√

√

√

√

V

(

a
(l)
i

)

π det

(

V

(

a
(l)
i

)

)φ(α),

and α =

√

2V
(

a
(l)
i

)

β + E
(

a
(l)
i

)

.

The integration shown in (22) can be rather complex or

even intractable when the dimension of α or β increases. In

this paper, the cubature rule is adopted to approximate the

integral. Without loss of generality, a set of cubature points

are chosen and denoted as

ξi =

√

2D

2

[

Ii,−Ii
]

, (23)

where D is the dimension of α or β, Ii is the D-dimensional

unit matrix. According to [18], the cubature points of α need

to be transformed and the results are denoted as

A
(l)
i =

√

V
(

a
(l)
i

)

ξi + E
(

a
(l)
i

)

, (24)

After propagating the transformed cubature points from (24)

through the nonlinear activation function φ(·), we obtain the

propagated cubature points as

A
∗(l)
i = φ

(

A
(l)
i

)

. (25)

The integral in (22) can therefore be simplified as

E
(

φ(a
(l)
i )

)

≈ 1

2D

2D
∑

i=1

A
∗(l)
i := ĥ

(l)
i , (26)

and the covariance after nonlinear activation function approx-

imated as

V
(

φ(a
(l)
i )

)

≈ 1

2D

2D
∑

i=1

A∗T
i A∗

i − ĥ
(l)T
i ĥ

(l)
i . (27)

Putting (15), (20), and (26) together, we know that x
(l)
i

can be approximated by ĥ
(l)
i for i = 2, · · · , L. Therefore, an

approximation of (21) can also be obtained.

So far, we used the cubature rule to approximate the com-

plex integral emerging in BNNs with summations involving

a set of cubature points. Subsequently, the computational

complexity reduces to O(D). In this paper, the hyperbolic

function

tanhx =
e2x − 1

e2x + 1
(28)

is taken as an example nonlinear activation function to con-

figure the uncertainties on the final results.

VI. EXPERIMENTS AND ANALYSIS

To assess the proposed approach in quantifying uncertainties

in BNNs, a Bayesian neural network, as shown in Fig. 1, is

employed to fulfill the regression task of a cosine function,

y = cos(x) + v, (29)

where x is the input, y is the output, and v ∼ N
(

0, σ).
As a simple two-layer network with nonlinear activation



Fig. 1. The structure of a Bayesian neural network. The curves indicate bias and weight distributions.
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Fig. 2. Approximated mean and standard deviation of layer two of our approach: (a) approximated node 21 mean, (b) approximated node 21 standard
deviation. The results from iteration 1 to iteration 500 are marked by the curves. The densely plotted curves show results when converged.
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Fig. 3. Approximated mean and standard deviation of layer two of typical BNNs: (a) approximated node 21 mean, (b) approximated node 21 standard
deviation. The results from iteration 1 to iteration 500 are marked by the curves. The densely plotted curves show results when converged.

function is considered a universal approximator [25], we use

the network shown in the right side of Fig. 1 as an example.

The experiments are implemented based on the probabilistic

models research toolbox Edward, and q(zj , ;λj) in (12) are

set to be Gaussian.

In our experiment, as the input is one dimensional, cubature

points become I = [−1, 1]. These points are then trans-

formed by (24) and propagated though the network. Mean and

standard deviation of each node in each layer are computed

using (26) and (27), respectively. In our case, two layers and

three nodes are involved, as shown in Fig. 1. Weights and

biases are initialised to follow Gaussian distributions with zero

mean and variance 5.0 for all parameters. VI is employed

to approximate these distributions. In our case, the network

trained for 500 iterations so that observable convergence of all

approaches is ensured. Within each iteration, VI is performed

to optimise the network parameters. During training, fifty

input-output pairs from (28) with x in between [−3.0, 3.0]
are taken as samples. After each iteration, fifty means and de-

viations are recorded corresponding to each input-output pair.

In our approach, mean and standard deviation are computed

layer by layer following (23) to (27). We take results from a
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Fig. 4. Approximated mean and standard deviation of layer one with our approach: (a) approximated mean of node 11, (b) approximated variance of node
11, (c) approximated mean of node 12, (d) approximated variance of node 12. The results from iteration 1 to iteration 500 are marked by the curves. The
densely plotted curves show results when converged.

Fig. 5. One example of the approximated mean and the corresponding 2σ

uncertainty of our approach

typical BNN with the same structure for comparison [26]. The

difference is that for the typical BNN, after each iteration, 20

samples of the weights and biases for each node are sampled

to compute the layer-wise mean and standard deviation. In this

paper, we also apply a regression unit (as shown in ellipse in

Fig. 1) at the end of the network to improve the accuracy. In

our case, a linear regression is applied.

Fig. 6. One example of the approximated mean and the corresponding 2σ

uncertainty of typical BNNs

Fig. 2 and Fig. 3 show the mean and standard deviation

approximations of node 21 obtained from the 500 iterations,

using the proposed approach and a typical BNN. We can

see that both are able to approximate the cosine function

by the statistical means in between [−3.0, 3.0]. The standard

deviations that capture the uncertainties decrease as the it-

eration increases. We can see that both the mean and the



standard deviation from our approach, shown in Fig. 2(a)

and 2(b), are ‘narrower’ than the results from a typical

BNN as shown in Fig. 3(a) and 3(b) (the densely plotted

curves (in red in electronic version) are actually results from

the iterations after convergence). In particular, the standard

deviation of the cubature-based approach is much narrower.

This feature can be regarded as a ‘metric’ of convergence rate.

As after a certain iteration, the proposed approach converges

to a certain value (standard deviation), while these from the

comparison approach still scatter in a wider range (the densely

plotted curves (in red in electronic version)) than the proposed

method. We have also shown the results of our approach from

node 11 and node 12 in Fig. (4), to demonstrate that layer-wise

uncertainty quantification can be achieved.

To make the results easier to understand, we have chosen

the mean and the standard deviation of the two approaches

from the last iteration for further demonstration. The samples,

predictions (mean), and the 2σ uncertainty intervals from the

two approaches are shown in Fig. 5 and Fig. 6, respectively.

We can see that our approach shows more ‘diverse’ uncertainty

quantification results, while the typical BNN shows more

‘equally distributed’ uncertainty quantification on all the pre-

dictions. The ‘equally distributed’ case is easy to understand

because the mean and standard deviation are computed from

the samples. We think the ‘diverse’ phenomenon is due to the

fact that the expectations and variances used to propagate the

cubature points in (24) and (25) vary, which actually is more

informative than ‘equally distributed’ cases.

To conclude, we have approximated the nonlinear integrals

involved in BNNs by propagating a set of cubature points,

which achieves faster convergence rate and more ‘diverse’

uncertainty quantification.

VII. CONCLUSION

We proposed to quantify uncertainties of Bayesian neural

networks with an approach inspired by the cubature rule. With

which, we can select a set of cubature points to propagate

through the network and propagate the uncertainties of the

network across the layers. As the number of cubature points is

fairly small, it makes the approximation process very efficient

when compared with sampling-based mean and standard devi-

ation approximation approaches. A simulation is done to assess

the performance of the proposed approach. The results show

that cubature-based uncertainty quantification in BNNs con-

verges faster while still achieving more ‘diverse’ uncertainty

quantification results than a typical Bayesian neural network.
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