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Evaluation of sensitivity and specificity of diagnostic tests in the absence of a gold standard typi-

cally relies on latent structure models. For example, two extensions of latent class models in the

biostatistics literature, Gaussian random effects (Qu et al., 1996) and finite mixture (Albert and

Dodd, 2004), form the basis of several recent approaches to estimating sensitivity and specificity

of diagnostic tests when no (or partial) gold standard evaluation is available. These models attempt

to account for additional item dependencies that cannot be explained with traditional latent class

models, where the classes typically correspond to healthy and diseased individuals.

We propose an alternative latent structure model, namely, the extended mixture Grade of Mem-

bership (GoM) model, for evaluation of diagnostic tests without a gold standard. The extended

mixture GoM model allows for test results to be dependent on latent degree of disease severity,

while also allowing for the presence of some individuals with deterministic response patterns such

as all-positive and all-negative test results. We formulate and estimate the model in a hierarchical

Bayesian framework. We use a simulation study to compare recovery of true sensitivity and speci-

ficity parameters with the extended mixture GoM model, and the latent class, Gaussian random

effects, and finite mixture models.

Our findings indicate that when the true generating model contains deterministic mixture com-

ponents and the sample size is large, all four models tend to underestimate sensitivity and overes-

timate specificity parameters. These results emphasize the need for sensitivity analyses in real life

applications when the data generating model is unknown. Employing a number of latent structure

models and examining how the assumptions on latent structure affect conclusions about accuracy of

diagnostic tests is a crucial step in analyzing test performance without a gold standard. We illustrate

the sensitivity analysis approach using data on screening for Chlamydia trachomatis. This example
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demonstrates that the extended mixture GoM model not only provides us with new latent structure

and the corresponding interpretation to mechanisms that give rise to test results, but also provides

new insights for estimating test accuracy without a gold standard.

7.1 Introduction

We consider the problem of estimating sensitivity and specificity of diagnostic or screening tests

when results are available from multiple fallible tests but not from gold standard. This could happen

when gold standard assessment doesn’t exist or when economic or ethical issues in administering

the gold standard prevent one from doing so.

Latent class analysis (Lazarsfeld and Henry, 1968; Goodman, 1974) has been at the core of

model-based methods for analyzing diagnostic errors in the absence of a gold standard (Hui and

Zhou, 1998; Albert and Dodd, 2004; Pepe and Janes, 2007). Recently, two extensions of latent

class models, known as Gaussian random effects (Qu et al., 1996) and finite mixture (Albert and

Dodd, 2004), have produced several new approaches to estimating sensitivity and specificity of

diagnostic tests when no (or partial) gold standard evaluation is available (Hadgu and Qu, 1998;

Albert and Dodd, 2004; 2008; Albert, 2007b). See Hui and Zhou (1998) for a comprehensive review

of the earlier literature on evaluating diagnostic tests without gold standards. Pepe and Janes (2007)

criticize latent class models as a tool for analyzing diagnostic test performance because of the lack

of links between biological mechanisms giving rise to test results and dependencies induced by a

structure of the model. For example, they assert that most diseases are not dichotomous but occur in

varying degrees of severity. Hence, latent class models that employ discrete disease status as a latent

variable cannot account for additional correlations induced by disease severity such as occurrences

of false negatives for persons with mild disease. One example that Pepe and Janes (2007) provide

talks about detection of a particular substance in a biological sample where the amount of substance

affects all test results.

The best way to evaluate the performance of tests with unknown characteristics is, undoubtedly,

to have at least a partial gold standard assessment (Albert and Dodd, 2008; Albert, 2007a). In the

absence of a gold standard, however, having an arsenal of model-based methods can be informative

for evaluating sensitivity of scientific conclusions regarding accuracy of diagnostic and screening

tests. Because the true data generating mechanism is typically not known, Albert and Dodd (2004)

(p. 433) recommends performing sensitivity analysis by using different models: “Although biolog-

ical plausibility may aid the practitioner in favoring one model over another, a range of estimates

from various models of diagnostic error (as well as standard errors) should be reported.”

We present an alternative latent structure model for the analysis of test performance when no

gold standard is available. Our model is an extension of the Grade of Membership model. The

GoM model employs a degree of disease severity as a latent variable, therefore inducing a mixed

membership latent structure where individuals can be members of diseased and healthy classes at the

same time. This type of latent structure addresses the concerns of Pepe and Janes (2007). We extend

the GoM model to obtain the extended mixture GoM model, analogous to the extended finite mixture

model by Muthen and Shedden (1999) and the finite mixture model by Albert and Dodd (2004).

The extended mixture GoM model allows for a mixture of deterministic and mixed membership

responses. For example, some truly positive individuals may have deterministic positive response

on every test while others may be subject to diagnostic error according to the GoM model. A

version of this model has previously been applied in disability studies (Erosheva et al., 2007), but

the extended mixture GoM model is new to the literature on diagnostic testing.

The remainder of the chapter is organized as follows. In Section 7.2 we review latent

class (Lazarsfeld and Henry, 1968; Goodman, 1974), latent class random effects (also known as
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Gaussian random effects) (Qu et al., 1996), and finite mixture models (Albert and Dodd, 2004)

that are commonly used for analysis of diagnostic and screening tests. In Section 7.3 we introduce

the GoM model, develop the extended mixture GoM model that allows for deterministic responses,

discuss a hierarchical Bayesian framework for estimation of model parameters, and derive sensi-

tivity and specificity estimates. In Section 7.4 we conduct a simulation study examining recovery

of specificity and sensitivity parameters under the latent class, the latent class random effects, the

finite mixture, and the extended mixture GoM models. We investigate performance of each of these

models when the true data-generating model is known, varying the true model among the four al-

ternatives. Our findings further emphasize the need for sensitivity analyses when no gold standard

is available. In Section 7.5 we illustrate such a sensitivity analysis using a publicly available dataset

on screening for Chlamydia trachomatis (CT) (Hadgu and Qu, 1998) . Finally, in Section 7.6 we

relate results from our analyses of simulated and real data to prior findings in the literature.

7.2 Overview of Existing Model-Based Approaches

Sensitivity and specificity are key accuracy parameters of diagnostic and screening tests. The gen-

eral framework for estimating diagnostic errors without a gold standard starts by assuming a latent

structure model and then deriving sensitivity and specificity parameters that correspond to the model

formulation. This section introduces a common notation and presents a concise overview of latent

class (Lazarsfeld and Henry, 1968; Goodman, 1974), latent class Gaussian random effects (Qu et al.,

1996), and finite mixture models (Albert and Dodd, 2004) that are commonly used for analysis of

diagnostic and screening tests. For simplicity of the exposition, we omit the subject index.

Let x = (x1, x2, . . . , xJ) be a vector of dichotomous variables, where xj takes on values lj ∈

Lj = {0, 1}, j = 1, 2, . . . , J . Let X =
∏J

j=1 Lj be the set of all possible outcomes l for vector x.

Denote a positive test result by xj = 1 and a negative result by xj = 0. Denote the disease indicator

by δ, with δ = 1 standing for the presence of the disease. Let τ = P (δ = 1) denote the disease

prevalence parameter for the population of interest.

The latent class approach assumes two classes, the healthy and the sick. The probability to

observe response pattern l is the weighted sum of probabilities to observe l from each latent class:

P(x = l) = P(x = l|δ = 1)P(δ = 1) + P(x = l|δ = 0)P(δ = 0), l ∈ X .

The tests are assumed to be conditionally independent given the true disease status. Test result xj

is a Bernoulli random variable with class conditional probabilities λ1j = P (xj = 1|δ = 1) and

λ2j = P (xj = 1|δ = 0) for a given true disease status. The conditional probabilities λ1j , λ2j , j =
1, . . . , J and the weight P(δ = 1) = 1− P(δ = 0) = τ are the model parameters.

For the jth diagnostic test, its sensitivity is the probability of the positive test result given that

the true diagnosis is positive, P(xj = 1|δ = 1), and its specificity is the probability of a negative

response given that the true diagnosis is negative, P(xj = 0|δ = 0) = 1 − P(xj = 1|δ = 0). The

sensitivity and specificity of test j implied by the latent class model are then simply

P(xj = 1|δ = 1) = λ1j

and

P(xj = 0|δ = 0) = 1− λ2j .

The Gaussian random effects model of Qu et al. (1996) is an attempt to relax the assumption of

independence conditional on the true disease status. This model assumes that test outcomes are in-

dependent Bernoulli realizations with probabilities given by the standard normal cdf Φ (βjδ + σδb),



144 Handbook of Mixed Membership Models and Its Applications

where βjδ, δ = 0, 1; j = 1, . . . , J are latent class parameters and b is an individual-specific standard

Normal random effect. Under this latent class Gaussian random effects model,

P(x = l|δ) =







∫

∏

j

Φ (βjδ + σδb)
lj (1−Φ (βjδ + σδb))

1−lj







φ(b)db,

where φ(b) is the standard normal density. The sensitivity and specificity for test j under the latent

class Gaussian random effects model are then

P(xj = 1|δ = 1) = Φ

(

βj1

(1 + σ2
1)

1/2

)

and

P(xj = 0|δ = 0) = 1−Φ

(

βj0

(1 + σ2
0)

1/2

)

,

respectively.

The finite mixture model (Albert and Dodd, 2004) also uses the two-class structure as its basis

and adds two point masses for the combinations of all-zero and all-one responses. These point

masses correspond to the healthiest and the most severely diseased patients that are always classified

correctly. Let t be an indicator that denotes correct classification. Specifically, let t = 0 if a healthy

subject is always classified correctly (i.e., has the all-zero response pattern with J tests), t = 1 if

a diseased subject is always classified correctly, and let t = 2 otherwise. Thus, subjects are either

always classified correctly, when either t = 0 or t = 1, or a diagnostic error is possible when t = 2.

Denote the probabilities for correctly classifying diseased and healthy subjects by η1 = P(t = 1)
and η0 = P(t = 0), respectively. Let also wj(δi) denote the probability of the jth test making a

correct diagnosis when t = 2.

The finite mixture model of Albert and Dodd (2004) assumes that the test results xj are inde-

pendent Bernouilli random variables, conditional on the true disease status and the classification

indicator. Thus,

P(xj = 1|δ, t) =



















wj(1), if δ = 1, and t = 2

1, if δ = 1, and t = 1

1− wj(0), if δ = 0, and t = 2

0, if δ = 0, and t = 0.

Note that P(xj = 1|δ = 1, t = 0) = P(xj = 1|δ = 0, t = 1) = 0. The specificity and sensitivity of

the jth test under the finite mixture model are then

P(xj = 1|δ = 1) = η1 + (1− η1)wj(1)

and

P(xj = 0|δ = 0) = η0 + (1− η0)wj(0),

respectively.

7.3 A Mixed Membership Approach to Estimating Diagnostic Error

The GoM model can be thought of as a different extension of latent class models where random

effects are individual-specific grades of membership (Erosheva, 2005). The extended GoM mixture



Estimating Diagnostic Error without a Gold Standard 145

model combines individuals of mixed membership with those of full membership who have pre-

determined response patterns. Although the extended mixture GoM model allows for an arbitrary

choice of the number and the nature of deterministic response patterns, it is reasonable to assume

two deterministic responses in the medical testing context. Analogous to the approach of Albert

and Dodd (2004), we use two deterministic components in the extended mixture GoM model to

allow for inclusion of some healthy and diseased individuals who have deterministic responses with

the all-zero and all-one patterns, respectively. However, to model tests’ diagnostic errors for other

subjects in the population, our approach is to use the GoM model while the finite mixture model of

Albert and Dodd (2004) relies on using the two-class latent class model to model diagnostic errors.

Next, we describe the GoM model before introducing the extended mixture GoM model and

deriving a Bayesian estimation algorithm for the extension.

7.3.1 The Grade of Membership Model

As before, let x = (x1, x2, . . . , xJ) be a vector of dichotomous variables, where xj takes on values

lj ∈ Lj = {0, 1}, j = 1, 2, . . . , J . Let K be the number of mixture components (extreme profiles)

in the GoM model. To preserve generality, we will provide notation and estimation algorithms for

an arbitrary value of K. However, in the medical testing context, we will assume K = 2 to be

consistent with the existing literature.

Let g = (g1, g2, . . . , gK) be a latent partial membership vector of K nonnegative random vari-

ables that sum to 1. In what follows, we use notation p( ) to refer to both probability density and

probability mass functions. Each extreme profile is characterized by a vector of conditional re-

sponse probabilities for manifest variables, given that the kth component of the partial membership

vector is 1 and the others are zero, λkj = p(xj = 1|gk = 1), k = 1, 2, . . . ,K; j = 1, 2, . . . , J.
Given partial membership vector g ∈ [0, 1]K , the conditional distribution of manifest variable xj is

given by a convex combination of the extreme profiles’ response probabilities, i.e., p(xj = 1|g) =
∑K

k=1 gkλkj , j = 1, 2, . . . , J. Let us denote the distribution of g by D(g). The local independence

assumption states that manifest variables are conditionally independent, given the latent variables.

Using this assumption and integrating out latent variable g, we obtain the marginal distribution for

response pattern l in the form of a continuous mixture

p(x = l) =

∫ J
∏

j=1

(

K
∑

k=1

gkλ
lj
kj(1− λkj)

1−lj

)

dD(g), l ∈ X ,

where X =
∏J

j=1 Lj is the set of all possible outcomes for vector x.

The latent class representation of the GoM model leads naturally to a data augmentation ap-

proach (Tanner, 1996). Denote by x the matrix of observed responses xij for all subjects. Let λ

denote the matrix of conditional response probabilities. Augment the observed data for each subject

with realizations of the latent classification variables zi = (zi1, . . . , ziJ). Denote by z the matrix of

latent classifications zij . Let zijk = 1, if zij = k and zijk = 0 otherwise.

We assume the distribution of membership scores is Dirichlet with parameters α. The joint

probability model for the parameters and augmented data is

p(x, z,g,λ, α) = p(λ, α)

N
∏

i=1

[p(zi|gi)p(xi|λ, zi) ·Dir(gi|α)] ,

where

p(zi|gi) =

J
∏

j=1

K
∏

k=1

g
zijk
ik , p(xi|λ, zi) =

J
∏

j=1

K
∏

k=1

(

λ
xij

kj (1− λkj)
1−xij

)zijk
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and
Dir(gi|α) =

Γ(
∑

k αk)

Γ(α1)...Γ(αK)
gα1−1
i1 . . . gαK−1

iK .

We assume the prior on extreme profile response probabilities λ is independent of the prior on the

hyperparameters α. We further assume that the prior distribution of extreme profile response proba-

bilities treats items and extreme profiles as independent, hence p(λ, α) = p(α)
∏K

k=1

∏J
j=1 p(λkj).

We assume the prior p(λkj) is Beta(1, 1). Estimation of the GoM model can be done via a

Metropolis-Hastings within Gibbs algorithm as described by Erosheva (2003).

7.3.2 The Extended Mixture GoM Model

To define the extended mixture GoM model, we assume two patterns of deterministic responses that

correspond to the all-zero and all-one test results. Similar to Albert and Dodd (2004), we introduce

the classification indicator variable t. Let t = 0 for the healthiest individuals (δ = 0) who are

always classified correctly; let t = 1 for the sick individuals (δ = 1) who are always classified

correctly; and let t = 2 for the other individuals whose distribution of test results is given by the

GoM model with parameters α, λ. Denote the respective weights for the multinomial distribution

of t by θ = (θ0, θ1, θ2). The interpretation of θ0 and θ1 is similar to that of η0 and η1 in the finite

mixture model of Albert and Dodd (2004); we are using a different notation symbol to emphasize

that the values of those parameters will be different due to differences between the models.

Note that parameter estimation for the extended mixture GoM model would be identical to the

estimation for the standard GoM model if we could modify the observed counts for the all-zero

and all-one responses by subtracting the numbers of individuals who are always classified correctly.

However, these numbers are typically unknown which means that we have to estimate weights of

the deterministic components.

To derive the Markov chain Monte Carlo (MCMC) sampling algorithm for the extended mixture

GoM model, we further augment data with individual classification indicators. Let N be the total

number of individuals in the sample, and let n
(m)
0 and n

(m)
1 be the expected values of the all-zero cell

count and the all-one cell count, respectively, for the mixed membership individuals (with t = 2) at

the m-th iteration. Denote the number of individuals with at least one positive and at least one zero

response in their response pattern by nmix. The total number of individuals with t = 2 at the mth

iteration is then n
(m)
GoM = n

(m)
0 + n

(m)
1 + nmix. Let the prior distribution for weights θ be uniform

on the simplex and update θ at the end of the posterior step with:

θ
(m+1)
0 = θ

(m)
0 +

n
(m)
0 − n

(m+1)
0

N
, θ

(m+1)
1 = θ

(m)
1 +

n
(m)
1 − n

(m+1)
1

N
,

and

θ
(m+1)
2 =

n
(m+1)
0 + n

(m+1)
1 + nmix

N
= 1− θ

(m+1)
0 − θ

(m+1)
1 .

Given the number of individuals subject to classification error, n
(m)
GoM , the estimation of model

parameters for the stochastic GoM compartment is identical to that used in the case of the standard

GoM model. We use a reparameterization of α = (α1, . . . , αK) with ξ = (ξ1, . . . , ξK) and α0,

which reflect proportions of the item responses that belong to each mixture category and the spread

of the membership distribution. The closer α0 is to zero, the more probability is concentrated near

the mixture categories; similarly, the larger α0 is, the more probability is concentrated near the

population average membership score. We assume that α0 and ξ are independent since they govern

two unrelated qualities of the distribution of the GoM scores. In the absence of a strong prior opinion

about hyperparameters α0 and ξ, we take the prior distribution p(ξ) to be uniform on the simplex
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and p(α0) to be a proper diffuse gamma distribution. We also assume that the prior distribution

on the GoM scores is independent of the prior distribution on the structural parameters. The joint

distribution of the parameters and augmented data for the mixed membership component is

p(λ)p(α0)p(ξ)

(

nGoM
∏

i=1

D(gi|α)

)

nGoM
∏

i=1

J
∏

j=1

K
∏

k=1

(

gikλ
xij

kj (1− λkj)
1−xij

)zijk
,

where zijk is the latent class indicator as before. We sample from the posterior distribution of

ξ = (ξ1, . . . , ξK) and α0 by using the Gibbs sampler with two Metropolis-Hastings steps (see

Erosheva, 2003). The modified sampling algorithm for the extended mixture GoM model can be

easily generalized to a number of deterministic response patterns greater than two.

7.3.3 Sensitivity and Specificity with the Extended Mixture GoM Model

Here we derive sensitivity and specificity estimates under the extended mixture GoM model. As

before, let us denote the true diagnosis of a subject by δ = 1 or δ = 0 for the presence or absence of

the disease, respectively. If patient i has the disease, then, under the extended mixture GoM model,

this patient either belongs to the deterministic compartment with the clear positive diagnosis, t = 1,

or they belongs to the stochastic compartment with the classification indicator t = 2. In terms of

probability, this translates into P(δ = 1) = θ1 + θ2ξ1. As a consequence, the sensitivity of item j
can be expressed as follows :

P(xj = 1|δ = 1) = P(xj = 1, t = 1|δ = 1) + Pr(xj = 1, t = 2|δ = 1)

= [P(t = 1) + P(xj = 1, t = 2, δ = 1)] /P(δ = 1).

Noticing that

P(xj = 1, t = 2, δ = 1) = P(xj = 1|t = 2, δ = 1)P(δ = 1|t = 2)P(t = 2),

we obtain a parametric form for sensitivity of item j under the extended mixture GoM model:

P(xj = 1|δ = 1) =
θ1

θ1 + θ2ξ1
+ λ1j

θ2ξ1
θ1 + θ2ξ1

.

Similarly, the absence of the disease for patient i means that either i belongs to the deterministic

compartment, t = 0 of a clear negative diagnosis, or he/she belongs to the stochastic compartment

with classification indicator t = 2. Therefore, P(δ = 0) = θ0 + θ2ξ2 and we obtain

P(xj = 1|δ = 0) = P(xj = 1, t = 0|δ = 0) + P(xj = 1, t = 2|δ = 0)

= P(xj = 1, t = 0|δ = 0) + P(xj = 1, t = 2, δ = 0)/P(δ = 0).

Because P(xj = 1, t = 0|δ = 0) = 0, we have

P(xj = 1|δ = 0) = λ2j
θ2ξ2

θ0 + θ2ξ2
,

and the specificity estimate of item j under the extended mixture GoM model can be obtained as

1− P(xj = 1|δ = 0).

7.4 Simulation Study

In this section, we present a simulation study with the primary aim to examine recovery of sensitivity

and specificity parameters under the four different latent structure models: the latent class (Lazars-

feld and Henry, 1968; Goodman, 1974), the latent class random effects (Qu et al., 1996), the finite
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mixture (Albert and Dodd, 2004), and the extended mixture GoM models introduced earlier. We

investigate performance of each of these models when the true model is known, varying the true

model among the four alternatives under two sample sizes, N = 1000 and N = 4000. We also

report the comparative fit of the models in each case, however, model fit was not a primary goal

of our study. Earlier work demonstrated difficulties in distinguishing between models with differ-

ent dependence structures (Albert and Dodd, 2004), and pointed out that even equally well-fitting

models may result in different accuracy estimates (Begg and Metz, 1990).

For the simulations we considered J = 6 and set the true specificities and sensitivities to be the

same for all 6 items. Specifically, we used the value of 0.9 for the sensitivity parameter and 0.95 for

the specificity. This setting allowed us to examine the recovery of accuracy parameters for a given

model by simply computing the respective average sensitivity and specificity estimates across all

items. and the hyperparameter was set at α0 = 0.25
We selected data generating designs under each model to reflect important features of biomed-

ical screening and diagnostic data. Most noticeably, contingency tables formed on the basis of this

type of data often contain many zeros and small observed cell counts but also have several large cell

counts. The large observed cell counts typically include the all-zero and the all-one response pat-

terns. The following parameter choices produced simulated data with many zeros and large all-zero

and all-one counts and items with 0.9 sensitivity and 0.95 specificity:

1. For data generated under the latent class model, we chose: τ = 0.1 and λ1j = 0.9, λ2j = 0.05,

for all j.

2. For data generated under the latent class random effects model, we chose: σ0 = σ1 = 1.5,

τ = 0.1, and βj0 = −2.965, βj1 = 2.31, for all j.

3. For data generated under the finite mixture model, we chose: τ = 0.1, η0 = 0.2, η1 = 0.5, and

wj(0) = 0.9375, wj(1) = 0.8, for all j.

4. For data generated under the extended mixture Grade of Membership model, we chose the

following parameter values: θ = (0.85, 0.05, 0.10), α = (0.02, 0.06), and λ1j = 0.7, λ2j =
0.6, for all j.

Among the four models, the latent class is the least complex with 13 independent parameters;

the latent class random effects and the finite mixture models both have 15 independent parameters,

and the extended mixture GoM model is the most complex with 16 independent parameters. We

used BUGS (Bayesian inference using Gibbs sampling) to estimate the latent class, latent class

random effects, and finite mixture models. We used a C code for estimation of the extended mixture

GoM model.

Tables 7.1–7.4 report posterior means and standard errors of the sensitivity and specificity

parameters, averaged over the six items for each model value of the log-likelihood, as well as

goodness-of-fit criteria. We report the log-likelihood, the G2 likelihood ratio criteria (Bishop et al.,

1975), and the truncated sum of squared Pearson residuals (SSPR) χ2 (Erosheva et al., 2007) com-

puted for observed counts larger than 1 (i.e., the sum did not include residuals for the cells with zero

observed counts). The log-likelihood and the goodness-of-fit criteria were evaluated as the posterior

means of the parameters for each model.
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TABLE 7.1

Results for the LCM generating model.

N=1000

Criterion LCM LCRE FM ExtM-GoM

SSPR χ2
tr 23.44 22.68 18.47 22.14

G2 30.24 31.11 34.59 54.54

Log-likelihood -1528.19 -1528.62 -1530.36 -1545.39

Sensitivity 0.894 (0.032) 0.890 (0.033) 0.893 (0.032) 0.910 (0.029)

Specificity 0.951 (0.007) 0.951 (0.007) 0.950 (0.007) 0.953 (0.006)

N=4000

Criterion LCM LCRE FM ExtM-GoM

SSPR χ2
tr 49.42 44.61 40.90 178.23

G2 55.73 61.70 56.19 280.96

Log-likelihood -6418.15 -6421.13 -6418.38 -6525.79

Sensitivity 0.902 (0.015) 0.895 (0.016) 0.901 (0.016) 0.913 (0.009)

Specificity 0.948 (0.004) 0.949 (0.004) 0.948 (0.004) 0.953 (0.005)

TABLE 7.2

Results for the LCRE generating model.

N=1000

Criterion LCM LCRE FM ExtM-GoM

SSPR χ2
tr 308.75 54.98 36.45 34.55

G2 232.28 62.60 62.02 59.57

Log-likelihood -1301.07 -1216.24 -1215.95 -1221.95

Sensitivity 0.838 (0.031) 0.886 (0.040) 0.878 (0.039) 0.905 (0.010)

Specificity 0.969 (0.005) 0.958 (0.009) 0.971 (0.007) 0.976 (0.004)

N=4000

Criterion LCM LCRE FM ExtM-GoM

SSPR χ2
tr 710.79 60.92 65.74 61.13

G2 514.76 73.25 76.32 62.11

Log-likelihood -5283.37 -5062.62 -5064.15 -5069.51

Sensitivity 0.868 (0.016) 0.938 (0.013) 0.876 (0.019) 0.936 (0.008)

Specificity 0.973 (0.003) 0.955 (0.005) 0.970 (0.003) 0.976 (0.005)
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TABLE 7.3

Results for the FM generating model.

N=1000

Criterion LCM LCRE FM ExtM-GoM

SSPR χ2
tr 159.19 55.07 43.91 43.40

G2 100.70 71.37 75.01 80.61

Log-likelihood -1517.72 -1503.05 -1504.87 -1513.80

Sensitivity 0.928 (0.027) 0.898 (0.053) 0.907(0.034) 0.915 (0.021)

Specificity 0.949 (0.007) 0.953 (0.008) 0.950 (0.008) 0.954 (0.006)

N=4000

Criterion LCM LCRE FM ExtM-GoM

SSPR χ2
tr 109.61 44.53 36.38 93.08

G2 91.77 53.30 43.89 108.38

Log-likelihood -5287.40 -5268.16 -5263.46 -5292.61

Sensitivity 0.838 (0.019) 0.841 (0.023) 0.842 (0.020) 0.864 (0.011)

Specificity 0.969 (0.003) 0.968 (0.003) 0.968 (0.003) 0.969 (0.002)

TABLE 7.4

Results for the extended mixture GoM generating model.

N=1000

Criterion LCM LCRE FM ExtM-GoM

SSPR χ2
tr 174.34 48.77 30.94 35.70

G2 138.55 80.85 66.67 62.61

Log-likelihood -887.45 -858.59 -851.50 -854.46

Sensitivity 0.791 (0.033) 0.843 (0.050) 0.857 (0.067) 0.835 (0.023)

Specificity 0.998 (0.002) 0.998 (0.004) 0.974 (0.014) 0.979(0.002)

N=4000

Criterion LCM LCRE FM ExtM-GoM

SSPR χ2
tr 394.06 193.19 42.32 41.57

G2 328.31 270.28 53.14 51.48

Log-likelihood -3463.84 -3443.51 -3326.26 -3330.02

Sensitivity 0.772 (0.018) 0.874 (0.019) 0.789 (0.024) 0.858 (0.006)

Specificity 0.999 (0.001) 0.969 (0.003) 0.991 (0.005) 0.962 (0.002)
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A first remark concerning the simulation results is that the fit criteria do not always favor a

generating model. For example, perhaps not surprisingly, the truncated sum of squares of Pearson’s

residuals tends to be better for the finite mixture and the extended mixture GoM model. These

models provide perfect fit for the two largest observed counts, even when they are not the true

data-generating models. In general, however, we observe that different latent structure models can

produce similar fit; this finding confirms that it can be difficult to distinguish between models with

different dependence structures (Albert and Dodd, 2004).

Examining bias for the sensitivity and specificity estimates, we observe that when the latent class

model is used to generate the data, all of the models successfully recover the accuracy parameters

for both cases, N = 1000 and N = 4000.

The success in recovery of the accuracy parameters is not that great when more complex models

are used to generate the data. Thus, when the latent class random effects model generates the

data, even the true model recovers only the specificity parameter, but not the sensitivity parameter.

For the latent class random effects as the generating model, the extended mixture GoM does best

in recovering the sensitivity for the smaller sample size, but the finite mixture model does best in

recovering the sensitivity for the larger sample size. When the finite mixture model is the generating

model, all models perform well in recovering the sensitivity and specificity for the N = 1000 case,

however, all models perform poorly for the N = 4000 case. In the latter scenario, we see that

all the models considered, including the true model, underestimate the sensitivity and overestimate

the specificity parameters. When the extended mixture GoM model is the generating model, we

observe that the latent class random effects model does better with recovering the true value of the

sensitivity parameter, even though the fit of this model is not as good compared to others. We also

observe that all models tend to overestimate the specificity parameter for data generated with the

extended mixture GoM model.

Finally, we observe that in the most difficult cases, the sensitivity parameter was underestimated

to various degree by all of the models and the specificity—overestimated by all of the models. In

such cases, models that provide larger sensitivity estimates and smaller specificity estimates could

be considered especially informative in a sensitivity analysis with respect to latent structure as-

sumptions. We also note that the sensitivity and especially specificity estimates under the extended

mixture GoM model had smaller standard errors as compared to those of the other models, indepen-

dently of the true model.

7.5 Analysis of Chlamydia trachomatis Data

In this section, we provide sensitivity analysis for a dataset on testing for Chlamydia trachomatis,

originally considered by Hadgu and Qu (1998). Chlamydia trachomatis (CT) is the most common

sexually transmitted bacterial infection in the U.S. The data contain binary outcomes on J = 6 tests

for 4,583 women where positive responses correspond to detection of the disease. The six tests are

Syva-DFA, Syva-EIA, Abbott-EIA, GenProbe, Sanofi-EIA, and a culture test (for more information,

see Hadgu and Qu, 1998). Table 7.5 provides response patterns with positive observed counts. In

our analyses, we follow Hadgu and Qu (1998), who only retained complete response patterns and

assumed that patterns with zero observed counts were sampling and not structural zeros.

We assumed two basis latent classes and analyzed the CT data with the latent class, the latent

class random effects, the finite mixture, and the extended mixture GoM models. For comparative

purposes, we also provide results obtained with the GoM model, although we did not expect it to

perform well based on our earlier experience with disability data (Erosheva et al., 2007).

To obtain draws from the joint posterior distribution, we used the same prior and proposal distri-

butions for the standard GoM as well as for the extended mixture GoM models. We chose Gamma
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as the prior distribution on α0, with the shape and the inverse scale parameter equal to 1, and chose

the uniform prior for ξ-parameters. We chose the shape parameter for the proposal distribution on

α0 to be equal to C1 = 100, and the sum of the parameters of the proposal distribution for ξ to be

equal to C2 = 1. We set starting values for λ to the estimated conditional response probabilities

from the latent class model with two classes, and selected the starting value for hyperparameters α
to be (0.001, 0.099).

We monitored the convergence of MCMC chains using Geweke convergence diagnos-

tics (Geweke, 1992), and Heidelberger and Welch stationarity and interval halfwidth tests (Heidel-

berger and Welch, 1983). Furthermore, we visually examined plots of successive iterations. With

our choices of starting values and parameters for prior and proposal distributions, all these methods

indicated favorable convergence of MCMC chains for both the standard and the extended mixture

GoM models.

Under the extended mixture GoM model, the estimated proportion θ0 of women belonging to the

deterministic compartment of a clear negative diagnosis was θ̂0 = 0.917 (sd = 0.009). The observed

probability of all-zero response was 0.944. The estimated proportion θ1 of women belonging to the

deterministic compartment of a clear positive diagnosis was θ̂1 = 0.017 (sd=0.009), while the

observed probability of all-one response was 0.019. Thus, consistently with the idea of screening

tests in medicine, about 97% of individuals with negative results on all six tests were healthy with

probability 1 while about 89% of individual with positive results on all six tests were diseased with

probability 1. Table 7.6 shows the posterior means and standard deviation estimates of parameters

λkj , ξ, α0 for the GoM portion of the extended mixture GoM model. We observe that the extreme

profile k = 1 represents women with likely positive CT diagnosis, while extreme profile k = 2
represents women with likely negative CT diagnosis.

Table 7.5 shows the observed and expected cell counts as well as the number of parameters, the

degrees of freedom, and the values of the likelihood ratio statistic G2 (see Bishop et al., 1975) for

all five models considered. As expected, we observe that the fits of the standard GoM model and

the latent class model are rather poor. The extended mixture GoM model provides a comparable

performance in fit compared to the latent class random effects model of Hadgu and Qu (1998) and

the finite mixture model of Albert and Dodd (2004), however, it has one less degree of freedom.

Table 7.7 provides the sensitivity and specificity estimates for the six tests under the five models

considered. We see that the sensitivity and specificity estimates are rather high. Given our findings

from the simulation study that pointed towards widespread overestimation of specificity and under-

estimation of sensitivity, we should pay particular attention to the smallest specificity and largest

sensitivity estimates. For specificity, the extended mixture GoM model and the finite mixture model

provide the smallest values that range from about 0.993 for the culture test to about 0.997 for the

Syva-DFA test. For sensitivity, the extended mixture GoM model provides the largest values rang-

ing from about 0.757 for the Abbott-EIA test to about 0.985 for the culture test. Thus, it appears

that the extended mixture GoM model contributes new information beyond that available from other

latent structure models, for estimating accuracy parameters of diagnostic tests.
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TABLE 7.5

Observed and expected cell counts under LCM, LCRE, GoM, ExtM-GoM, and FM models. χ2 is

the truncated sum of squared Pearson residuals for observed cell counts > 1; n is the number of

independent parameters; df is degrees of freedom.

Response Observed Expected Expected Expected Expected Expected

pattern counts LCM LCRE GoM ExtM-GoM FM

1 111111 87 53.4 87.30 437.31 87 87.18

2 111110 2 0.85 0.12 11.53 0.50 0.40

3 111101 9 17.26 8.19 146.20 7.64 7.07

4 111011 2 8.47 2.93 73.43 2.60 2.64

5 110111 9 21.2 11.79 167.21 10.27 9.52

6 110101 6 6.85 5.03 56.78 6.98 6.68

7 110011 1 3.36 1.98 29.64 2.42 2.5

8 110001 6 1.09 2.09 10.27 1.91 1.85

9 101111 7 11.57 4.91 91.33 4.44 4.05

10 101001 1 0.59 0.93 6.93 0.97 0.87

11 100111 4 4.59 3.15 36.12 4.08 3.84

12 100101 1 1.48 3.26 13.57 3.08 2.80

13 100011 2 0.73 1.32 8.89 1.20 1.11

14 100001 5 0.27 3.15 4.17 2.09 1.87

15 100000 7 7.50 6.92 6.27 6.91 7.23

16 011111 6 10.58 4.14 93.3 4.02 3.72

17 011101 1 3.42 1.93 33.37 2.80 2.62

18 011011 1 1.68 0.76 15.54 1.00 1.00

19 011001 1 0.54 0.81 5.88 0.97 0.87

20 011000 5 0.07 4.96 1.13 1.26 1.22

21 010111 1 4.20 2.70 36.34 3.72 3.53

22 010101 5 1.36 2.81 13.30 2.89 2.64

23 010001 2 0.28 2.71 3.93 2.59 2.41

24 010000 9 13.56 8.92 7.29 10.34 10.91

25 001111 2 2.29 1.21 20.76 1.65 1.51

26 001101 1 0.74 1.25 9.46 1.47 1.28

27 001001 1 0.20 1.18 2.78 2.54 2.49

28 001000 14 18.46 13.88 10.24 12.72 13.64

29 000111 2 0.91 1.77 9.53 1.82 1.61

30 000101 4 0.37 4.25 5.12 3.39 3.12

31 000100 16 16.54 15.82 11.46 12.45 13.15

32 000011 3 0.22 1.70 3.33 2.43 2.31

33 000010 15 15.73 14.85 9.84 11.40 11.98

34 000001 17 20.02 17.04 11.45 19.50 20.50

35 000000 4328 4321.11 4328.30 3123.48 4328 4322.71

χ2 604.95 48.61 1529.89 43.29 48.70

G2 179.68 42.25 1141.70 61.44 76.24

n 13 15 14 16 15

df 50 48 49 47 48
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TABLE 7.6

Posterior mean (standard deviation) estimates for the diagnostic error component of the extended

mixture GoM model with two extreme profiles (stochastic compartment).

k = 1 k = 2

λk,1 0.750 (0.058) 0.050 (0.022)

λk,2 0.732 (0.058) 0.076 (0.027)

λk,3 0.534 (0.065) 0.093 (0.027)

λk,4 0.822 (0.057) 0.089 (0.029)

λk,5 0.608 (0.068) 0.084 (0.026)

λk,6 0.970 (0.021) 0.134 (0.042)

α0 0.075 (0.057)

ξk 0.278 (0.044) 0.722 (0.044)

TABLE 7.7

Sensitivity and specificity (standard deviation) of the diagnostic tests for LCM, LCRE, GoM, ExtM-

GoM, and FM models.

Test LCM LCRE GoM ExtM-GoM FM

Specificity

Syva-DFA 0.998 (0.001) 0.999 (0.001) 0.999 (0.001) 0.998 (0.001) 0.997 (0.001)

Syva-EIA 0.997 (0.001) 0.997 (0.001) 0.999 (0.001) 0.996 (0.001) 0.996 (0.001)

Abbott-EIA 0.996 (0.001) 0.997 (0.001) 0.998 (0.001) 0.995 (0.001) 0.995 (0.001)

GenProbe 0.996 (0.001) 0.997 (0.001) 0.998 (0.001) 0.996 (0.001) 0.995 (0.001)

Sanofi-EIA 0.996 (0.001) 0.997 (0.001) 0.997 (0.001) 0.996 (0.001) 0.996 (0.001)

Culture 0.995 (0.001) 0.998 (0.001) 0.998 (0.001) 0.994 (0.001) 0.993 (0.001)

Sensitivity

Syva-DFA 0.835 (0.030) 0.747 (0.048) 0.825 (0.034) 0.870 (0.030) 0.860 (0.030)

Syva-EIA 0.822 (0.031) 0.731 (0.048) 0.824 (0.034) 0.861 (0.030) 0.851 (0.032)

Abbott-EIA 0.716 (0.036) 0.636 (0.047) 0.721 (0.037) 0.757 (0.035) 0.748 (0.037)

GenProbe 0.863 (0.028) 0.777 (0.047) 0.864 (0.031) 0.907 (0.030) 0.892 (0.029)

Sanofi-EIA 0.756 (0.034) 0.678 (0.048) 0.751 (0.037) 0.796 (0.036) 0.786 (0.036)

Culture 0.984 (0.011) 0.935 (0.034) 0.978 (0.013) 0.985 (0.010) 0.980 (0.011)
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7.6 Conclusion

We presented the extended mixture GoM model as an alternative latent structure model for analyzing

accuracy of diagnostic and screening tests. For the medical testing case, the extended mixture GoM

model accommodates two types of individuals, those whose diagnosis is certain, independently of

the test, and those who are subject to diagnostic error. The latter individuals can be thought of as

stochastic “movers” because they may change in their disease status depending on the diagnostic test

considered; this idea is analogous to longitudinal mover-stayer models (Blumen et al., 1955). In the

extended mixture GoM model, the “stayers” have predetermined response patterns that correspond

to particular cells in a contingency table. The extended GoM mixture model can also be seen as a

combination of latent class and GoM mixture modeling, analogous to the extended finite mixture

model (Muthen and Shedden, 1999). Similar to the finite mixture model of Albert and Dodd (2004),

the extended GoM mixture model allows for some individuals to always be diagnosed correctly,

however, it relies on the assumption of disease severity for modeling diagnostic error for the other

individuals while the finite mixture model of Erosheva (2005) relies on the assumption of two latent

classes for the same purpose.

To estimate the extended mixture GoM model, we used a hierarchical Bayesian approach to

estimation, drawing on earlier work (Erosheva, 2003). Although we did not use informative priors

in our examples, Pfeiffer and Castle (2005) and Albert and Dodd (2004) specifically mention the

promise of Bayesian approach in estimating diagnostic error without a gold standard when good

prior information is available.

Our findings with the simulation study and with the Chlamydia trachomatis (Hadgu and Qu,

1998) data further emphasize the need of carrying out sensitivity analyses when no gold standard is

available (Albert and Dodd, 2004) . When the underlying latent structure is unknown, it is important

to examine sensitivity of scientific conclusions regarding the estimated accuracy of diagnostic and

screening tests to the latent structure assumptions.

This could be done by comparing test accuracy estimates across a number of different latent

structure models. Our results demonstrate that the extended mixture GoM model can provide us

with new information on estimating test sensitivity and specificity beyond that provided by the

latent class (Lazarsfeld and Henry, 1968; Goodman, 1974), latent class Gaussian random effects (Qu

et al., 1996), and finite mixture models (Albert and Dodd, 2004). In addition, the extended mixture

GoM model offers a plausible interpretation for diagnostic and screening test results by combining

the idea of diagnostic error that depends on disease severity for some individuals with the idea of

certain diagnosis for the other, typically the most healthy and the most sick individuals.

Finally, the flexible framework of mixed membership models can be used to modify the extended

mixture GoM model and to address, for example, diagnostic cases when disease status is ordinal and

test results do not come in binary form (Wang and Zhou, 2012). Drawing on the recent development

in the class of mixed membership models that includes the GoM model as a special case, one can

also modify the model to accommodate, for example, outcomes of mixed types, multiple basis

categories in the latent structure, and correlations among membership scores.
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