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Bayesian Nonparametric Biostatistics

Wesley O. Johnson and Miguel de Carvalho

Abstract We discuss some typical applications of Bayesian nonparametrics in

biostatistics. The chosen applications highlight how Bayesian nonparametrics can

contribute to addressing some fundamental questions that arise in biomedical re-

search. In particular, we review some modern Bayesian semi- and nonparametric ap-

proaches for modeling longitudinal, survival, and medical diagnostic outcome data.

Our discussion includes methods for longitudinal data analysis, non-proportional

hazards survival analysis, joint modeling of longitudinal and survival data, longi-

tudinal diagnostic test outcome data, and receiver operating characteristic curves.

Throughout, we make comparisons among competing BNP models for the various

data types considered.

2.1 Introduction

“Why Bayesian nonparametrics?” Motivation for Bayesian nonparametrics encom-

passes model flexibility and robustness, as parametric models are often inadequate

due to their constraints. Bayesian nonparametric models that embed parametric fam-

ilies of distributions in broader families seem eminently sensible since they allow for

flexibility and robustness beyond the constrained parametric family. The models we

consider here are in fact richly parametric (formally, using an infinite-dimensional

parameter space) rather than nonparametric, which is an unfortunate misnomer
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that we will not attempt to rectify. Bayesian nonparametric models involve placing

prior distributions on broad families of probability distributions; examples consid-

ered here include Mixtures of Polya trees (MPT) and Dirichlet Processes mixtures

(DPM).

The MPT will be seen to be a clear extension of a selected parametric family for

data. The DPM is more ambiguous but in some instances could be viewed in the

same way. A popular theme in much of the Bayesian nonparametrics literature is

to regard a parametric approach as a reference, while allowing data that are mod-

eled nonparametrically to inform a subsequent analysis about the adequacy of the

parametric model.

Other Bayesian nonparametric approaches involve the use of Gaussian process

priors and consist of probability models over spaces of functions. For these the nat-

ural probabilistic concept is that of a random function; conceptually, random func-

tions can be regarded as stochastic processes, and are the subject of Part IV of this

volume.

2.1.1 Organization of this Chapter

Section 2.2 Comments on the DPM and MPT. In this section we discuss some

features of Dirichlet and Polya tree processes; a technical introduction to these and

other prior processes can be found in Chap. 1 of this volume (Mitra and Müller

2015).

Section 2.3 Longitudinal Data: Semiparametric Autoregressive Modeling. Here

we discuss a model that generalizes standard mixed models for longitudinal data,

and which includes a functional mean function, and allows for compound symmetry

(CS) and autoregressive (AR) covariance structures. The AR structure is specified

through a Gaussian process (GP) with an exponential covariance function, which

allows observations to be more correlated if they are observed closer in time than

if they are observed farther apart. Quintana et al. (2015) generalize this model by

considering a DPM of Gaussian processes. In Sect. 2.3.2 we discuss their analysis

of data from the Study of Women’s Health across the Nation (SWAN) that involves

longitudinal outcomes of hormone data for women experiencing the menopausal

transition.

Section. 2.4 Survival Data: Nonparametric and Semiparametric Modeling. We

discuss Bayesian non and semi-parametric modeling for survival regression data;

Sect. 2.4 provides some preparation for Part III of this volume, which is entirely

dedicated to survival analysis. We first give a selective historical perspective of the

development of nonparametric Bayesian survival regression methods (Sect. 2.4.1).

We discuss an analysis of time to abortion in dairy cattle with fixed covariates, and

then discuss models for time dependent regression survival data, followed by anal-

yses of the Stanford Heart Transplant data and a data set involving the timing of



cerebral edema in children diagnosed with ketoacidosis. We end the section with a

presentation of a Bayesian nonparametric survival model that allows survival curves

to cross, and a subsequent analysis of breast cancer data where survival curves are

expected to cross.

Section 2.5 Joint Modeling of Longitudinal and Survival Data. We consider the

joint modeling of survival data and a longitudinal process. In Sect. 2.4, we discussed

a number of survival regression models with time dependent covariates where we

fixed the time dependent covariates (TDC) in the same sense that we fix covariates

in regression. However, Prentice (1982) pointed out that fixing the TDCs rather than

modeling them could bias final estimates. The general rule has been to use the last

observation carried forward (LOCF) in the TDC process, despite the fact that the

last observation might have occurred some time ago, suggesting that it may not well

represent the current value of the process. In Sect. 2.5 we discuss a data analysis

performed by Hanson et al. (2011b), which uses the models and methods in Hanson

et al. (2009) in conjunction with longitudinal modeling to develop joint models for

longitudinal-survival data.

Section 2.6 Medical Diagnostic Data. In Sect. 2.6.1 we discuss the subject of Re-

ceiver Operating Characteristic (ROC) curve regression, and in Sect. 2.6.2 we con-

sider the issue of Bayesian semi-parametric estimation in ROC regression settings

that lack availability of a gold standard test, i.e., when there is no available test that

could perfectly classify subjects as diseased and non-diseased. Related literature is

reviewed in detail in Chap. 16 (Inácio de Carvalho et al. 2015). We illustrate meth-

ods by assessing the potential of a soluble isoform of the epidermal growth factor

receptor (sEGFR) for use as a diagnostic biomarker for lung cancer in men, and we

assess the effect of age on the discriminatory ability of sEGFR to classify diseased

and non-diseased individuals. In Sect. 2.6.3 we discuss joint longitudinal diagnostic

outcome modeling and analysis, and we illustrate with longitudinal cow serology

and fecal culture data.

In Sect. 2.7 we briefly comment on other types of data that are of interest in biomedi-

cal research, and on some current Bayesian nonparametric approaches for modeling.

2.2 Comments on the DPM and MPT

We briefly comment on two mainstream prior processes for data analysis: The

Dirichlet and Polya tree processes. By themselves, they are perhaps not practical

models for data analysis, but it is their mixture forms that are. The Dirichlet Process

Mixture (DPM) and the Mixture of Polya Trees (MPT) have been established to be

practical tools for data analysis. Models that employ the DPM in various forms are

by far the most popular for a variety of reasons including the fact that the DP has

been in the literature since at least Ferguson (1973), and DPMs have been developed
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extensively for use in analyzing data since at least Escobar (1994). Polya Trees have

been around since at least Ferguson (1974), but did not seem to be particularly no-

ticed until the 1990s (Mauldin et al. 1992; Lavine 1992, 1994), and were not given a

lot of attention until Berger and Guglielmi (2001), and Hanson and Johnson (2002)

and Hanson (2006), who developed MPTs for survival analysis and beyond.

A key property of the DPM is that any inferential object that is modeled as a

DPM of continuous parametric densities is smooth. Moreover, under some condi-

tions, the DPM of location-scale normal densities has been shown to have strong

posterior consistency for the true density (Tokdar 2006). There are many other

theoretical works of this type, including Amewou-Atisso et al. (2003), who es-

tablished large sample consistency properties for semiparametric linear regression

models with error distributions that are modeled with median zero processes based

on both PTs and DPMs. The original and continuing appeal to DPMs was and

is at least partly based on the ease of marginalizing over the DP when perform-

ing numerical calculations. The marginalization led to computationally straightfor-

ward schemes involving the Polya Urn scheme that researchers often describe as

a Chinese restaurant process. Neal (2000) improved upon previous computational

schemes pioneered by Escobar (1994); Escobar and West (1995), and MacEach-

ern and Müller (1998), among others. In addition, there are many extensions of

the DPM, including the Dependent Dirichlet Process (DDP) (MacEachern 2000),

the Nested DP (NDP) (Rodriguez et al. 2008), and the Hierarchical DP (HDP)

(Tomlinson and Escobar 1999; Teh et al. 2006), among others, many discussed in

Chap. 1 of this volume (Mitra and Müller 2015).1 The Sethuraman (1994) repre-

sentation of the DP facilitated the development of all of these, and it provided an

easy understanding of the precise meaning of the DP and the DPM. In addition, it

facilitated the extension to more general stick-breaking processes, for example the

Dunson and Park (2008) application to density regression, among others. The point

here is that there is now a wealth of papers that have developed, extended, and used

various forms of and which stem from the DP, and which have used these tools to

analyze data of all complexities. The DPM is clearly here to stay.

The MPT has many positives as well. It can be selected to be absolutely con-

tinuous with probability one, so it is possible to use it directly as a model for data.

When used as a model for the error distribution in a linear regression, it is easy to

specify that the MPT has median zero with probability one, resulting in a semipara-

metric median regression model. In Sect. 2.4 we discuss such models for survival

data. In addition, it is a flexible model, allowing for multimodality, skewness, etc.

It is straightforward to perform MCMC computations for many complex models

(Hanson 2006), and there is no need to marginalize the process to make computa-

tions simpler. From our point of view, a major positive feature of the Mixture of

Finite Polya Tree (MFPT) prior is that it not only allows for a broad/flexible class

of distributions but that it has a parametric family of distributions for the data em-

bedded in it, and that the embedding is natural. Thus, if a scientist has previous

experience or information that suggests that a log normal family of distributions

1 See also Müller and Mitra (2013) for a recent survey.



might be appropriate for their survival data, they could hedge their bets by embed-

ding that family as the centering family of an MFPT. Moreover, if they also had

scientific information about the log normal family parameters, they could construct

an informative prior for those parameters. See Bedrick et al. (1996) and Bedrick

et al. (2000) for illustrations of informative prior specification for generalized linear

models and for survival models. Thus far, we are not aware of any such nice prop-

erties for specifying prior distributions on the parameters of the base distribution in

the DPM. Berger and Guglielmi (2001) also took advantage of the fact that a para-

metric family can be embedded in the PT family in developing a method to test the

adequacy of the parametric family to fit data.

A possible advantage of the DPM over the MPT is the ease of extending the DPM

to multivariate data, which is straightforward for the DPM. Hanson (2006) has de-

veloped MPT methods for multivariate data, and Jara et al. (2009) and Hanson et al.

(2011a) improved them. While no comparison between the methods has been per-

formed to date, Hanson reports that the MPT-based method would perform well for

joint density estimation, and clearly better for “irregular densities” (personal com-

munication). Another advantage is the smoothness of the DPM. When the weight

associated with the MPT is small, density estimates can be quite jagged, despite

the fact that Hanson and Johnson (2002, Thm. 2) proved that predictive densities

in the context of the semiparametric model that they develop are differentiable un-

der some conditions. For applications, an important issue is prior elicitation for the

DPM; cf. Hanson et al. (2005).

In the illustrations below, we take examples that use the DPM, DDP, and MPT.

For the MPT based models, we always use a truncated version, which is termed an

MFPT. The truncation is at some level, usually termed M, of the basic tree structure.

In addition, MPTs have weights, c, just like the DPM, whereas small weight cor-

responds to the model being ‘more nonparametric.’ Some models discussed below,

e.g. Hanson and Johnson (2002, 2004), and De Iorio et al. (2009), can be fit using

the R package DPpackage (Jara et al. 2011).

2.3 Longitudinal Data: Semiparametric

Autoregressive Modeling

2.3.1 The Semiparametric Model

Assume that observations are made on individual i at times {ti1, . . . , tini
}, namely

Yi = {Yi j : j = 1, . . . ,ni}. At time ti j we allow for a vector of possibly time-dependent

covariates xT
i j = (1,xi1(ti j), . . . ,xip(ti j)), and assume that E(Yi j) = xT

i jβ . Define the

ni × (p+ 1) design matrix Xi = (xi1, . . . ,xini
)T, leading to an assumed mean vector

E(Yi) = Xiβ . Then, allow for a corresponding ni × q design matrix Zi, with q � p

and with the column space of Zi restricted to be contained in the column space of Xi.
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The starting point for the model to be discussed is a well-known linear mixed

model (Diggle 1988) that also allows for AR structure, namely

Yi = Xiβ + fi(t)+Zibi +wi + εi, bi | ξ ∼ Nr(0,D(ξ )), wi | φ ∼ Nni
(0,Hi(φ)),

(2.1)

Here, Hi(φ) is ni × ni and has a structural form, εi ∼ N(0,σ2 Ini
), and fi(t) is a

function evaluated at subject-specific times ti j for individual i; in addition, ξ and φ
contain variance–covariance parameters for bi and wi, respectively.

The wi are generated by zero-mean Gaussian processes, {wi(t) : t > 0}. If

Cov(wi(t + s),wi(t)) = σ2
wρ(s), with ρ(s) = ρs, the resulting stationary process

is an Ornstein–Uhlenbeck process (Rasmussen and Williams 2006), which yields

an exponential covariance function and induces AR structure.2 The combination of

choosing which terms to include in (2.1)—and making particular choices for H(φ)
and D(ξ )—when the corresponding effects are included in the model, determines

the covariance structure for the data.

The semiparametric autoregressive model extends (2.1) by introducing flexibility

beyond the exponential covariance structure. Consider first the GP, wi, for the ith

subject, with covariance matrix of the form Hi(φ) = σ2
wH̃i(ρ), where φ = (σ2

w,ρ)
and {H̃i(ρ)}k,ℓ = ρ |tiℓ−tik|. Let φ | G ∼ G with G ∼ DP(α,G0) so that

f (wi | G) =
∫

N(wi | 0,σ2
wH̃i(ρ))dG(φ) =

∞

∑
k=1

πkNni
(wi | 0, σ̃2

wkH̃i(ρ̃k)), (2.2)

is an infinite mixture of multivariate normal densities, where (σ̃2
wk, ρ̃k)

iid
∼G0, and the

πk =Vk ∏l<k(1−Vl), where Vk
iid

∼Be(1,α); here, G0 is the centering distribution and

α > 0 is the so-called precision parameter. A related spatial DP with exponential

covariance function in the base distribution was developed by Gelfand et al. (2005).

Model (2.2) implies clustering on autocorrelation structure across subjects, and

using the Sethuraman representation, it can be noticed that

Cov(wi(t + s),wi(t) | G) =
∞

∑
k=1

πkσ̃2
wkρ̃s

k .

Hence, if the ith subject has equally spaced times between observations, the corre-

sponding covariance matrix has equal diagonals with decreasing correlations as s

increases, but not necessarily at a geometric rate.

2 Zeger and Diggle (1994) used ρ(s) = α + (1−α)ρs. There are additional choices, including

the possibility that σ2
w could depend on t, resulting in a nonhomogeneous Ornstein–Uhlenbeck

process (Zhang et al. 1998). Taylor et al. (1994) used an integrated Ornstein–Uhlenbeck process

(integrating over an Ornstein–Uhlenbeck with exponential covariance function) that results in a co-

variance function that depends on both t and s. With structured covariance functions, the marginal

covariance matrix for Yi is Cov(Yi) = Σi(ξ ,φ ,σ2) = ZiD(ξ )ZT
i +Hi(φ)+σ2Ini

.



It is useful to re-write the semiparametric autoregressive model (2.2) hierarchi-

cally based on latent parameters φ1, . . . ,φn, i.e.

Yi | β ,bi,wi,σ
2 ind
∼ Nni

(Xiβ + fi(t)+Zibi +wi,σ
2I),

wi | φi = (σ2
wi,ρi)

ind
∼ Nni

(0,σ2
wiH̃i(ρi)),

φ1, . . . ,φn | G
iid
∼ G, (2.3)

G ∼ DP(α,G0),

bi
iid
∼ N(0,D(ξ )),

σ ,β ,ξ ∼ U(0,A)×N(β0,B)× p(ξ ),

where wi and bi are assumed independent for i = 1, . . . ,n.

What about posterior sampling? It can be shown that f (wi | φi) is easily obtained,

by noting that wi ∼ Nni
(0,σ2

wiH̃(ρi)). Then, with

rik = ρ
|ti,k+1−tik|
i , k = 1, . . . ,ni −1,

Quintana et al. show that

{

wi1 ∼ N1(0,σ2
i ),

wik | wi1 = w̃1, . . . ,wi k−1 = w̃k−1 ∼ N1

(

w̃k−1ri k−1,σ
2
i (1− r2

i k−1)
)

.

Thus, f (wi | φi) is obtained as the product of ni univariate normal probability den-

sities, making it simple to obtain the full conditional distribution of wi in a Gibbs

sampling algorithm.

2.3.2 Model Specification for Hormone Data

Quintana et al. (2015) considered a small subset of data that were obtained from

SWAN (Study of Woman Across the Nation, www.swanstudy.org). The data in-

cluded 9 observations for each of 162 women, and contained no missing observa-

tions. The data were grouped according to age at the beginning of the study (under

46 and over 46 years), and according to four racial/ethnic groups (African Ameri-

can, Caucasian, Chinese, and Japanese).

The main interest was to model the annual follicle stimulating hormone (FSH)

concentrations through the menopausal transition. Concentrations of FSH and other

hormones had been modeled to increase according to a (four parameter) sigmoidal

shape (Dennerstein et al. 2007). FSH concentrations were measured annually from

serum samples in days two through five of the menstrual cycle for women who

were still menstruating or on any day that women came in for their annual visit if

they were postmenopausal. Times of observation were centered on the year of final

menstrual period (FMP), namely ti = 0 corresponds to the year in which the final

www.swanstudy.org
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menses occurred, which is defined to be the actual time of last menses before a

12-month period in which there were none. Thus, year −3 is 3 years prior to the

FMP, and year +3 is 3 years after. The data included women who started at year −8

continuing through year 0, and women starting at year −2 and continuing through

year 6 (after FMP).

The functional part of the model involves a generalized sigmoid function allow-

ing for greater flexibility than the Dennerstein et al. model. Each of the eight age by

race-ethnicity groups was modeled with its own generalized sigmoid function. Let

c(i) ∈ {1, . . . ,8} be an indicator variable describing the particular combination of

four races and two ages corresponding to subject i. Here, we set β = (β1, . . . ,β8),
where βl is the vector of fixed parameters associated with combination l.

Quintana et al. used the five parameter generalized sigmoid curve that was dis-

cussed in Ricketts and Head (1999):

S(t | β ) = β1 +
β2

1+ ft exp{β3(β4 − t)}+(1− ft)exp{β5(β4 − t)}
, (2.4)

where

ft =
1

1+ exp{−C(β4 − t)}
, C =

2β3β5

|β3 +β5|
,

in which case the fixed effects become fi(ti j) = S(ti j | βc(i)). The parameters now

five-dimensional and the curves defined by (2.4) are not restricted to be monotone,

as would be the case of a pure sigmoidal curve. If β3 and β5 are however both

positive, then (2.4) is monotone and increasing, and if both are negative, then it is

decreasing. Using a model with fixed effects specified through (2.4), estimated mean

profiles can be compared for the eight groups.

The data analysis just below is based on the specification:

Yi = S(ti | βc(i))+bi1+wi + εi, (2.5)

where tT
i = (ti1, . . . , ti9), bi

ind
∼ N(0,σ2

b ) are individual-specific random effects, 1 is a

vector of ones, wi is distributed as a DPM of Ornstein–Uhlenbeck (OU) processes,

as specified in (2.3), and where S(ti | βc(i)) is a vector with entries S(ti j | βc(i)), for

j = 1, . . . ,9.

Hormone Data Analysis

Quintana et al. (2015) fitted a total of six models to the data, including (2.5) above.

The models considered included a parametric version of (2.5) without the OU pro-

cess, model (2.5) with mixed and fixed linear terms replacing the sigmoid function, a

model just like this one, except setting ρ = 0, model (2.5) again, but with ρ = 0, and

finally model (2.5) without OU structure and with a general nonparametric Bayes

mixture for the random effects.



They calculated log pseudo-marginal likelihood (LPML) statistics for each

model; see Christensen et al. (2010, Sect. 4.9.2), or Gelfand and Dey (1994). This

criterion for model selection was first introduced by Geisser and Eddy (1979) and

has been used extensively for model selection in recent years; see, for example,

Hanson, Branscum, and Johnson (2011b). The pseudo-marginal likelihood used was

defined as ∏n
i=1 ∏

ni
j=1 f (yi j | y(i j), Xi,M ), where f (yi j | y(i j),Xi,M ) is the predic-

tive density, under model M , corresponding to individual i at time j based on the

data minus yi j. LPML value for model (2.5) was −5966, and the range for the other

five models was −6673 to −6986; thus the sigmoid function with NP autoregressive

structure was the clear winner. Leaving out the AR part of the model was simply not

an option.

Plots of fitted values and corresponding probability bands (not shown) were vir-

tually identical for (2.5) and its linear counterpart was virtually identical. The model

with linear structure would have however been useless for prediction or for charac-

terizing mean curves as can be seen in Fig. 2.1.
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Fig. 2.1 Predictions of future hormone concentrations (y axis) for eight types of women, using

(2.3) (solid curve), linear version of (2.3) (dotted), parametric sigmoid (dot dash), nonparametric

random effects with sigmoid (dashed). Times of observation (x axis) are centered on the year of

final menstrual period (FMP) (ti = 0), so that year −3 is 3 years prior to the FMP, and year +3 is

3 years after
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Figure 2.1 shows model-based future predictions (posterior mean curves) for the

eight different types of patient, all on the same time scale. It thus makes sense to

compare shapes and levels across race/ethnicity for the same age group, and be-

tween age groups for the same race/ethnicity. Generally speaking, all models that

include sigmoid mean functions predict that women’s FSH hormones will go up

sigmoidally, and then curve downwards toward the end of the time frame, regardless

of age-race/ethnicity category. On the other hand, the linear effects model, labeled

as OU on the graph, predicts a simple linear increase in FSH hormone values in

contrast to the others.

Quintana et al. also made inferences comparing the maximum level achieved,

the timing of the maximum level achieved and the overall slope of increase in the

4 years before FMP. The most dramatic inference is that Chinese women who are

46 years old and under at baseline achieve their maximum approximately between

1 and 3 years after FMP with 95 % posterior probability, while corresponding in-

tervals for younger women in the other race/ethnic groups are below this interval.

Among older women at baseline, there is a 0.95 posterior probability that timing for

African Americans is greater than for Caucasians. The posterior probability that the

difference in timing comparing younger to older Chinese women is positive is one

to four decimal places. There is a clear statistical difference in timing comparing

age groups for Chinese women but not for the other groups.

Finally, they estimated correlations among repeated responses on a new patient

with equally spaced times of observation based on the joint predictive distribution

under (2.5). The estimated correlations for these times that were 1–8 years apart

were respectively {0.43,0.27,0.21,0.17,0.15,0.14,0.14,0.13}, which is quite dis-

tinct from an AR structure. Quintana et al. observe that, after about 4 years, the

correlations flatten out around 0.14. With a typical AR structure, the estimated cor-

relations would continue to decrease across time.

2.4 Survival Data: Nonparametric and Semiparametric

Modeling

2.4.1 Nonparametric and Semiparametric Survival Regression:

A Selective Historical Perspective

Survival modeling has a long and enduring history that continues. The field took

its initial directions from the landmark papers by Kaplan and Meier (1958) (KM)

and by Cox (1972).3 The former paper developed the most famous nonparametric

estimator of a survival function for time to event data with censoring called the

product limit estimator. The second paper extended the field of survival analysis to

semiparametric regression modeling of survival data; the model introduced there

3 According to Ryan and Woodall (2005); Cox (1972) and Kaplan and Meier (1958) are the two

most-cited statistical papers.



is termed the Cox proportional hazards (PH) model and is ubiquitous in medical

research. There have literally been hundreds if not thousands of papers addressing

various models and methods for performing survival analysis.

The main goal of a large proportion of these papers is to examine the relationship

between the time to event, say T , and covariate information, say x, through the sur-

vivor function S(t | x) ≡ Pr(T > t | x). This is often done by starting with a model

for T , like log(T ) = xβ +W where β is a vector of regression coefficients and W

is modeled to have a mean zero error distribution.4 Parametric models have W dis-

tributed as normal, or extreme value or logistic, resulting in parametric log normal,

Weibull and log logistic survival models. These models are termed parametric ac-

celerated failure time (AFT) models (Kalbfleisch and Prentice 2002, Sect. 2.3.3). If

the distribution of W is parameterized to have median zero, which is automatic for

the normal and the logistic and involves a slight modification for the extreme value

distribution, then the median time to event is med(T | x) = exβ .

Models that allow for flexible distributions for W are termed semiparametric.

Specifically, the AFT model with fixed covariates x discussed in Hanson and John-

son (2002) asserts log(T ) = −xβ +W with eW ∼ MFPT(M,c,Fθ ) and θ ∼ p(θ),
where M is the truncation level for the tree structure and c is the weight that

is associated with how much flexibility there will be about the parametric cen-

tering model, Fθ . The nonparametric model embeds the family of distributions

{Fθ : θ ∈ Θ} in it, in the sense that E{FW (t) | θ} = Fθ (t) for all θ and t. Here,

for example Fθ could be a log normal distribution. The survivor function for this

model is S(t | x,β ,S0) = S0(te
xβ ) and the hazard is h(t | x,β ,h0) = exβ h0(te

xβ ).
Alternatively, models can be constructed by considering hazard functions, which

can be regarded as instantaneous failure rates, formally defined as h(t | x) =
lim∆s→0 Pr(T ∈ (t, t +∆s] | T > t,x)/∆s = f (t | x)/S(t | x), where f (t | x) is the

density for T . The Cox (1972) PH model is h(t | x) = h0(t)e
xβ where h0 is an arbi-

trary baseline hazard function. For two distinct individuals, it follows that the ratio

of their hazards involves the cancellation of the common baseline hazard and what

remains is a constant (in t) that only depends on their covariate vectors and the re-

gression coefficients, hence the PH model. The survival function can be written as

S(t | x,β ,H0) = exp{−exβ H0(t)}, where H0(t) =
∫ t

0 h0(s)ds, which is termed the

baseline cumulative hazard. Defining S0(t) = exp{−H0(t)}, the survival function

can be expressed as S(t | x,β ,S0)= S0(t)
exβ

, where S0 is termed the baseline survival

function. Under the PH model, survival curves for individuals with distinct covariate

values cannot cross. We see that there is a parametric part to the PH model involv-

ing β , and a nonparametric part involving the unknown baseline hazard function,

or equivalently the corresponding cumulative hazard, or baseline survival distribu-

tion. Bayesian approaches place parametric priors on the former, and nonparametric

priors on the latter.

Bayesian methods for survival analysis were somewhat constrained until the

advent of modern MCMC methods. Susarla and Van Ryzin (1976) placed a DP

prior on S, and derived the posterior mean with censored survival data resulting in

4 For ease of notation, we often write xβ to denote of xTTT β .
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the Bayesian analogue to the KM estimator in the no covariate case. There were

many ensuing papers, including a paper by Johnson and Christensen (1986) who

again placed a DP prior on S and provided analogous results for interval censored

data. Kalbfleisch (1978) placed a gamma process prior distribution on H0 in the

PH model, and derived empirical Bayes (EB) results for that model by marginaliz-

ing over the gamma process and using the marginal likelihood to obtain estimates

of β . Christensen and Johnson (1988) considered the AFT model, placed a DP prior

on eW , marginalized over this distribution and maximized the marginal likelihood

to obtain EB estimates of regression parameters. Finally, Johnson and Christensen

(1989) established the analytical intractability of a fully Bayesian approach to that

model.

Subsequently, Kuo and Mallick (1997) developed a Bayesian semiparametric

model for AFT data by modeling W with a DP mixture of normal distributions.

They performed numerical approximations to posterior inferences using the ba-

sic ideas presented in Escobar (1994). Kottas and Gelfand (2001) then developed

an AFT model with error distribution modeled as a DPM of split normals that

was designed to have median zero and thus resulted in a regression model with

med(T | x,β ) = exβ , a semiparametric median regression model. Then, Hanson and

Johnson (2004) developed a fully Bayesian AFT model for interval censored re-

gression data by placing a mixture of DP priors on eW . While this model is analyt-

ically intractable, Hanson and Johnson were able to develop an MCMC algorithm

for numerically approximating posterior distributions for all parameters of interest,

including survival functions and regression coefficients. Hanson and Johnson (2002)

modeled eW with a mixture of finite Polya trees (MFPT).

Time-to-Abortion in Dairy Cattle Data Analysis

We illustrate the semiparametric AFT regression model with MFPT model for the

error distribution. The model and analysis of these data were presented in Hanson

and Johnson (2002). The data included n = 1344 dairy cattle that were observed to

naturally abort their fetus prematurely. Nine herds from the central valley of Cali-

fornia had been monitored and it was of interest to assess the relationship between

two characteristics of the dam: Days open (DO), the number of days between the

most recent previous birth and conception, and gravidity (GR), the number of pre-

vious pregnancies that the dam has had, and the timing to abortion. The herds were

followed for 260 days; 16 dams aborted after the 260 days, and hence were right-

censored. Hanson et al. (2003) also analyzed these data and determined that it was

likely that the baseline densities and hazard functions were bimodal thus ruling out

a standard parametric model.

The model used was:

logTi j =−β0 −β1DOi j −β2GRi j − γi +Wi j, Wi j | G
iid
∼ G,

where Ti j is the fetal lifetime of the 1344 fetuses that aborted in each of the i =
1, . . . ,9 herds, with j = 1, . . . ,hi dams observed to have aborted in herd i.



Fig. 2.2 Predictive densities, survival curves, and hazard curves for herds 4 (solid) and 9 (dashed);

here t denotes time in days

The baseline G was modeled as a mixture of finite (M = 10
•
= log2 1344) Polya

trees. The fixed effect for herd 1, γ1, was fixed at zero and hence herd 1 has the

baseline survival distribution. The mixture of Polya trees was centered about the

family Gθ = N(0,θ 2) and p(β ) ∝ 1 and the prior for θ was taken to be ∝ θ−2.

The parameter w was fixed at 10, signifying relative comfort in the parametric log

normal family, but small enough to allow for deviations from it. Table 2.1 displays

the posterior regression effects. All probability intervals include zero, however there

are herd differences. For example, fixing DO and GR, exp(γi−γ j), with j �= i, is the

ratio of median survival times for herds j and i. The median and 95 % probability

interval for exp(γ4−γ9) is 1.3 (0.9, 2.0), that is, the median time-to-abortion of herd

9 is estimated to be 1.3 times that of herd 4, with a plausible range of 0.9 to 2.0.

Table 2.1 Posterior inference (posterior medians and 95 % probability intervals) for cow abortion

data

Parameter Posterior median 95 % Probability intervals

Intercept −4.79 (−4.89,−4.70)
DO −1.1×10−4 (−6.4×10−4, 3.3×10−4)
GR 0.01 (−0.01, 0.03)
γ2 −0.01 (−0.08, 0.05)
γ3 0.00 (−0.12, 0.10)
γ4 0.09 (−0.02, 0.21)
γ5 −0.03 (−0.14, 0.07)
γ6 0.02 (−0.16, 0.15)
γ7 0.05 (−0.02, 0.14)
γ8 −0.01 (−0.08, 0.06)
γ9 −0.20 (−0.56, 0.16)
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Figure 2.2 compares the predictive densities, survival, and hazard functions for

herds 4 and 9 evaluated at the population mean values of DO and GR. The predictive

survival densities are both clearly bimodal as suggested by Hanson et al. (2003). The

herd 4 hazard curve peaks at 86 days and 138 days. Hanson et al. (2003) described

these peaks as possibly being related to difficulty in previous calving (the first peak)

and the effect of leptospirosis infection (the second peak).

2.4.2 Semiparametric Models for Survival Data

with Time-Dependent Covariates

A number of semiparametric regression models associating survival time with time-

dependent covariates (TDC), have been proposed in the literature, including models

due to Cox (1972), Prentice and Kalbfleisch (1979), Aalen (1980), Cox and Oakes

(1984), and Sundaram (2006), among many others. In this section, we discuss the

extension of the Hanson and Johnson (2002) model, the Sundaram (2006) propor-

tional odds model, and the Cox PH model, to include TDCs, and we discuss the Cox

and Oakes (1984, Chap. 8) model—to which we refer as the COTD model—which

was designed to incorporate TDCs. This work is discussed in detail in Hanson et al.

(2009).

Consider the time-dependent covariate process {x(t) : t ∈ (t1, . . . , tk)} where tis

are times of observation, and x(t) is the possibly vector valued observation on the

TDC process. Also define h0 to be an arbitrary baseline hazard, and in particular,

let it correspond to an individual with constant covariate process values of zero

for all times. Let S0(t) = exp{−
∫ t

0 h0(s)ds} be the corresponding baseline survivor

function. Prentice and Kalbfleisch (1979) extended the AFT model to TDCs as

h(t | x(t),β ,h0) = ex(t)β h0(te
x(t)β ), (2.6)

and Hanson et al. (2009) termed it as the PKTD model. The TD Cox model has

hazard function

h(t | h0(t),x(t),β ) = ex(t)β h0(t), (2.7)

and we will call it the CTD model. The TD covariate version of the Sundaram (2006)

proportional odds model is

d

dt

{

1−S(t | Xt)

S(t | Xt)
= ex(t)β d

dt

{

1−S0(t)

S0(t)
Xt = {x(s) : s � t}, (2.8)

and we will call it the POTD model. A generalization of the AFT model due to Cox

and Oakes (1984) is

S(t | xt ,β ,S0) = S0

(

∫ t

0
ex(s)β ds

)

.

Hanson et al. show that S(t | x(t),β ,S0) for all of these models can be written as

easily computable functions of S0 and β .



Hanson et al. (2009, 2011b) place the same MFPT prior on S0 for all of these

models and their model assumes independence of β and S0; they use an improper

uniform prior for β . It is however straightforward to incorporate the informative

priors for β that are discussed in Bedrick et al. (2000) for fixed covariates. This is

another nice feature of this semiparametric model.

Hanson et al. (2009) analyzed the classic Stanford Heart Transplant data (Crow-

ley and Hu 1977), and data involving cerebral edema in children with diabetic ke-

toacidosis. We present parts of their analyses below.

Stanford Heart Transplant Data Analysis

These data involve the time to death from after entry into the study, which was

designed to assess the effect of heart transplant on survival. Individuals entered the

study and either received a donor heart at some point according to availability of

an appropriate heart and a prioritization scheme, or they left the study and possibly

died before a suitable heart was found. The main TDC considered was an indicator

of having received a heart, yes or no, at each time t. The second and third TDCs

were a mismatch score that indicated the quality of the match between donor and

recipient hearts, which was centered at 0.5, and age at transplant (AT), which was

centered at 35 years. These TDCs switched on when a heart was transplanted.

Crowley and Hu (1977) and Lin and Ying (1995) analyzed these data using the

CTD and COTD models, respectively. Hanson et al. (2009) fit these models and the

PKTD model using the same MFPT prior on the baseline survivor function with a

log logistic base-measure. They truncated the trees at M = 5 levels, fixed the PT

weight at one, and placed an improper constant prior on β .

Patients not receiving a new heart have TDC process for the heart transplant,

age and mismatch score (MS) that are all zero for all t. Let zi denote the time of

transplant for individual i if they did receive a transplant, and define the TDCs

xi1(t) =

{

0, if t < zi,

1, if t � zi,

and

xi2(t) =

{

0, if t < zi,

AT−35, if t � zi,
xi3(t) =

{

0, if t < zi,

MS−0.5, if t � zi.

Let xi(t) = (xi1(t),xi2(t),xi3(t))
T. Results from the three posterior distributions are

displayed in Table 2.2.

The models are decisively ranked in the order CTD, COTD, and PKTD, using the

LPML criterion. The integrated Cox–Snell residual plots (not shown) were consis-

tent with this ranking and showed nothing that could be construed as extreme lack

of fit for any of the models. The CTD model shows statistical importance for status

and age but not for mismatch, while the other models do not indicate the statistical

importance of status.
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Table 2.2 Posterior inference (posterior medians and 95 % probability intervals) for Stanford Heart

Transplant data; the PKTD and CTD models are, respectively, based on (2.6) and (2.7)

Model

Parameter PKTD COTD CTD

Status −1.76 (−3.86,1.57) −1.10 (−2.70,0.50) −1.04 (−1.99,−0.17)
AT−35 0.10 (−0.02,0.26) 0.05 (−.004,0.13) 0.06 ( .015, 0.11)
MS−0.5 1.63 (−0.38,3.89) 0.64 (−0.30,1.52) 0.49 (−0.09, 1.03)

LPML −468.0 −467.0 −464.1

AT denotes age at transplant while MS denotes mismatch score

Fig. 2.3 Estimated survival curves and 95 % probability intervals for individuals with mismatch

score 0.5 and age 35. Solid line is for individual with a heart transplant at 6 months and dashed

line is for an individual with no heart transplant

Under the CTD model, Hanson et al. (2009) considered two individuals aged 35

years with mismatch scores of 0.5. The first individual did not receive an HTP while

the second did after 6 months. The relative hazard comparing the individual with the

no heart transplant to the one with the heart transplant is of course one from time

zero to 6 months, and is e−β1 from that time on. A 95 % posterior probability interval

for the relative hazard after 6 months is (1.19, 7.31), and the posterior median is

2.83. Figure 2.3 displays estimated survivor curves for these two individuals, and

their 95 % limits. They also fitted the MFPT with a parametric exponential base that

resulted in quite different estimates of regression coefficients. The LPML for this

model was −486.3, much smaller than any value in Table 2.2. Chen et al. (2014)

later found an AFT model that fit the Stanford data better.



Cerebral Edema Data Analysis

The data analyzed here were collected by Glaser et al. (2001), who assessed risk

factors associated with the onset of cerebral edema (CE) in children with diabetic

ketoacidosis. The description that follows is taken from Hanson et al. (2009):

Cerebral edema is a dangerous complication associated with emergency department and

in-patient hospital care of children with diabetic ketoacidosis. Children with symptoms

of diabetic ketoacidosis are initially treated in the emergency department, then moved to

the hospital, typically the pediatric intensive care unit, over the course of 24 h. The main

purpose of treatment is to normalize blood serum chemistry and acid-base abnormalities.

A major, but infrequent complication of children associated with diabetic ketoacidosis and

its treatment is CE, or swelling in the brain, which may result in death or permanent neuro-

logical damage.

Hanson et al. consider only the children in that study who developed CE (n= 58).

Their goal was to ascertain the effect of treatment procedures in time and fixed

covariates on the timing of CE.

Upon admission, various treatments were recorded hourly for up to 24 h, and sev-

eral initial measurements taken. The only fixed variable considered was age. Two

types of TDCs are considered, the first involving the monitoring of biochemical

variables over time; Hanson et al. considered serum bicarbonate (BIC) (concen-

tration in the blood measured in mmol per liter) and blood urea nitrogen (BUN)

(mg/deciliter). The second type involved actions by physicians; Hanson et al. used

fluids administered (FL) (volume of fluids in ml/Kg/hour) and sodium administered

(NA) (mEq/Kg/hour). None of the event times are censored. They again used the log

logistic family to center the three MFPT survival models, and they set the number

of levels for the finite tree to be M = 4 and the weight to be one. Table 2.3 gives

posterior summaries of the analysis of all three models.

Table 2.3 Posterior inference (posterior medians and 95 % probability intervals) for cerebral

edema data

Model

Parameter PKTD COTD CTD

Age (Fixed) 0.028 (−0.01,0.08) 0.021 (−0.02,0.07) 0.044(−0.02,0.11)
Serum-BUN (TD) −0.005 (−0.02,0.01) −0.01 (−0.022,0.005) 0.00 (−0.03,0.03)
Serum-BIC (TD) 0.04∗ (−0.01,0.13) 0.05∗ (−0.02,0.12) 0.06∗ (−0.05,0.17)
Serum-BIC2 (TD) −0.005 (−0.01,0.006) −0.006 (−0.02,0.003) −0.007 (−0.02,0.005)
Adm-FL (TD) −0.03 (−0.09,0.03) −0.05 (−0.10,0.02) −0.05 (−0.15,0.04)
Adm-NA (TD) 0.60∗ (0.16,0.93) 0.74∗ (0.18,1.2) 0.90∗ (0.19,1.57)
FL×NA (TD) −0.011∗ (−0.03,−0.00) −0.013∗ (−0.03,0.001) −0.014∗ (−0.04,0.003)

LPML −176 −176 −175

BUN denotes blood urea nitrogen, BIC denotes bicarbonate, while NA denotes sodium

administered; the PKTD and CTD models are, respectively, based on (2.6) and (2.7)



W.O. Johnson and M. de Carvalho

Integrated Cox–Snell residual plots did not show radical departures from the as-

sumption of a correct model for any of the three models. Table 2.3 gives LPML

values for each model, and there is no obvious distinction among the models ac-

cording to this criterion. Estimates of regression coefficients for all variables in the

models have the same sign and general magnitude across models. Under all models,

there is a 99 % posterior probability that the coefficient for Admin-NA is positive

and at least a 96 % posterior probability that the coefficient for the interaction is

negative. The Serum-BIC variable has at least a 94 % probability of being positive

across models; thus the effect of sodium administration appears to be modified by

fluids administration. However, the estimated relative hazard under the CTD model,

comparing two patients identical in all respects, including the administration of k

units of fluids and with the numerator patient having an increase of one unit in NA

administration over the patient in the denominator, would be exp(0.9−0.014k). The

effect modification of fluids is thus demonstrated. For small values of k, there would

be little practical import.

Fig. 2.4 Cerebral edema hazard ratio for subject with NA = 0.7 versus NA = 0.35; the black

dashed, and solid lines correspond, respectively, to COTD and PKTD, whereas the solid gray line

corresponds to CTD; the PKTD and CTD models are, respectively, based on (2.6) and (2.7)

Hence, according to all models, larger values of Serum-BIC are associated with

earlier diagnosis of CE. For example, under the CTD model, comparing two children

that are otherwise being treated the same over a period of time and who are of the

same age, the hazard of cerebral edema for a child with a larger value for BIC will

be greater than for one with a lower value.

The posterior density estimates and hazard functions for time to CE correspond-

ing to patients with specified TDC profiles are simple to obtain. Consider hypotheti-

cal patients 1 and 2 of age 10, BUN = 35, fluids constant at 3.6, and BIC increasing

from 5 to 22, as was the case for patient 5 in the data. Figure 2.4 presents an es-

timated relative hazard comparing hypothetical subject 1, who has NA constant at

0.7, to hypothetical subject 2, who has NA constant at 0.35. Observe that the CTD

model gives a constant relative hazard since the only difference in the two subjects

is a TDC that is remaining constant over time for both subjects. According to this



model, subject 1 is estimated to be about 1.35 times as much at risk of CE as subject

2 for all times. Under the PKTD and COTD models, subject 1 is usually at higher

risk of CE, but the estimated relative risk varies considerably over the first 18 h.

Observe the similarity of shapes of these two relative hazards, with both peaking

twice.

2.4.3 A Nonparametric Survival Regression Model

We now discuss the approach by De Iorio et al. (2009) who model censored survival

data using a DPM of linear regression models, and which can be shown to be a DDP

model. We discuss their analysis of breast cancer data from a cancer clinical trial

after describing the model. The model was developed because it was anticipated

that survival curves for different treatments would cross each other, which would

contraindicate the use of PH, AFT, and PO models.

If we were to posit a parametric survival regression model for the data, we could

use the log normal, log logistic, or log extreme value families, among others. These

models can be expressed as

log(T ) = xTβ +σW,

where x is a vector of covariates with a one in the first slot for the intercept. We could

let W have an N(0,1), or Logistic(0,1), or an Extreme-Value(0,1) (re-parameterized

to have median zero) distribution. Let f (t | x,β ,σ) be the density for an individual

with covariate x from one of these models, and let

f (t | x,G) =

∫

f (t | xTβ ,σ)dG(β ,σ),

with G ∼ DP(α,Gθ ) and θ ∼ p(θ). This is a DPM of regression models where the

base of the DP can possibly have unknown parameters and where a further distribu-

tion is placed on them.

For simplicity, consider the case with a simple binary covariate, v, and a single

continuous covariate, z. Then xT = (1,v,z) takes on the values (1,0,z) or (1,1,z). So

the parametric version of this model would be an analysis of covariance model in

the log of the response. Let xi denote the covariate for individual i, for i = 1, . . . ,n.

Then xT
i β = β0 + ziβ2 or β0 + β1 + ziβ2. Let X = {xi : i = 1, . . . ,n} and let Gxi

be the induced distribution on xT
i β that is derived from the DP distribution on G.

The collection {Gxi
: i = 1, . . . ,n} is a DDP for which the DPM distributions cor-

responding to the n observations in the data are dependent. The model is termed a

linear DDP by De Iorio et al. (2009), and interested readers can find details about

the choice of Gθ and p(θ) there. Another nice feature of this model is that it can be

fit in DPpackage (Jara et al. 2011).
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Breast Cancer Data Analysis

De Iorio et al. (2009) illustrate the proposed approach using data on 761 women

from a breast cancer clinical trial. Survival times in months are the times until death,

relapse, or treatment-related cancer, or censoring. Fifty three percent of the 761

observations are censored. Interest lies in determining whether a high dose of the

treatment is more effective overall for treating cancer compared with lower doses.

High doses of the treatment are known to be more toxic. It was hoped that the

initial risk associated with toxicity would be offset by a subsequent improvement in

survival prospects. The main goal of the clinical trial was to compare high versus

low dose survival rates.

Two categorical covariates were considered; treatment dose (−1= low, 1= high)

and estrogen receptor (ER) status (−1 = negative, 1 = positive or unknown); stan-

dardized tumor size was also considered as a continuous covariate, and an inter-

action between treatment and ER was also included in the model. The centering

distribution was log normal.
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Fig. 2.5 Inference for high versus low dose. (a) Estimated survivor functions (solid lines) along

with pointwise 50 % probability intervals (grey bands). (b) Estimated hazard functions (solid lines)

along with pointwise 50 % probability intervals (grey bands). (c) Box-plots for posterior distribu-

tion of the difference in survival rates at 10, 20, 40, 60, 80, and 100 months between a patient who

receives high treatment dose versus a patient who receives the low dose. Remark: (a), (b), and (c)

correspond to positive ER status and tumour size equal 2.0

Figure 2.5a,b show the posterior survival and hazard function estimates with their

corresponding posterior uncertainty for ER positive patients with tumor size 2.0 cm

(equal to the first quartile). As expected, the survivor functions corresponding to

the two treatment groups cross, showing a higher level of risk associated with high

treatment dose in the first 20 months. Figure 2.5c shows box plots corresponding

to posteriors for the difference in survival rates between the two treatment groups

for positive ER status and tumour size equal 2.0 cm, across a range of times. There

is a statistically important negative effect of high dose due to toxicity early in the

study, and a non-statistically important positive effect later in the study. Ultimately,

the high dose treatment was abandoned as a result of the study.



2.5 Joint Modeling of Longitudinal and Survival Data

Many studies entail an event/survival time of interest and measurements on longitu-

dinal processes that might be associated with patient prognosis. Examples include:

• Blood pressure measurements in dialysis patients (event: Death).

• Daily fertility counts in Mediterranean fruit flies (event: Death).

In the former case, maintaining blood pressure to be sufficiently high plays a key

role in long-term prognosis for dialysis patients. In the latter case, it has been argued

in the literature that life span of fruit flies might be related to fertility (see Hanson

et al. 2011b, for references).

Hanson et al. (2011b) developed a general Bayesian semiparametric method-

ology for joint analysis. They illustrated and compared Bayesian joint models in

which the survival component was taken to be the POTD, CTD, or COTD models

that were discussed in Sect. 2.4.2. Comparisons were made using the LPML crite-

rion for model selection. In each instance, baseline survival functions were modeled,

as in Sect. 2.4.2, with an MFPT prior.

Two-stage procedures involve modeling the observed longitudinal processes, as,

for example, was done in Sect. 2.3.1. That model is then used to predict the ‘true’

underlying processes, namely the process without measurement error. The predicted

processes are then used as if they were the observed TDCs in fitting the time to event

data with the TDC survival models discussed in Sect. 2.4.2. Subsequently, we term

analyses that condition on the observed processes using LOCF (last observation

carried forward) as ‘raw’ analyses.

Drawbacks of raw and two-stage methods motivated a considerable flourish of

research on joint models for longitudinal and survival data (see Tsiatis and Da-

vidian 2004, for a review up to that time). Bayesian approaches to joint analysis in-

clude Faucett and Thomas (1996), Wang and Taylor (2001), and Brown and Ibrahim

(2003), among others. Joint modeling would appear to be a good idea since one

would expect potential benefits from modeling all of the stochastic data, especially

when there is the possibility of considerable measurement error, which would be the

case when measuring blood pressure, and also beneficial when observations on the

process are spaced out in time.

A joint analysis, on the other hand, involves simultaneously modeling longitudi-

nal and survival data and making inferences about the effect of the true process on

survival in a single stage of analysis. Let y(t) be the observed vector process. This

can be regarded as the vector TDC process discussed in Sect. 2.4.2, only now we

consider modeling it rather than simply conditioning on it. Since we expect most

processes to be observed with error, let x(t) denote the ‘true’ (vector) process. In the

absence of measurement error y(t) = x(t).
A joint model involving a single process proceeds as follows. All of the models

considered involve a baseline survivor curve, S0, and a regression coefficient

vector, β . In each instance, we specify

S0 | θ ∼ MFPT(M,c,Gθ ) , θ ∼ p(θ) , p(β ) ∝ const,
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namely the baseline survivor function has an MFPT prior and the regression coeffi-

cients have an improper constant prior distribution. The data consist of {(Ti,yi, ti) :

i = 1, . . . ,n} where Ti is the minimum of the event time and the censoring time, ti is

the vector of observed times, and yi is the corresponding vector of observations on

the process yi(t), for individual i, in a sample of size n. We assume that xi(t) is the

‘true’ process and that

yi(t) = xi(t)+ εi , εi ∼ Fλ .

If we let Fλ be the distribution function of an N(0,σ2) distribution, one can glean

the particular xi(t) for model (2.1) in Sect. 2.3.1.

Survival modeling is conditional on the longitudinal process. We model the sur-

vivor function for individual i, Si(t | x(ti),S0,β ), using the POTD, CTD, and COTD

models discussed in Sect. 2.4.2, and where x(ti) = (x(ti1), . . . ,x(tihi
))T. From this,

we know the form of the hazard function and the density. Assuming a parametric

model of the form f (xi | ∆), then the full joint model for a non-censored observation

is expressed as

f (Ti,yi | xi,λ ,S0,β ) = f (Ti | xi,S0,β ) f (yi | xi,λ ) f (xi | ∆).

If an observation is censored, replace f (Ti | xi,S0,β ) with S(Ti | xi,S0,β ), making

the usual assumption that event times and censoring times are independent. We have

made the assumption that Ti is conditionally independent of the observed process

given the true process and the parameters. Details on inference can be found in

Hanson et al. (2011b).

2.5.1 Medfly Data Analysis

The data used for illustration came from a study reported in Carey et al. (1998) and

further analyzed by Chiou et al. (2003) and Tseng et al. (2005). Tseng et al. (2005)

analyzed a sample size of 251 Mediterranean fruit flies with lifetimes ranging from

22 to 99 days. The number of eggs produced per day was recorded throughout their

lifespan. We removed the first 2 days from each trajectory since all flies have zero

counts on those days.

We present some of the analysis presented in Hanson et al. (2011b). Our case

study makes the point that joint or two-stage modeling may not predict as well as

simply conditioning on the ‘raw’ process, for these data. For comparison with the

analysis by Tseng et al. (2005), Hanson et al. used the same longitudinal model

as they did, as well as some additional more flexible alternatives. Tseng et al. let

yi(t) = log{Ni(t)+1}, the natural log of one plus the number of eggs laid on day t,

and modelled trajectories as

yi(t)|(bi1,bi2),τ ∼ N(bi1 log(t)+bi2(t −1),τ−1), (bi1,bi2) | µ ,Σ
iid
∼ N2(µ ,Σ).



where the mean is a log gamma function. Since there are no additional covariates

for survival, a single regression coefficient β connects the survival model to the

longitudinal process xi(t) = bi1 log(t)+bi2(t −1). The MFPT models used here set

M = 4 and c = 1, with flat priors otherwise. About 16 observations fall into each of

the 16 sets at level M = 4 if the log logistic family is approximately correct. They

also considered the prior c ∼ Gamma(5,1) for a subset of models, obtaining LPML

values slightly smaller than with fixed c = 1.

All models were fitted with both the MFPT with weight c = 1, and parametric

log logistic model, corresponding to a weight that grows without bound. According

to the LPML statistics presented in Table 2.4, the COTD model performs the worst

in this data analysis, regardless of the method used to incorporate the longitudinal

predictor (e.g., raw versus modeled) or whether parametric versus MFPT for S0 was

assumed. For the two types of raw analysis, the flexibility obtained from an MFPT

generalization of the log logistic model improves predictive performance, though

not dramatically so. Moreover, it is also clear that two-stage and joint methods pre-

dict almost identically but are inferior to simple raw analysis in this setting. Observe

from Table 2.5 that point estimates of β under the POTD model are similar across

types of analysis and that they are different for the COTD model.

From Table 2.4, the general conclusions about predictive model comparison are

that a raw LOCF analysis is preferred to two-stage or joint methods, the POTD

model is preferred over the COTD and CTD models, and that the COTD model

might be excluded from further consideration. On the other hand, Tseng et al. (2005)

rejected the CTD model based on a test involving Schoenfeld residuals and proposed

the COTD model as a plausible alternative. Hanson et al. (2011b) discuss why these

data might not be ideal for joint or two-stage modeling beyond the analysis per-

formed here.

Table 2.4 LPML across models (larger is better) for medfly data; the POTD and CTD are, respec-

tively, based on (2.8) and (2.7)

Model

Inference Method POTD CTD COTD

Parametric Raw −867 −870 −937

MFPT Raw −865 −866 −938

MFPT Two-stage −947 −959 −973

Parametric Joint −947 −959 −973

MFPT Joint −945 −956 −973

Hanson et al. (2011b) also pointed out that not all of the egg count trajectories fit

the log gamma structure that is posited for these data. Consequently, they considered

a more flexible longitudinal model that represents a compromise between the Tseng

et al. approach and using the empirical egg counts (LOCF). They considered a B-

spline longitudinal model in conjunction with the POTD model, which resulted in

the largest LPML among all models considered, namely LPML = −879 for the

parametric joint model, worse than parametric raw but much better than using the



W.O. Johnson and M. de Carvalho

basis {log(t), t − 1}. Hanson et al. also argue that preference for the POTD model

over the CTD model in our analysis is tantamount to an acceptance that a change in

egg laying behavior at a particular time is eventually forgotten.

Table 2.5 Posterior inference (posterior medians and 95 % probability intervals) across models for

medfly data; the POTD and CTD are, respectively, based on (2.8) and (2.7)

Model

Method POTD CTD COTD

Par/Raw −0.75 (−1.02,−0.53) −0.65 (−0.74,−0.56) −0.36 (−0.44,−0.27)

MFPT/Raw −0.74 (−0.85,−0.64) −0.64 (−0.73,−0.55) −0.37 (−0.45,−0.29)

MFPT/Two-Stage −0.74 (−0.97,−0.52) −0.37 (−0.52,−0.24) 0.16 (−0.01, 0.30)

Par/Joint −0.78 (−1.02,−0.53) −0.39 (−0.54,−0.25) 0.19 ( 0.01, 0.33)

MFPT/Joint −0.79 (−1.00,−0.52) −0.40 (−0.54,−0.24) 0.19 ( 0.01, 0.32)

2.6 Medical Diagnostic Data

2.6.1 ROC Regression

We consider the quality of a medical diagnostic test for its ability to discriminate

between alternative states of health, generally referred to diseased/infected (D+)
and non-diseased/infected (D−) states. In many settings of clinical interest, covari-

ates can be used to supplement the information provided by a biomarker, and thus

can help to discriminate between D+ and D−. For example, consider diabetes test-

ing, where blood glucose levels are used to diagnose individuals with diabetes. The

covariate, age, plays a key role as older subjects tend to have higher levels of glu-

cose, without that necessarily meaning that there is a higher incidence of diabetes

at greater ages. However, since the aging process is believed to be associated with

relative insulin deficiency or resistance among the D− individuals, it is relevant to

adjust for age in the analysis; see Inácio de Carvalho et al. (2013) and the references

therein. The general area we now discuss is called ROC regression.

But first briefly consider the no covariate case using a diagnostic marker T . It

might be continuous, or dichotomous. If it is dichotomous, the marker outcomes

are T+, or yes, the individual tested has the infection/disease, or T−, or no, they

don’t. In the case of a continuous marker, a cutoff, c, is selected and, without loss

of generality, if the marker value exceeds the cutoff, the outcome is T+, and is T−
otherwise. In either case, observing the yes/no outcome is called a diagnostic test.

The quality of the test is determined by considering two types of test accuracy. The

sensitivity of the test is defined to be Se = Pr(T+ | D+), the proportion of the time

that the test says yes when it should, and the specificity, Sp = Pr(T− | D−), the

proportion of time the test says no when it should. In the continuous case, we write



Se(c), and Sp(c), and in this case, it is common to plot the false positive rate versus

the true positive rate across all possible cutoffs. The ROC curve for a continuous

biomarker is thus the plot {(1−Sp(c),Se(c)) : for all c}. It is possible to re-write

this plot as {ROC(t) : t ∈ [0,1]}, where ROC(t) = 1 − FD+{F−1
D−(1 − t)}, (Pepe

2003, Chap. 4), where FD+(·) and FD−(·) are the distribution functions for D+ and

D− individuals. We now extend this to include adjustment for covariates, x.

The key object of interest for modeling in Sect. 2.6.2 is the covariate-adjusted

ROC curve, which can be defined just as in the no covariate case, only now Se(c)

and Sp(c) are allowed to depend on covariates, x. So for every x, we have an ROC

curve. Here, we define the three-dimensional ROC surface:

{(t, x, ROC(t | x)) : t ∈ [0,1], x ∈ R
p},

where

ROC(t | x) = 1−FD+{F−1
D−(1− t | x) | x}. (2.9)

We now have two conditional distributions that are allowed to depend on covariates.

They may depend on distinct covariates, or one may depend on covariates and the

other not. The covariate-adjusted AUC is defined as

AUC(x) =

∫ 1

0
ROC(u | x)du,

and will be used as our preferred summary measure of covariate-adjusted discrimi-

native power.

In some cases a ‘perfect’ or gold-standard (GS) test exists, i.e., a test that cor-

rectly classifies the subjects as D+ and D−. In this case, data consist of two sam-

ples, one known to be D+ and the other known to be D−. Observed outcomes for

each unit consist of the pair

{Test Covariates,Test Scores};

we denote test covariates as x. A test score is a continuous diagnostic marker out-

come, and a test covariate is simply a covariate that is, at least believed to be, related

to a test score. With GS data, the model is identifiable regardless of the amount of

separation between FD+ and FD−; the case where a gold standard test exists is con-

sidered in detail in Chap. 16 (Inácio de Carvalho et al. 2015).

Section 2.6.2 focuses on ROC regression for the no gold-standard (NGS) case,

thus there is no direct information on whether individual subjects in a study are D+
or D−. The data consist of a single mixed sample with disease status unknown. The

NGS setting typically involves identification issues. However, if there are covariates

that allow us to learn about the probability of disease, the model is identifiable under

mild assumptions (see Branscum et al. 2015, Appendix 1). We refer to these as

disease covariates, and denote them as x∗. Hence in this setting we assume that data

consist of the triple,

{Disease Covariates,Test Covariates,Test Scores}.
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The model discussed in Sect. 2.6.2 was proposed by Branscum et al. (2015), and it

was built on the principle that Disease Covariates can be used to mitigate identifica-

tion issues in the NGS setting. See Branscum et al. (2013) for another GS approach

to this problem, and also see Branscum et al. (2008) for an approach that develops

much of the machinery used here.

2.6.2 A Semiparametric ROC Regression Model in the Absence

of a Gold Standard Test

Here we assume there are no test covariates available for D− subjects. For D+ sub-

jects we specify the model YD+ = xTβ + εD+, where x is a test covariate, β is a co-

efficient vector, and εD+ ∼ FεD+(·). With this specification, (2.9) can be rewritten as

ROC(t | x) = 1−FεD+{F−1
D−(1− t)− xTβ | x},

by noting that FεD+(y− xTβ ) = FD+(y | x).
Suppose continuous marker scores (yi) are obtained on n randomly sampled indi-

viduals from a population. Then let x∗i denote the disease covariate outcome, and let

zi denote latent disease status for subject i, with zi = 1 if they are D+, and zi = 0 oth-

erwise. Define πi as the probability that subject i is D+, for i = 1, . . . ,n. The latent

zis are independent and Bern(πi), with πi = G0(x
∗T
i α), with α = (α0, . . . ,αs)

T and

where G0 is a standard distribution function, like normal, or logistic. These choices

result in probit and logistic regression models for the zis. Test scores are modeled

according to a mixture distribution with conditional density,

f (yi | zi,xi) = zi fεD+(yi − xT
i β )+(1− zi) fD−(yi),

where β = (β0, . . . ,βp)
T, fεD+ is the density associated with FεD+ , and fD− is the

density associated with FD−. The model for D− subjects can also depend on covari-

ates; test and disease covariates may overlap.

The nonparametric part of the model involves placing independent MFPT priors

on FεD+ and FD−; here, FεD+ is constrained to have median zero to alleviate con-

founding between β0 and the location of FεD+ (Hanson and Johnson 2002). Since

the marker was log transformed, the MFPTs were centered on normal families, the

former family having mean zero and the latter having an arbitrary mean. Weights

for the PTs were either specified to be one, or given a diffuse gamma distribution.

Parametric priors were placed on all hyperparameters. See Branscum et al. (2015)

for further details.



Lung Cancer Data Analysis

Branscum et al. (2015) investigated the potential of a soluble isoform of the epider-

mal growth factor receptor (sEGFR) to be considered as a diagnostic biomarker for

lung cancer in men. The data were gathered a case-control study that was conducted

at the Mayo Clinic. The data included 88 controls and 139 lung cancer cases; see

Baron et al. (1999, 2003) for further details. Branscum et al. (2015) analyzed the

data as if disease status was unknown and used these data to assess the impact of

age on the discriminatory ability of sEGFR to distinguish cases and controls. Age

was used as a test covariate for controls, and as a disease covariate. They also an-

alyzed the data using known disease status in a GS analysis of the same data for

comparative purposes.

Fig. 2.6 GS and NGS semiparametric estimates of covariate adjusted ROC curves for ages 40, 55,

and 70



W.O. Johnson and M. de Carvalho

The sampling model for the natural log transformed test scores and latent dis-

eased status was:

zi ∼ Bern(πi), log

(

πi

1−πi

)

= α0 +α1x∗i ,

f (yi | zi,xi) = zi fεD+(yi −β0 −β1xi)+(1− zi) fD−(yi).

In Fig. 2.6 we plot semiparametric estimates of the covariate-adjusted ROC curves

corresponding to ages 40, 55, and 70. Posterior inferences for covariate-adjusted

AUCs for the same ages are displayed in Table 2.6. It is clear that it is easier to

diagnose lung cancer in older men than in younger men, and that the NGS analysis

provides a reasonable approximation to the GS analysis for these data. As expected,

interval inferences are less certain in the NGS case than in the GS case.

LPML and corresponding pseudo Bayes factors were used to compare paramet-

ric and semi-parametric models. In the NGS setting, the LPML for the parametric

normal model was −439, which was larger than the values for all semi-parametric

models considered. The largest LPML statistic for all models considered was −422,

Table 2.6 Posterior inference (posterior medians and 95 % probability intervals) for the covariate-

adjusted AUCs corresponding to ages 40, 55, and 70 based on GS and NGS analyses of the lung

cancer data

Analysis

Parameter GS NGS

AUC40 0.78 (0.72, 0.84) 0.79 (0.71, 0.86)

AUC55 0.83 (0.77, 0.88) 0.83 (0.75, 0.89)

AUC70 0.87 (0.81, 0.92) 0.86 (0.77, 0.92)

for a model with the two MFPTs truncated at four levels and with both weights equal

to one. Compared to the parametric model, the pseudo Bayes factor of e17 provides

strong evidence in favor of the selected semi-parametric model.

2.6.3 Joint Longitudinal Diagnostic Outcome Modeling

and Analysis

Most diagnostic outcome data are cross-sectional, as was the case in the previous

section. A main goal in those studies was to estimate sensitivity and specificity of

one or more biomarker outcomes over a range of cutoffs, resulting in an estimate

of the ROC curve. With cross-sectional data, by definition, sampled individuals in-

clude a cross-section of the population. Individuals in this population are either dis-

eased/infected, D+, or not, and if they are D+, there will be a range of times at

which the disease/infection was acquired. For many such maladies, the ability to

detect will very much depend on the time of acquisition. For example, it is practi-

cally impossible to detect HIV infection in the near term after infection. However,



after some time has passed, ELISA and Western Blot tests are able to detect it. If

the cross-sectional sample happened to include only newly infected individuals, the

estimated sensitivity of the test would be quite low. The purpose of developing the

model discussed below was to consider longitudinal or prospective diagnostic out-

come data so that it would be possible to estimate the sensitivity of a dichotomous

outcome test as a function of time from infection. A major difficulty faced in this en-

deavor is that it would rarely be known precisely when individuals in a population or

sample become infected, or even in many instances if they had become infected. If

a perfect/gold standard test is applied, the actual disease status could be known, but

not the exact timing. The model developed below does not assume a gold standard

and as a result, the latent status and timing of infection/disease are modeled.

Norris et al. (2009, 2014) developed a model for repeated observations in time

on a yes/no diagnostic test outcome and a continuous biomarker for a disease. They

analyzed longitudinal fecal culture and continuous serum ELISA outcomes for my-

cobacterium avium paratuberculosis (MAP), the causal agent for Johne’s disease in

dairy cattle. We discuss their model and analysis in the context of the cow data, but

the model would apply to many other data sets as suggested by Norris et al. (2009,

2014).

Once an animal is infected, it is expected that, after some delay, serum antibody

outcomes will increase. If animals are being monitored in time, as they are in the

cow data set, antibodies should increase to a point that the ELISA outcome exceeds

a cutoff, and thus becomes positive for MAP. If an animal is not infected during

the study, their ELISA outcomes should remain steady but variable around some

baseline value that depends on the cow. The model includes a latent disease status

indicator for all cows, and a change point corresponding to time of infection, t∗,

for animals with a positive disease indicator. The probability of a positive fecal

test changes at the time of infection, but the rise in serology score occurs some

time later. Norris et al. noted that there was literature that pointed to a 1 year lag

after infection. Nonetheless, they modeled lag as an unknown parameter. After the

lag, increase in antibodies was modeled to be linear. They also assumed that fecal

and serology results are independent for several reasons discussed in their paper.

The model takes account of the fact that the fecal test is viable soon after infection

whereas the production of detectable serum antibodies involves a lag.

The model incorporates three latent states: (1) no infection during the entire

screening period, (2) infection, but insufficient time to mount an antibody reac-

tion during screening period (since “lag” has not elapsed when screening ends), and

(3) infection with antibody reaction within screening period (since “lag” elapses be-

fore the end of screening period). They define the variable, ki ∈ {1,2,3}, to denote

the latent disease state of cow i, and they define ti j to be the time of the jth screen-

ing for the ith subject; (Si j,Fi j) are the serology and fecal culture outcomes of the

ith subject at time ti j; SeF is the sensitivity of fecal culture; SpF is the specificity

of fecal culture;lag is the time interval between infection and serology reaction, Θ
denotes vector of all model parameters, and U is the vector of all model latents.

Figure 2.7 describes the model, discussed below, for a cow with ki = 3.
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Fig. 2.7 Serology trajectory with data for cow with ki = 3

The models for cows in latent states 1 and 2 are:

Si j |Θ ,U,ki = 1 ∼ β0i + εi j, ⊥ Fi j |Θ ,U,ki = 1 ∼ Bern(1−SpF),

Si j |Θ ,U,ki = 2 ∼ β0i + εi j ⊥ Fi j |Θ ,U,ki = 2 ∼ Bern(πi j),

where β0i
⊥
∼ N(β0,τβ0

), εi j
⊥
∼ N(0,τe), β0i ⊥ εi j, and πi j = I(ti j � t∗i )SeF + I(ti j <

t∗i )(1−SpF) for all i, j. The model for cows in latent state 3 incorporates a random

cow-specific slope for the post-lag serology trajectory, allowing for differing rates

of antibody production among infected cows. The function z+ equals z if z > 0 and

0 otherwise. The model is:

Si j |Θ ,U,ki = 3 ∼ β0i+β1i(ti j − t∗i − lag)++εi j, ⊥ Fi j |Θ ,U,ki = 3 ∼ Bern(πi j),

with β1i,β0i, and εi j pairwise independent; β1i is zero until ti j = t∗i + lag. Hence,

the mean serology trajectory is a flat line until t∗i +lag, then it increases linearly

with slope β1i as shown in Fig. 2.7. We refer the interested reader to Norris et al. for

details about the change points, which were modeled with uniform distributions over

appropriate ranges, and the disease status variable, which is a simple multinomial

for each cow but requires reversible jump methodology to handle the fact that, from

one iteration to the next of the Gibbs sampler, the dimension of the parameter space

changes according to the (latent status) multinomial outcomes for all n cows.

Norris et al. (2009) analyzed the cow data using the above parametric model, and

Norris et al. (2014) extended this model to allow for a DPM of slopes for ki = 3

type cows. The scientific motivation for this was because it was believed that some

infected cows may have a more gradual slope, while others a steeper slope after

the infection time plus lag. Thus a DPM of slopes will allow for groups of cows

with different slopes. Since biology also dictates that antibody slopes must be non-

decreasing after infection slopes were constrained to be positive by modeling the

log-slope as a DPM of normals as follows:



logβ1i = γi | µi,τi
⊥
∼ N(µi,τi), for i : ki = 3,

(µi,τi) | G
⊥
∼ G,

G | α,G0 ∼ DP(α,G0),

which can also be expressed as

γi | G
⊥
∼

∫

N(·|µi,τi)G(dµi,dτi), G | α,G0 ∼ DP(α,G0).

Let (n1,n2,n3) be the latent numbers of cows in each of the three latent states.

Since G is discrete with probability one, at any given iteration of the Gibbs sampler,

there will be, say r, clusters of distinct values among the n3 realizations of θi =
(µi,τi). Cows associated with each of these clusters will have different slopes. At the

end of an MCMC run, cows will be belonged to different clusters and corresponding

slopes will have changed from iteration to iteration. It is possible to monitor the

number of clusters, and the number of modes, at each iteration of the Gibbs sampler

and Norris et al. report those results, some of them reproduced below. However, it

is impossible to define particular clusters precisely over the entire MCMC sample,

due to lack of identifiability of the individual components in the DPM. Nonetheless,

through post processing of output, it is possible to allocate cows to clusters that are

associated with particular modes in the slope distribution for infected cows using

ad hoc methods. The data analysis discussed below uses such a method to make

inferences about the sensitivity of the ELISA test, with a particular cutoff, as a

function of time since infection for groups of cows deemed to have distinct slopes.

Analysis of Longitudinal Cow Serology and Fecal Culture Data

The estimated sensitivity and specificity of the FC test were 0.57 (0.52, 0.63) and

0.976 (0.955, 0.990), respectively. The FC test is known to be highly specific. The

estimated proportions of animals falling into the three latent status groups is (0.048,

0.25, 0.26), thus the estimated prevalence of MAP in the population sampled at the

end of the study is 0.52. The estimated lag is 1.60 (1.32, 1.85), in years.

Figure 2.8 shows some iterates from the posterior log slope distribution; some

are bimodal with global maximum near zero and a smaller mode less than zero. The

posterior distribution of the number of modes showed a 0.62 probability of one and

0.30 of two modes.

ROC curves at selected times past infection for estimated high and low serology

reaction groups are displayed in Fig. 2.9a. By analyzing the posterior iterates of the

log-slope distribution shown in Fig. 2.8, Norris et al. obtained rough estimates of

the mean and standard deviation of the high and low clusters. Many of the iterates

suggest the low cluster is centered around −1.6 with a standard deviation of about

0.4 and the higher cluster is centered at about 0.6 with standard deviation of 0.9.

The curves depicted in Fig. 2.9 show that discriminatory ability is very poor in the
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Fig. 2.8 Posterior iterates of log-slope distribution, with posterior mean in bold, for cow serology

and fecal culture data

hypothetical low group, and can be very good in the hypothetical high group, and is

especially so the longer it has been since infection.

The corresponding graph for low and high groups depicting estimated sensitivity

of the dichotomized ELISA as a function of time past infection is shown in Fig. 2.9b.

There is a large difference in performance of the ELISA between these two groups.
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Fig. 2.9 (a) Estimated ROC curves for Johne’s disease data for hypothetical groups at selected

values of time past infection. (b) Estimated sensitivity as a function of time for hypothetical high

and low serology groups, with a cutoff level of −1.29



At 3 years past infection, the ELISA applied to the ‘low’ group has estimated sensi-

tivity less than 0.20, while it is one in the ‘high’ group.

More sophisticated methods of post processing allocation to clusters have been

developed by Dahl (2006) and Bigelow and Dunson (2009).

2.7 Final Remarks

What is statistics all about? As put simply by A. Wald:

The purpose of statistics,. . . , is to describe certain real phenomena.

Wald (1952)

Different real phenomena lead us to different types of data, and beyond the ones

we have seen above (survival, longitudinal, and medical diagnostic data) there is a

wealth of other options arising naturally in biostatistics. These include, for instance:

• Binary Diagnostic Outcome Data: Binary diagnostic outcome data are ubiqui-

tous in human and veterinary medicine. While many Bayesian parametric models

have been developed, there appears to be a paucity of Bayesian nonparametric

approaches in this setting.

• Compositional Data: Nonnegative-valued variables constrained to satisfy a unit-

sum constraint also find their application in biostatistics. This type of data is

known as compositional data; for an application in biostatistics, see Faes et al.

(2011), who analyze the composition of outpatient antibiotic use through statis-

tical methods for unit simplex data. Bernstein polynomial-based approaches are

tailored for this setting; see, for instance, Petrone (1999) and Barrientos et al.

(2015), and the references therein.

• Functional Data: Recent advances in technology have led to the development of

more sophisticated medical diagnostic data, and, nowadays, applications where

measurements are curves or images are becoming commonplace. Dunson (2010,

Sect. 3) overviews some recent Bayesian nonparametric approaches for modeling

functional data.

• Missing Data: In a recent paper at the The New England Journal of Medicine,

Little et al. (2012) discuss how missing data can compromise inferences from

clinical trials. In Chap. 21 (Daniels and Linero 2015) this important subject is

considered in detail. An important question that remains after our chapter is: Can

we conduct reliable inferences based on the prior processes discussed above,

if we have missing data? In terms of Polya trees, Paddock (2002) provides an

approach for multiple imputation of partially observed data. Imputation via the

Bayesian bootstrap—which can be regarded as a non-informative version of the

DP (Gasparini 1995, Theorem 2)—has also been widely applied; more details on

the Bayesian bootstrap can be found in Chap. 16 (Inácio de Carvalho et al. 2015).

• Spatial Data: This is the subject of Part V of this volume.
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• Time Series Data: Connected with the topic of longitudinal data is also that of

time series data. In this direction some recently proposed models include Nieto-

Barajas et al. (2012), Jara et al. (2013), and Nieto-Barajas et al. (2014).

This list continues with multivariate data, shape data, and many more topics, includ-

ing combinations of the different types of data; see, for example, Chap. 11 (Zhou

and Hanson 2015), where models for spatial-survival data are discussed.

We close this introductory part of Nonparametric Bayesian Methods in Biostatis-

tics and Bioinformatics with the hope that the next chapters stimulate interaction be-

tween experts in Bayesian nonparametric biostatistics and bioinformatics, and that

they are useful for those entering this important field of research.
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