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Summary. Several studies on heritability in twins aim at understanding the different contribution
of environmental and genetic factors to specific traits. Considering the national merit twin study,
our purpose is to analyse correctly the influence of socio-economic status on the relationship
between twins’ cognitive abilities. Our methodology is based on conditional copulas, which
enable us to model the effect of a covariate driving the strength of dependence between the
main variables. We propose a flexible Bayesian non-parametric approach for the estimation of
conditional copulas, which can model any conditional copula density. Our methodology extends
the work of Wu, Wang and Walker in 2015 by introducing dependence from a covariate in an
infinite mixture model. Our results suggest that environmental factors are more influential in
families with lower socio-economic position.
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1. Introduction

The literature on heritability of traits in children often focuses on twins, because of the shared

environmental factors and the association of genetical characteristics. Among studies on the

heritability of diseases, Wang et al. (2011) applied an efficient estimation method to mixed effect

models to analyse disease inheritance in twins.

One of the main purposes of studies on heritability is to estimate the different contribution of

genetic and environmental factors to traits or outcomes (see, for example, the latent class twin

method of Baker (2016)). Bates et al. (2013) studied the interactions between environmental

and genetic effects on intelligence in twins, showing that higher socio-economic status is as-

sociated with higher intelligence scores. Bioecological theory states that environmental factors

may significantly influence the heritability of certain characteristics, such as cognitive ability,

which is the readiness for future intellectual or educational pursuits. Several studies have found

that cognitive ability is more pronounced and evident among children who are raised in higher

socio-economic status families. Such families can offer greater opportunities to children, due
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to their socio-economic wealth status, and represent stimulating environments where children’s

inherited capabilities may become more manifest.

The aim of this paper is to analyse correctly the effect of socio-economic factors on the

relationship between twins’ cognitive abilities. From a sample of 839 US adolescent twin pairs

who completed the national merit scholarship qualifying test (NMSQT), we consider each

twin’s overall school performance (measured by a total score including English, mathematics,

social science, natural science and word usage), the mother’s and father’s education level and

the family income. The data are plotted in Fig. 1, which shows the scatter plots of the twins’

school performances, on each axis, against the socio-economic variables, whose values are in

different colours (dark denotes low values, whereas light denotes high values). Fig. 1 indicates

that the twins’ school performances are positively correlated and their dependence is influenced

by the values of the socio-economic variables (the mother’s (Fig. 1(a)) and the father’s level of

education (Fig. 1(b)) and the family income (Fig. 1(c))). Indeed, most of the light dots (denoting

high values of the covariates) are grouped in the upper right-hand corner, whereas the dark dots

(denoting low values of the covariates) lie in the bottom left-hand corner of each plot. Hence,

the higher the parents’ education or family income, the higher is the twins’ school performance.

This means that the twins’ performance scores are functions of each covariate and they vary

according to the values of the covariates.
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Fig. 1. Scatter plots of the twins overall scores with respect to (a) the mother’s and (b) father’s level of
education and (c) family income
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In Fig. 2 we produced three-dimensional histograms of the twins’ performance scores for

various values of the mother’s education. Similar plots for the father’s level of education and

family income are included in Figs 3 and 4. The different shapes of the histograms corresponding

to different levels of the covariates suggest that the dependence structure between the twins’

school outcomes changes according to the values of the mother’s and father’s education and

family income. Therefore, a flexible model, which can capture the effect of a covariate on the

dependence between the children’s performance scores, is necessary.

To model the dependence structure between the twins’ school performances, we use copulas,

which are popular modelling approaches in multivariate statistics allowing the separation of

the marginal components of a joint distribution from its dependence structure. More precisely,

Sklar (1959) proved that a d-dimensional distribution H of the random variables Y1, : : : , Yd can

be fully described by its marginal distributions and a function C : [0, 1]d → [0, 1], called a copula,

through the relation H.y1, : : : , yd/=C{F1.y1/, : : : , Fd.yd/}. In the literature, copulas have been

applied to model the dependence between variables in a wide variety of fields (see Kolev et al.

(2006) and Cherubini et al. (2004)). In particular, applications of copula models have involved

lifetime data analysis (Andersen, 2005), survival analysis of Atlantic halibut (Braekers and

Veraverbeke, 2005) and transfusion-related acquired immune deficiency syndrome and cancer

analysis (Emura and Wang, 2012; Huang and Zhang, 2008; Owzar et al., 2007).

The introduction of covariate adjustments to copulas has attracted increased interest in recent

years. Craiu and Sabeti (2012) proposed a conditional copula approach in regression settings

where the bivariate outcome can be continuous or mixed. Patton (2006) introduced time vari-

ation in the dependence structure of auto-regressive moving average models (see also Jondeau

and Rockinger (2006) and Bartram et al. (2007) for other applications of time series analysis to

dependence modelling). Acar et al. (2010) provided a non-parametric procedure to estimate the

functional relationship between copula parameters and covariates, showing that the gestational

age drives the strength of dependence between the birth weights of twins. Abegaz et al. (2012)

and Gijbels et al. (2012) proposed semiparametric and non-parametric methodologies for the

estimation of conditional copulas, establishing consistency and asymptotic normality results for

the estimators. The methodology is then applied to examine the influence of the gross domestic

product, in US dollars per capita, on the life expectancy of males and females at birth.

In a similar vein, parametric models such as Bayesian regression copulas allow the specifica-

tion of Bayesian marginal regressions for a set of outcomes, linking the marginals to covariates,

and combining them via a copula to form a joint model. The general framework of Bayesian

Gaussian regression copulas with discrete, continuous or mixed outcomes was presented by Pitt

et al. (2006) and enables handling a multivariate regression with Gaussian and non-Gaussian

marginal distributions.

Yin and Yuan (2009) adopted a Bayesian regression copula model in cancer clinical trials

for dose finding to account for the synergistic effect of combinations of multiple drugs. A cop-

ula constructed from the skew t-distribution was employed by Smith et al. (2012) to capture

asymmetric and extreme dependence between variables modelled via Bayesian marginal regres-

sions. Whereas most Bayesian regression copula models focus on covariate adjustments for

the marginals, recently Klein and Kneiss (2016) proposed simultaneous Bayesian inference for

both the marginal distributions and the copula. Other contributions along the same lines are

Taglioni et al. (2016) and Stander et al. (2015a,b). However, Klein and Kneiss (2016), Taglioni

et al. (2016) and Stander et al. (2015a,b) selected the copula family by using the deviance in-

formation criterion, which may suffer from limitations, as discussed for example by Plummer

(2008). Indeed, the choice of the copula family may be controversial and it is still an open

problem (see Joe (2014)). The literature offers a rich range of copula families, such as elliptical
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copulas (e.g. Gaussian and Student’s t) and Archimedean copulas (e.g. Frank, Gumbel, Clay-

ton and Joe copulas) to accommodate various dependence structures. In this paper, we adopt

a Bayesian non-parametric approach which enables us to overcome the issue of the choice of

copula and we adopt a conditional copula approach to model the effect of a covariate on the

dependence between variables. Our methodology builds on Wu et al. (2015), who proposed

a Bayesian non-parametric procedure to estimate any unconditional copula density function.

They combined the well-known Gaussian copula density with the modelling flexibility of the

Bayesian non-parametric approach, proposing to use an infinite mixture of Gaussian copulas.

Burda and Prokhorov (2014) proposed to use non-parametric univariate Gaussian mixtures

for the marginals and a multivariate random Bernstein polynomial copula for the link func-

tion under the Dirichlet process prior. Our paper extends the work of Wu et al. (2015) to the

conditional copula setting, by proposing a novel methodology which combines the advantages

of a conditional copula approach with the modelling flexibility of Bayesian non-parametrics.

In particular, we include a conditional covariate component to explain the variable depen-

dence structure, allowing us further flexibility to the copula density modelling. To the best of

our knowledge, this is the first Bayesian non-parametric proposal in the conditional copulas

literature.

The outline of the paper is as follows. In Section 2 we briefly review the literature about con-

ditional copulas and Bayesian non-parametric copula estimation. In Section 3 we introduce our

novel Bayesian non-parametric conditional copula setting. Section 4 provides an algorithm for

estimating the posterior parameters and Section 5 illustrates the performance of the methodol-

ogy. Section 6 is devoted to the application of our methodology to the analysis of the national

merit twin study. Concluding remarks are given in Section 7.

The code that was used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Preliminaries

In this section, we review some preliminary notions about conditional copulas and illustrate the

Bayesian non-parametric copula density estimation that was introduced in Wu et al. (2015). In

what follows, we focus on the bivariate case for simplicity; however, the arguments can be easily

extended to more than two dimensions.

2.1. The conditional copula

Let Y1 and Y2 be continuous variables of interest and X be a covariate that may affect the

dependence between Y1 and Y2. Following Gijbels et al. (2012), Abegaz et al. (2012) and Acar

et al. (2010), we suppose that the conditional distribution of .Y1, Y2/ given X=x exists and we

denote the corresponding conditional joint distribution function by

Hx.y1, y2/=P.Y1 �y1, Y2 �y2|X=x/:

If the marginals of Hx, denoted as

F1x.y1/=P.Y1 �y1|X=x/,

F2x.y2/=P.Y2 �y2|X=x/,

are continuous, then according to Sklar’s theorem there is a unique copula Cx which equals

http://wileyonlinelibrary.com/journal/rss-datasets
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Cx.u, v/=Hx{F−1
1x .u/, F−1

2x .v/} .1/

where F−1
1x .u/ = inf{y1 : F1x � u} and F−1

2x .v/ = inf{y2 : F2x � v} are the conditional quantile

functions and u = F1x.y1/ and v = F2x.y2/ are called pseudo-observations. The conditional

copula Cx fully describes the conditional dependence structure of .Y1, Y2/ given X = x. An

alternative expression for copula (1) is

Hx.y1, y2/=Cx{F1x.y1/, F2x.y2/}: .2/

2.2. Bayesian non-parametric copula density estimation

Let Φρ.y1, y2/ denote the standard bivariate normal distribution function with correlation co-

efficient ρ. Then, Cρ is the copula corresponding to Φρ, taking the form

Cρ.u, v/=Φρ{Φ
−1.u/, Φ−1.v/} .3/

where Φ is the univariate standard normal distribution function. The Gaussian copula density

is

cρ.u, v/=|Σ|−1=2 exp

{

−
1

2
.Φ−1.u/, Φ−1.v//.Σ−1 − I/

(

Φ
−1.u/

Φ
−1.v/

)}

.4/

where the correlation matrix is

Σ=

(

1 ρ

ρ 1

)

:

Wu et al. (2015) proposed to use an infinite mixture of Gaussian copulas for the estimation of

a copula density, as follows:

c.u, v/=
∞
∑

j=1

wjcρj .u, v/ .5/

where the weights wj sum to 1 and the ρjs vary in .−1, 1/. Given a set of n observations

.u1, v1/, : : : , .un, vn/, their model can be described through a hierarchical specification, i.e.

.ui, vi/|ρi
ind
∼ cρi.ui, vi/, i=1, : : : , n,

ρi|G
IID
∼ G,

G∼DP.λ, G0/,

}

.6/

where G is a Dirichlet process prior with total mass λ and base measure G0. This proposal is

motivated by the fact that bivariate density functions on the real plane can be arbitrarily well

approximated by a mixture of a countably infinite number of bivariate normal distributions of

the form

f.y1, y2/=
∞
∑

j=1

wjN{.y1, y2/|.µ1j, µ2j/, Σj}

where N{.y1, y2/|.µ1j, µ2j/, Σj} is the joint bivariate normal density with mean vector .µ1j, µ2j/

and correlation matrix Σj (see Lo (1984) and Ferguson (1983)). Roughly speaking, Lo (1984)

and Ferguson (1983) are mimicking the Dirichlet process mixture model in the copula setting

(see Escobar (1994) and Escobar and West (1995)). The sampling strategy follows the slice

sampler of Walker (2007) and Kalli et al. (2011), who showed that the Gaussian mixture is

sufficiently flexible to approximate any bivariate copula density accurately.
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3. Conditional copula estimation with Dirichlet process priors

The data object of study requires a model which can take into account the effect of a covariate. We

build on the model that was introduced by Wu et al. (2015) and illustrated in the previous section.

The idea is to replace the Gaussian copula with a conditional version where the correlation is a

function of the covariate, i.e.

cρ.u, v|x/= cρ.x/.u, v/:

The function ρ.x/ can be modelled as preferred, for instance, with a generalized linear model or

with a non-linear function. In any case, we have that ρ.x/ will depend on a vector of parameters

β, so that

cρ.x/.u, v/= cρ.x|β/.u, v/:

We assume a Dirichlet process prior on the vector of parameters β= .β1, : : : , βd/. Following the

model description that is provided in equations (6), we can summarize our model as

.ui, vi/|ρ.xi|βi/
ind
∼ cρ.xi|βi/

.ui, vi/, i=1, : : : , n,

βi|G
IID
∼ G,

G∼DP.λ, G0/,

}

.7/

where G is a Dirichlet process prior with total mass λ and base measure G0. In the numerical

experiments, we consider a base measure G0 which is a multivariate normal distribution with

zero-mean vector and variance σ2Id , where Id is the d-dimensional identity matrix and σ2 > 0.

As in Wu et al. (2015), our model can be described as an infinite mixture of normal distributions,

cρ.u, v|x/=
∞
∑

j=1

wjcρ.x|βj/.u, v/, .8/

and hence suitable for implementing a slice sampling algorithm, as explained in the next section.

To model the function ρ.x|β/, we would like to follow some standard approaches in the

literature. Abegaz et al. (2012) modelled the dependence of the parameter of interest, with

respect to the covariate, through a calibration function θ.x|β/. It is important to highlight that

in many copula families the parameter space is restricted. In contrast, the calibration function

θ.x|β/ can assume any value on the real line. In our case, the parameter is restricted to the

interval .−1, 1/ and we need a transformation which can link the calibration function θ.x|β/ to

ρ.x|β/. In this paper, we adopt the transformation

ρ.x|β/=
2

|θ.x|β/|+1
−1:

In our simulated and real data examples we focus on two particular calibration functions studied

in the literature:

θ.x|β/=β1 +β2x2,

θ.x|β/=β1 +β2x+β3 exp.−β4x2/

such that θ.x|β/∈ .−∞, ∞/ and, consequently, ρ.x|β/∈ .−1, 1/.

4. Posterior sampling algorithm

The observations .y1i, y2i/, for i = 1, : : : , n, are transformed into the corresponding pseudo-
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observations .ui, vi/ by using a non-parametric estimation approach, as in Gijbels et al. (2011).

The pseudo-observations are then plugged into the copula. Following equation (8), given .ui, vi/

for i = 1, : : : , n, and the conditional variable xi, the conditional copula density function for

each pair .ui, vi/ can be written as an infinite mixture of conditional Gaussian copulas, such

that

c.ui, vi|xi/=
∞
∑

j=1

wjcρ.xi|βj/.ui, vi/ .9/

where wjs are the stick breaking weights, i.e.

wj =πj

j−1
∏

l=1

.1−πl/

where the πj are distributed as a Be.1, λ/ distribution, λ> 0. To sample from the infinite mix-

ture that is displayed in equation (9), we use the slice sampling algorithm for mixture models

proposed by Walker (2007) and Kalli et al. (2011). To reduce the dimensionality of the problem,

they introduced a latent variable zi for each i which enables us to write the infinite mixture model

as

c.ui, vi, zi|xi/=
∞
∑

j=1

I.zi < wj/cρ.xi|βj/.ui, vi/: .10/

The introduction of the slice variable zi reduces the sampling complexity analogously to a finite

mixture model. In particular, letting

Aw ={j : zi < wj}, .11/

then it can be proved that the cardinality of the set Aw is almost surely finite. Consequently, there

is a finite number of parameters to be estimated. By iterating the data augmentation principle

further, we introduce another latent variable di, which is called the allocation variable, allowing

us to allocate each observation to one component of the mixture model. Then, the conditional

copula density c.ui, vi, zi, di|xi/ takes the form

c.ui, vi, zi, di|xi/= I.zi < wdi/cρ.xi|βdi
/.ui, vi/ .12/

where di ∈{1, 2, : : :}. Hence, the full likelihood function of the conditional copula model is

n
∏

i=1

c.ui, vi, zi, di|xi/=
n
∏

i=1

I.zi < wdi/cρ.xi|βdi
/.ui, vi/: .13/

We use the notation .U, V/={i=1, : : : , n : .ui, vi/} and X={x1, : : : , xn} to describe the pseudo-

observations and the covariate values respectively. We denote by β={β1, β2, : : :} the vector of

parameters and D={d1, : : : , dn}, Z ={z1, : : : , zn} and π={π1, π2, : : :} the new variables intro-

duced so far.

Therefore, we used a Gibbs sampler to simulate iteratively from the posterior distribution

function, according to the following steps.

Step 1: the stick breaking components π are updated given [Z, D, β, .U, V/, X].

Step 2: the latent slice variables Z are updated given [π, D, β, .U, V/, X].

Step 3: the allocation variables D are updated given [π, Z, β, .U, V/, X].

Step 4: the vector of parameters β is updated given [π, Z, D, .U, V/, X].

The Gibbs sampling details are explained in Appendix A.
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5. Simulation experiments

This section illustrates the performance of the Bayesian non-parametric conditional copula

model with simulated data. We generate data sets .U, V/ of sizes n=250, 500, 1000 from various

copula families, such as the Gaussian and Frank copulas.

The copula dependence parameter is considered as a function of the exogenous variable X,

which is simulated from a uniform distribution in the interval [−2, 2].

For the Dirichlet process prior, we fix the total mass λ=1 and, for the base measure G0, we

adopt a bivariate normal distribution with zero-mean vector and covariance matrix σ2
I, where

σ2 =100. The following calibration functions are selected for θ.x|β/:

θ.x|β/=β1 +β2x2,

θ.x|β/=β1 +β2x+β3 exp.−β4x2/:

As highlighted in Section 3, we link the calibration functions θ.x|β/ with ρ.x|β/ through the

transformation

ρ.x|β/=
2

|θ.x|β/|+1
−1:

This ensures that ρ.x|β/ assumes values between .−1, 1/.

We run the Gibbs sampler algorithm described in Section 4 for 4000 iterations with

(a) 500 burn-in iterations and

(b) 3500 burn-in iterations.

Aiming at a parsimonious representation of the results, we focused on 3500 burn-in iterations,

since 500 burn-in iterations gave very similar results.

Fig. 5 illustrates the results of the application of the Bayesian non-parametric conditional

copula model to data simulated from a Gaussian copula, with sample size n = 500. Fig. 6

illustrates similar results for the Frank copula. Since the performances of the model with sample

sizes n=250 and n=1000 for both copula families were analogous, here we omit the results.

Figs 5(a)–5(d) and 6(a)–6(d) show the scatter plots and histograms of the simulated data

and the predictive samples obtained by using the first calibration function, whereas Figs 5(e)–

5(h) and Figs 6(e)–6(h) show the scatter plots and histograms of the simulated data and the

predictive sample obtained by using the second calibration function. The comparison between

the simulated and predictive outputs highlights the excellent fit of the Bayesian non-parametric

conditional copula model by using either calibration function and for different copula families.

The model performance appears to be consistent across both copula families, demonstrating

that the approach is suitable to model different dependence patterns and tail structures. Fig.

7 shows the plot of the number of components generated at each Markov chain Monte Carlo

iteration for both the Gaussian and the Frank copula. In Fig. 7, we focus on the first calibration

function, since the second calibration function gave similar results. Table 1 shows the summary

statistics of the number of components that were generated at each Markov chain Monte Carlo

iteration for both copulas, indicating that the posterior median of the number of components

is equal to 2. For the two most significant components, we estimated the weights that were

generated at each Markov chain Monte Carlo iteration for both copulas. In Fig. 8 we show

the trace plots of the last 500 iterations of the first two weights, as defined in Section 4. Fig.

8 suggests that the first weight is much more important than the second weight, since the first

weight tends to take values close to 1, whereas the second weight takes values close to 0. For

each of the two components we also estimated the posterior mean of the copula correlation



534 L. Dalla Valle, F. Leisen and L. Rossini

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 5. Gaussian copula with sample size n D 500: (a), (c) scatter plots and (b), (d) histograms, obtained
with the first calibration function, of the simulated and predictive samples respectively; (e), (g) scatter plots
and (f), (h) histograms, obtained with the second calibration function, of the simulated and predictive sample
respectively

coefficient ρj (defined in equation (5)), obtaining, for the Gaussian copula, a value of 0:6701 for

the first component and −0:9860 for the second component. In contrast, for the Frank copula

we obtained a posterior mean of 0:7941 for the first component and −0:9722 for the second

component.

Finally, we consider an alternative Gaussian copula scenario, using the second calibration

function. Table 2 shows the estimated weights of the mixture. The previous illustration, depicted

in Fig. 8, showed that one component was dominating the others. In contrast, this experiment

shows two dominating weights, w1 =0:3237 and w4 =0:6286, motivating the use of the approach

proposed.

6. Real data application

We now apply the proposed Bayesian non-parametric conditional copula method to a sample

of 839 adolescent twin pairs, which is a subset of the national merit twin study (Loehlin and
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Fig. 6. Frank copula with sample size n D 500: (a), (c) scatter plots and (b), (d) histograms, obtained with
the first calibration function, of the simulated and predictive samples respectively; (e), (g) scatter plots and
(f), (h) histograms, obtained with the second calibration function, of the simulated and predictive sample
respectively

Table 1. Summary statistics of the number of components generated at each Markov
chain Monte Carlo iteration for the first calibration function

Copula Minimum 1st quantile Median Mean 3rd quantile Maximum

Gaussian 1 1 2 2.102 3 7
Frank 1 2 2 2.546 3 7

Nichols, 2009, 2014). The data set contains questionnaire data from 17-year-old twins and their

parents, where the twins were identified among 600000 US high school juniors who took part

in the NMSQT.

The NMSQT was designed to measure cognitive aptitude, i.e. students’ readiness for future

intellectual or educational pursuits. The participants in the test include identical twins and

same-sex fraternal twins who were asked to fill in a complete questionnaire to understand their
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Fig. 7. Number of components (y-axis) generated at each Markov chain Monte Carlo iteration (x-axis) for
(a) the Gaussian and for (b) the Frank copula with sample size nD500
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Table 2. Posterior means of the weights obtained with the second calibration function and
sample size nD500 for the Gaussian copula

Component Posterior mean Component Posterior mean Component Posterior mean

1 0.3237 4 0.6286 7 0.0024
2 0.0083 5 0.0096 8 0.0018
3 0.0193 6 0.0041 9 0.0009
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Fig. 9. Relationship between the covariates of the twins data set: the lower triangular panels represent
pairwise scatter plots, the upper triangular panels show pairwise Pearson’s correlation coefficients and the
diagonal panels represent the histograms of each covariate (note that jittering was used in the scatter plots
to prevent overplotting)

school performance and attitude. Our purpose is to examine whether the relationship between

twins’ cognitive ability, measured by the NMSQT, is influenced by their socio-economic status,

measured by parent education and parental income. The variables that we considered from this

study are the overall measures of each twin’s performance at school (obtained as the sum of

individual scores in English usage, mathematics usage, social science reading, natural science
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Table 3. Posterior means of the mixture component weights for the twins’ performance
scores with respect to the mother’s level of education

Component Posterior mean Component Posterior mean Component Posterior mean

1 0.0376 17 0.0393 33 1:0542×10−4

2 0.0402 18 0.0389 34 6:0567×10−5

3 0.0454 19 0.0233 35 3:1244×10−5

4 0.1029 20 0.0233 36 2:0493×10−5

5 0.0832 21 0.0285 37 1:2760×10−5

6 0.0578 22 0.0221 38 4:8162×10−6

7 0.0504 23 0.0167 39 3:5861×10−6

8 0.0408 24 0.0180 40 1:4768×10−6

9 0.0360 25 0.0091 41 9:4360×10−7

10 0.0467 26 0.0129 42 1:3644×10−7

11 0.0352 27 0.0051 43 6:5268×10−8

12 0.0431 28 0.0034 44 5:4506×10−8

13 0.0402 29 0.0036 45 3:4268×10−8

14 0.0351 30 9:4652×10−4 46 5:4973×10−13

15 0.0353 31 4:6736×10−4 47 6:0754×10−12

16 0.0240 32 2:5834×10−4 48 1:0977×10−11

reading and word usage and vocabulary), the mother’s and father’s level of education and the

family income. The overall scores range from 30 to 160, the education covariates range from 0

to 6 and the family income covariate ranges from 0 to 7. The levels of the education covariates

correspond to less than eighth grade, eighth grade, part high school, high school graduate,

part college or junior college, college graduate and graduate or professional degree beyond a

Bachelor’s degree. The levels of the income covariate correspond to values going from less than

$5000 per year to over $25000 per year.

As discussed in Section 1, the scatter plots in Fig. 1 clearly show that there is a positive corre-

lation between the twins’ school performance and the strength of dependence varies according

to the values of a covariate, which is the mother’s (Fig. 1(a)) or father’s level of education (Fig.

1(b)) or the family income (Fig. 1(c)). In Fig. 1 the effect of the covariates is illustrated by dots

of various shades, where we note that most of the light dots are grouped in the upper right-

hand corner, whereas the dark dots lie in the bottom left-hand corner. Therefore, the higher

the parents’ education or family income, the higher is the twins’ school performance. To model

the effect of a covariate, such as the mother’s and father’s education and family income, on the

dependence between the overall scores of the twins, we implement the Bayesian non-parametric

conditional copula model.

Fig. 9 shows the relationship between the covariates of the twins data set, where the lower trian-

gular panels represent pairwise scatterplots, the upper triangular panels show pairwise Pearson

correlation coefficients and the diagonal panels represent the histograms of each covariate. The

scatter plots and Pearson’s correlation coefficients in Fig. 9 indicate quite a strong positive corre-

lation between each pair of covariates, especially between the mother’s and father’s level of edu-

cation. The high correlations indicate that the data do not contain much information on the inde-

pendent effects of each covariate and suggest the inclusion of only one of them in the model. For

this reason we decided to include only one of the redundant covariates at a time. Note that, with

a different data set, the methodology may be extended to include more than one covariate. How-

ever, model specification issues and increased computational costs must be carefully considered.

Adopting the same priors as those of the simulation studies, we run the Gibbs sampling

algorithm described in Section 4 for 4000 iterations. Figs 10, 11 and 12 show, for the mother’s
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Table 4. Posterior means of the mixture component weights for the twins’performance
scores with respect to the father’s level of education

Component Posterior mean Component Posterior mean Component Posterior mean

1 0.0514 18 0.0313 35 7:4762×10−6

2 0.0516 19 0.0260 36 4:8028×10−6

3 0.0536 20 0.0257 37 3:5777×10−6

4 0.0379 21 0.0197 38 7:2414×10−7

5 0.0675 22 0.0246 39 5:6380×10−7

6 0.0743 23 0.0063 40 1:5620×10−7

7 0.0414 24 0.0097 41 5:4960×10−8

8 0.0523 25 0.0049 42 1:0994×10−7

9 0.0384 26 0.0037 43 1:5524×10−8

10 0.0497 27 0.0013 44 1:1536×10−8

11 0.0351 28 5:7852×10−4 45 6:4516×10−9

12 0.0495 29 3:5660×10−4 46 6:2531×10−9

13 0.0304 30 1:6825×10−4 47 1:4255×10−8

14 0.1066 31 9:9642×10−5 48 3:4571×10−9

15 0.0270 32 4:6900×10−5 49 7:0123×10−10

16 0.0319 33 2:6103×10−5 50 1:8651×10−10

17 0.0469 34 1:1375×10−5 51 8:0720×10−10

Table 5. Posterior means of the mixture component weights for the twins’ performance
scores with respect to the family income

Component Posterior mean Component Posterior mean Component Posterior mean

1 0.0836 17 0.0359 33 1:1455×10−4

2 0.0681 18 0.0236 34 6:7836×10−5

3 0.0486 19 0.0277 35 3:8637×10−5

4 0.0750 20 0.0233 36 1:9610×10−5

5 0.0074 21 0.0205 37 1:0765×10−5

6 0.0569 22 0.0209 38 6:4166×10−6

7 0.0492 23 0.0172 39 4:1155×10−6

8 0.0415 24 0.0105 40 2:7336×10−6

9 0.0319 25 0.0097 41 9:7839×10−7

10 0.0340 26 0.0080 42 3:6532×10−7

11 0.0288 27 0.0042 43 3:5966×10−7

12 0.0451 28 0.0023 44 1:7294×10−7

13 0.0395 29 0.0018 45 1:9279×10−8

14 0.0365 30 0.0013 46 1:5505×10−8

15 0.0281 31 4:1135×10−4 47 8:1074×10−9

16 0.0377 32 2:2382×10−4 48 8:5996×10−9

and father’s education and family income respectively, the scatter plots of the twins’ overall scores

by using the real and transformed pseudo-observations (Figs 10(a), 10(b), 11(a), 11(b), 12(a)

and 12(b)), the scatter plots of the predictive and transformed predictive samples (Figs 10(c),

10(d), 11(c), 11(d), 12(c) and 12(d)) and the histograms of the real and the predictive samples

(Figs 10(e), 10(f), 11(e), 11(f), 12(e) and 12(f)). Note that the pseudo-observations are obtained

by using the non-parametric estimation approach that was described in Section 4. From the

comparison between the scatter plots and histograms of the real and predictive samples obtained

with the three different covariates, it emerges that the Bayesian non-parametrics conditional
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Fig. 13. Estimated Kendall’s τ against (a) the mother’s and (b) the father’s level of education and (c) family
income, and approximate 95% credible intervals ( )
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copula model accurately captures the tail structures and the dependence patterns between the

twins’ overall scores. Moreover, the posterior means of the number of mixture components

for the conditional copula are 26:82, 24:49 and 27:11, for the mother’s and father’s level of

education and the family income respectively, supporting the need for non-Gaussian copulas.

Tables 3, 4 and 5 list the posterior means of the component weights when the three covariates

are considered. We note that the good performance of this approach in tail modelling makes

it suitable for various applications focusing on extremes. To quantify the degree of dependence

between the twins’ scores, we use the conditional Kendall’s τ , which is a non-parametric measure

of correlation, known as concordance, between two ranked variables .Y1, Y2/ with respect to a

covariate X=x. The conditional Kendall’s τ takes the form

τ .x/=4

∫ ∫

Cx.u1, u2/dCx.u1, u2/−1

where Cx is the appropriate conditional copula. Fig. 13 shows Kendall’s τ estimated from the

model against the mother’s (Fig. 13(a)) and father’s level of education (Fig. 13(b)) and the family

income (Fig. 13(c)), together with 95% credible intervals. The plots clearly illustrate the negative

effect of all three covariates on the dependence between the twins’ overall scores. The effect is

greater for family income, where Kendall’s τ decreases from approximately 0:83 to 0:45, whereas

for the parents’ education levels Kendall’s τ decreases from approximately 0:8 to 0:6. Therefore,

the higher the parents’ education and family income, the better the socio-economic status is

and the higher the differences between the twins’ school performances. The cognitive aptitudes

of twins from less advantaged families are more similar to each other than those from high

income, highly educated families. Families of high socio-economic status provide supportive and

challenging environments, which can offer a wide range of opportunities and choices to their

children, and allow them to express themselves freely. Hence, twins raised in wealthy families

are encouraged to develop differences in their traits and may show quite dissimilar cognitive

abilities, albeit high on average. In contrast, families of low socio-economic status offer scarce

opportunities to their children and may provide limiting and restrictive environments. In less

advantaged families, twins cannot develop their full potential and individuality; hence both

tend to show low cognitive abilities.

This might suggest, as in Loehlin et al. (2009), an interaction between genetic and environmen-

tal factors. Genes multiply environmental inputs that support intellectual growth such that an

increased socio-economic status raises the average cognitive ability but also magnifies individual

differences in cognitive ability (see Bates et al. (2013)).

7. Conclusion

In this paper we proposed a Bayesian non-parametric conditional copula approach to

model the strength and type of dependence between two variables of interest and we applied the

methodology to the national merit twin study. To capture the dependence structure between

two variables, we introduced two different calibration functions expressing the functional form

of a covariate variable. The statistical inference was obtained by implementing a slice sampling

algorithm, assuming an infinite mixture model for the copula. The methodology combines the

advantages of the conditional copula approach with the modelling flexibility of Bayesian non-

parametrics.

The simulation studies illustrated the excellent performance of our model with three distinct

copula families and different sample sizes. The application to the twins data revealed the im-
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portance of the environment in the development of twins’ cognitive abilities and suggests that

environmental factors are more influential in families with higher socio-economic position. In

contrast, other factors, such as genetic causes, may be more dominant in families with lower

socio-economic position.

Although this paper focuses on bivariate copula models, the methodology can be extended

to multivariate copulas including more than one covariate. However, the inclusion of multiple

covariates needs special attention regarding the choice of variables before estimating the cali-

bration functions. Moreover, the increasing computational cost due to the additional covariates

should be taken carefully into consideration.
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Appendix A: Gibbs sampling details

Let Dj = {i = 1, : : : , n : di = j} be the set of indices of the observations allocated to the jth component
of the mixture, whereas D = {j : Dj �= ∅} is the set of indices of non-empty mixtures components. Let
DÅ = sup{D} be the number of stick breaking components that are used in the mixture. As in Kalli et al.
(2011), the sampling of infinite elements of π and β is not necessary, since only the elements of the full
conditional probability density functions of D are needed.

The maximum number of stick breaking components to be sampled is

NÅ =max{i=1, : : : , n|NÅ
i },

where NÅ
i is the smallest integer such that Σ

NÆ
i

j=1wj > 1− zi.

A.1. Update of π
We update the stick breaking components and consequently the weights wj based on the equation

wj =πj

∏

k<j

.1−πk/:

Assuming that πj is distributed as a beta (Be.1, λ/) distribution, the full conditional distribution of πj is

πj|: : :∼Be.1+#{di = j}, λ+#{di >j}/, .14/

where #{di = j} is the number of di equal to j and #{di >j} is the number of di greater than j for j<DÅ.
In contrast, if j =DÅ +1, : : : , NÅ we have that

πj|: : :∼Be.1, λ/:

A.2. Update of Z
From the full likelihood function (13), zi follows a uniform distribution

zi|: : :∼U.0, wdi
/ .15/

and it is sampled accordingly.
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A.3. Update of D
The allocation variable di values lie between 0 and Ni and the density of di satisfies

P.di = j|: : :/∝ I.zi < wdi
/cρ.xi|βdi

/.ui, vi/: .16/

A.4. Update of β
The full conditional of the vector of parameters βk, for k �1, is

f.βk|: : :/∝π.βk/
∏

di=k

cρ.xi|βk/.ui, vi/, .17/

where π.βk/ is the prior on β. Since expression (17) is not a standard distribution, we used a random-walk
Metropolis–Hastings algorithm.
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