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Bayesian Nonparametric Clustering for
Positive Definite Matrices

Anoop Cherian Vassilios Morellas Nikolaos Papanikolopoulos

Abstract—Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such

as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these

applications, for which soft-clustering algorithms (K-Means, Expectation Maximization, etc.) are generally used. As is well-known, these

algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to

the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since

these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot

be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant

divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure

and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model

to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same

time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms.

Index Terms—Region covariances, Dirichlet process, nonparametric methods, positive definite matrices

✦

1 INTRODUCTION

Recent years have witnessed an increasing trend in
computer vision and machine learning applications that
use rich data representations such as strings, graphs,
matrices, etc. instead of the traditional vectorial data
types. Among these one important class of structured
data descriptors that is gaining popularity in computer
vision is the class of symmetric positive definite (SPD)
matrices, especially in the form of feature covariances
dubbed Region Covariance Descriptors (RCD) [52].

Compared to traditional vector based descriptors
(such as histograms, feature vectors, etc.), the structure
of the covariance matrix offers several useful proper-
ties. The dimensionality of the RCD is independent of
the number of data points used in its construction.
As a result, RCDs offer a convenient platform for fus-
ing multiple features into a compact form when the
data dimensionality is less compared to the number
of data points. This fusion offers several advantages.
For example, RCDs can be made invariant to image
affine distortions by choosing appropriate feature rep-
resentations [46]. In addition, since the feature mean is
subtracted off when computing RCDs, they are relatively
robust to static noise and illumination variations in
the image. From a practical standpoint, RCDs can be
computed very efficiently using integral images. Due to
these advantages, they are finding an increasing number
of applications in computer vision, such as in people
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appearance tracking for visual surveillance [45], [51],
[66], face recognition [53], object recognition [57], and
action recognition [28], to name a few. SPD matrices
also play an important role as data descriptors in several
other applications, such as image set classification [68],
diffusion tensor imaging [1], sound compression [60], po-
larimetric image modeling [24], and as quantum density
matrices [21].

Clustering data is an important algorithmic ingredient
in several applications. Unfortunately, clustering RCDs is
not straightforward. This is because, although covariance
matrices form a sub-manifold of the Euclidean space,
it is generally found that assuming a curved manifold
structure on them is advantageous [55]. As a result,
covariances are generally assumed to be elements of
the open cone of symmetric positive definite matrices,
adhering to a Riemannian geometry dictated by an
appropriate Riemannian metric [25]. Thus, clustering
algorithms developed for covariances are expected to
adhere to this geometry. The centroid of RCDs can be
computed using the Karcher mean algorithm [55], thus
suggesting the viability of a K-means type clustering [51]
scheme on the Riemannian manifold.

There have been also been clustering approaches pro-
posed for these matrices from statistical viewpoint. A
soft-clustering algorithm via expectation maximization
is proposed in [32] which models the clusters as a
mixture of Wishart distributions. Since the number of
components in the clustering model needs to be specified
in these soft-clustering algorithms, they are not scalable
to real-world scenarios where this number might change
over time (for example, clustering appearances of people
in a camera surveillance network). This motivates us to
investigate unsupervised models in which the number of
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clusters is dynamically updated monotonically accord-
ing to the complexity of an ever increasing volume of
data.

We approach the unsupervised clustering problem
from a nonparametric Bayesian perspective and resort
to the classical Dirichlet Process Mixture Model (DPMM)
framework [3], [20]. Existing DPM models are designed
for vector valued data, thus posing a major difficulty
when working with matrix valued objects that have their
own specific geometry; this difficulty we circumvent
using our novel model. The first step in developing
Bayesian framework is to define the probability mea-
sure on the underlying data that captures its structure
effectively. Some of the well-known statistical measures
on SPD matrices are the matrix Frobenius norm, log-
Euclidean metric and the log-determinant divergence.
The first two measures can be used to embed the data
matrices into the Euclidean space, while the third mea-
sure operates directly in the matrix space. Since a Eu-
clidean embedding may distort the structure of the data,
we primarily focus on the log-determinant divergence
measure for developing our DPM model.

The next step is to find an appropriate density func-
tion that models the distribution of the data points.
Fortunately, the logdet (short for log-determinant) di-
vergence belongs to a special class of information di-
vergences called Bregman divergences [16] which are
convex functions and have strong connections with the
exponential family distributions. Utilizing the so called
Bregman-Exponential bijection, we derive a probabilistic
density function on covariances, which turns out to be
the Wishart distribution. Using this distribution and its
conjugate pair (which is the Inverse-Wishart distribu-
tion), we derive the necessary expressions for sampling
from a DP mixture model. To accommodate the difficult
inference problem when using the DP prior, we use
a collapsed Gibbs sampler. Experiments are presented
on a variety of applications from computer vision and
demonstrate the superior performance of our method
against the state-of-the-art methods.1

Before we proceed, we will briefly introduce our nota-
tions. We use |X| to denote the determinant of a matrix
X and Tr(X) denotes the matrix trace. We use abs(x)
to denote the absolute value of a vector x and ‖ ‖F the
Frobenius norm. We use upper case for matrices and
lower case for vectors.

2 RELATED WORK

To set the stage for our discussion on nonparametric
clustering of positive definite matrices, we will review
some relevant literature in this section. First, let us
formally define an RCD.

Definition 1. Let xi ∈ R
d, for i = 1, 2, · · · ,m, be the

feature vectors from the region of interest of an image, then

1. The current paper is an extension of the conference paper [14] and
differs in the following ways: (i) we show detailed derivations of the
model and (ii) apply it to several real-world computer vision problems.

the Covariance Descriptor of this region Xc ∈ Sd++ is defined
as:

Xc =
1

m− 1

m
∑

i=1

(xi − µx)(xi − µx)T , (1)

where µx = 1
m

∑m
i=1 xi is the mean feature vector and Sd++

denotes the space of all d× d SPD matrices.

Matrix valued data appears in several contexts in
machine learning, such as Grassmannian manifolds,
Homogeneous subspaces, fundamental matrices, etc. of
which we will restrict our literature review to algorithms
designed for SPD matrices. As we mentioned in the last
section, the standard vectorial clustering algorithms such
as K-Means, Expectation Maximization (EM), Spectral
Clustering, etc. have been extended to deal with SPD ma-
trices in the past. The main challenge in these algorithms
is to make sure that the data similarity is computed ad-
hering to the manifold topology and the cluster means lie
on the manifold. Towards this end, the classical K-Means
clustering has been modified to deal with SPD matrices
using the Karcher mean algorithm [8]. This algorithm
minimizes the sum of the squared geodesic distances
of the data points from the cluster centroids. Usually,
the affine invariant Riemannian metric [55] or the Log-
Euclidean Riemannian metric [4] are used for computing
the distances between SPD matrices. K-Means using
the former metric is known to converge when all the
points in a cluster lie within the injectvity radius2 of
the manifold. On the other hand, the Log-Euclidean
metric maps the SPD matrices to a flat Euclidean space
which is isomorphic and diffeomorphic to the positive
definite cone of SPD matrices. Spectral clustering algo-
rithms can be extended to SPD objects by embedding
the data points into a Euclidean space using a similarity
matrix computed using the Riemannian metric. A major
difficulty with finite mixture models is the selection of
the number of mixture components such that the final
model does not result in overfitting or underfitting the
data.

There have been several unsupervised approaches
proposed for clustering SPD valued data that extend
the standard kernel density estimation (KDE) [31], [54].
The classical mean-shift algorithm for vector valued
data has been extended in [62] using one of the above
Riemannian metrics. An issue with KDE and mean-shift
extensions is their sensitivity to bandwidth selection.
Nonparametric clustering of SPD objects via embedding
them in the Euclidean space is considered in [26]. These
algorithms extend methods such as Laplacian Eigen-
maps [7], Locally Linear Embedding [56], etc. to SPD
objects. The main idea of these approaches is to use the
connection between matrix exponential and logarithmic
maps to project data points onto the manifold tangent
space, followed by data embedding. Often these matrix
operations are computationally expensive.

2. That is, the largest distance for which the exponential map of a
point on the Riemannian manifold is diffeomorphic.
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A Bayesian treatment to nonparametric problems pre-
dominantly uses the Dirichlet Process (DP) prior, intro-
duced in [22], and later extended to mixture models
in [3], [20], [23]. The main advantage of the Bayesian for-
malism is its ability to model the underlying stochastic
process that might have generated the data. Analogous
to finite mixture models, DPMM allows for each cluster
to have its own size and parameters. In addition to
this advantage, DPMMs allow for the possibility of
an infinite number of clusters, thus circumventing the
problem of choosing the number of clusters that may
increase or decrease when more data is available. The
main idea of a Dirichlet process is often explained using
the Chinese restaurant process metaphor [27], which
considers the clustering process as that of a seating ar-
rangement of customers in a Chinese restaurant. Assume
that an infinite number of tables is possible in a Chinese
restaurant. A new customer entering the restaurant has
two choices; he may choose to sit on a table where
other customers are sitting with a probability propor-
tional to the existing number of customers at that table,
or he may choose to sit on a new table according to
a predefined probability. As new customers enter, the
seating arrangement evolving in the Chinese restaurant
follows a draw from a Dirichlet process prior. Other
interesting interpretations of the DP prior idea can be
seen in the stick-breaking constructions [33], and the
Polya urn scheme [9]. Customers seated around one
table in the restaurant is analogous to a data cluster.
Although exact inference of the posterior distribution in
the DP framework is challenging, efficient approximate
inference algorithms have been suggested [10], [33], [38],
[48].

Over the past decade, DPMMs have found immense
applications in a variety of domains such as Ge-
nomics [71], computer vision [35], [41], [64], computa-
tional biology [71], data modeling [11], Diffusion tensor
MRI [69], and linguistics [42], to name a few. These appli-
cations mainly deal with vector valued data, following
normal likelihood distribution. For computational ease,
the DP mixture prior is chosen as a conjugate to the
data density function, which for these applications is
usually the normal-inverse-Wishart or normal-inverse-
gamma distributions [65], [72]. Extensions of DPMM for
non-Gaussian data has been explored in the past such as
to histograms [11], spatio-temporal data [36], and linear
dynamical models [13].

In this paper, we consider the problem of clustering
SPD matrices in a nonparametric Bayesian framework
using DPMMs. As our data points lie on a non-Euclidean
manifold, the traditional vectorial approaches for clus-
tering them might not be adequate. To the best of our
knowledge, the Dirichlet process framework has never
been applied to clustering SPD matrices before.

3 DIRICHLET PROCESS MIXTURE MODEL

Nonparametric Bayesian techniques seek a predictive
model for the data such that the complexity and accuracy

of the model grows with the data size. The existence
of such a statistical model is invariably dependent on
the property of exchangeability [17] of observations,
leading to the De Finetti’s theorem, which states that
if a sequence of observations y1, y2, · · · , yn is infinitely
exchangeable (that is, their joint distribution is invariant
to a permutation of their order), then there exists a
mixture representation for the joint distribution of these
observations. That is,

p(y1, y2, · · · , yn) =

∫

Θ

p(θ)
n
∏

i=1

p(yi|θ)dθ (2)

where Θ is an infinite-dimensional space of probability
measures, p(θ) denotes the density distribution of θ, and
dθ defines a probability measure over distributions.

A Dirichlet Process Mixture Model, DP (α,H), pa-
rameterized by a concentration α and a prior H , is
a stochastic process that defines a distribution over
probability distributions adhering to Eq. (2) such that if
A1, A2, · · · , Ar represent any finite measurable partition
of Θ, and if G ∼ DP (α,H), then the vector of joint
distributions of samples from G over these partitions
follow a Dirichlet distribution, Dir(.) [3], [23]. That is,

(G(A1), · · · , G(Ar)) ∼ Dir (αH(A1), · · · , αH(Ar)) (3)

In our pertinent problem of finding the number of
clusters in the given dataset, we would like to find the
distribution G over each of the clusters automatically,
by computing the posterior distribution of G given the
observations and the prior model H . Fortunately, as is
shown in [3], the posterior distribution has the following
simple form:

p (G|y1, · · · , yn) ∼ Dir (αH(A1) + n1, · · · , αH(An) + nr)

∼ DP

(

α+ n,
1

α+ n

(

αH +

n
∑

i=1

δyi

))

(4)

where n1, n2, · · · , nr represent the number of obser-
vations falling in each of the partitions A1, A2, · · · , Ar
respectively, n is the total number of observations, and
δyi

represents the delta function at the sample point
yi. There are some subtle points to be noted from (4),
namely (i) DP acts as a conjugate prior to the distribution
over distributions, and (ii) each observation only updates
the corresponding component in the Dirichlet distribu-
tion. The latter property implies that the underlying
distribution is essentially discrete with probability one
and is agnostic over the topology of the underlying
space in which the data lie. It was shown in [59] that
this property leads to a concentration of the posterior
distribution towards the mean, leading to a clustering
effect.

For the above model to be practically useful and
tractable, it is a general practice to model the depen-
dency of the observations yj to G through a parame-
terized family F (θi) (where F is the likelihood function
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1) Define a likelihood distribution F on data using a suitable
distance measure.

2) Find a prior H that is conjugate to F .
3) Model a collapsed Gibbs sampler over the posterior distribution

from (1) and (2) as follows:
3a) Remove a data point y from a cluster C and update

the sufficient statistics of C.
3b) Compute the predictive distribution p(y|yCi

) for
each of the existing clusters; yCi

represents data
in cluster Ci.

3c) Assuming there are n clusters at this step, create an
n + 1 dimensional vector pv where n dimensions
of pv correspond to p(y|yCi

) for i = 1, 2, · · · , n,
while the extra dimension corresponds to the con-
centration parameter α. Normalize pv so that it
sums to one and thus forms a probability distri-
bution over the clusters, while also incorporating
a probability to create a new cluster.

3d) Sample a cluster from pv and assign y to that
cluster, while also updating its sufficient statistics.

3e) Repeat the steps (3a), (3b) (3c), and (3d) until
convergence.

Algorithm 1

Overview of DPMM algorithm.

with parameters θi) [20], [23] leading to a mixture model
characterization of the DP as follows:

yj |θi ∼ F (θi)

θi|G ∼ G

G ∼ DP (α,H)

(5)

Since the exact computation of the posterior is infeasible
when the data size is large, we resort to a variant of
MCMC algorithms, namely, the collapsed Gibbs sampler
[43] for faster approximate inference. The discussion in
this section and the formulas we seek in the context of
covariance matrices are summarized in Algorithm 1.

4 MATHEMATICAL PRELIMINARIES

In this section, we review a few important topics that
we will be using in the subsequent sections for deriving
a suitable DPM model for clustering SPD matrices.

4.1 Bregman Divergence

Bregman divergence [12] is a generalized distance mea-
sure over convex functions and has the following general
form: Let ψ : Q → R, (Q ⊆ R

d) be a function of
Legendre type in the relint(Q). The Bregman divergence
dψ : Q× relint(Q) → [0,∞) is defined as:

dψ(x, y) = ψ(x) − ψ(y) − 〈x− y,∇ψ(y)〉 (6)

where ∇ψ(y) is the gradient vector of ψ evaluated at y.
The squared Euclidean distance, dψ(a, b) = ‖a − b‖2, is
an example of a Bregman divergence corresponding to
the convex function ψ(x) = 1

2‖x‖
2. See [5] for details.

Bregman divergences can be extended to matrices as
follows. If X and Y are matrices, and if Ψ is a real-
valued, strictly convex function over matrices, then the
Bregman matrix divergence can be defined as:

DΨ(X,Y ) = Ψ(X) − Ψ(Y ) − Tr
(

∇Ψ(Y )T (X − Y )
)

. (7)

For example, when Ψ(X) = ‖X‖2
F , then the correspond-

ing Bregman matrix divergence for two matrices A and
B is the squared Frobenius norm ‖A−B‖2

F . See [15], [18]
for other examples.

4.2 Exponential Family

Let Ω be a sample space (discrete or continuous) and let
Θ ⊆ R

d be an open set of parameters. Let x ∈ Ω be
a random variable. If θ ∈ Θ and if p0 : Ω → Θ is a
probability base measure, then a regular exponential family
is defined as the family of probability distributions of the
form:

p(x|θ) = p0(φ(x))exp {〈θ, φ(x)〉 − η(θ)} , (8)

where φ : Ω → T for T ⊆ R
d. Here φ(x) is the natural

statistic and θ is the natural parameter; φ is said to be
a sufficient statistic for the exponential family due to
the Fisher-Neyman factorization theorem [49]. η(θ) is
the cumulant function and normalizes p(x|θ) so that it
integrates to one [5], [63].

4.3 Bregman Divergence-Exponential Family Bijec-
tion

A useful property of Bregman divergences is their con-
nection to the exponential family distributions. It has
been shown in [5] that there exists a unique Bregman
divergence corresponding to every regular exponential
family. Thus, if Dψ is a Bregman divergence associated
with the convex function ψ and if φ is a conjugate func-
tion to ψ, then the regular exponential family, pψ(x|θ),
parameterized by θ, can be written as:

pψ(x|θ) ∝ exp {(−dψ(x, µ(θ))) gφ(x)} (9)

where µ(θ) is the mean of the distribution and gφ(x) is
a function uniquely determined by φ. See [5] for details.

4.4 Wishart Distribution

Let x1,x2, · · · ,xm, (xi ∈ Rd), be independent and identi-
cally distributed random vectors such that xi ∼ N (0,Σ),
for i = 1, 2, · · · ,m and let X ∈ Sd++ such that X =
∑m
i=1 xix

T
i . If we define n = m−1, then X is said to fol-

low a non-singular d-dimensional Wishart distribution
W (n, d,Σ), with n degrees of freedom (n > d − 1) and
scale matrix Σ if it has a probability density defined by:

W (X;n, d,Σ) =
1

ω(n, d)

|X|(n−d−1)/2

|Σ|n/2
exp

{

−
1

2
Tr(Σ−1X)

}

,

(10)
where ω(n, d) is a normalizing constant [19] and has the
following form:

ω(n, d) =

∫

Sd

++

|Y |(n−d−1)/2
exp

{

−
1

2
TrY

}

dY (11)

= πd(d−1)/42nd/2
d
∏

k=1

Γ

(

n− k + 1

2

)

, (12)

with Γ(.) representing the Gamma function.
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5 DPMM ON SPD MATRICES

The first step in designing a clustering framework on
any datatype is to define the measure that captures
the similarity between data objects. There have been
several such measures available for SPD objects, such
as the affine invariant Riemannian metric [55], the log-
Euclidean Riemannian metric [4], etc. of which we will
be interested in a statistically motivated similarity mea-
sure on covariances, viz. the log-determinant divergence.
In the following subsections, we will exposit this mea-
sure and develop the required density distributions for
developing a DPM model using this measure.

5.1 LogDet Divergence

The LogDet divergence Dld (also known as Stein’s loss)
was introduced in [34]. It defines the Kullback-Leibler
divergence between two equal-mean Gaussian distribu-
tions and has the following form (for C1, C2 ∈ Sd++):

Dld(C1, C2) = TrC1C
−1
2 − log

∣

∣C1C
−1
2

∣

∣− d. (13)

Unlike other metrics on SPD matrices that we pointed
to above, the log-det divergence is not a metric. This
is because it is not symmetric (as implied by (13)), and
does not satisfy the triangle inequality. Nevertheless, it
is a Bregman matrix divergence for the convex function
−log |.|, and has been utilized in several soft clustering
algorithms in the recent past [16], [61].

5.2 Log-det Wishart Connection

Utilizing the Bregman-exponential family bijection that
we introduced earlier, we can derive the likelihood
distribution associated with the log-det divergence. It
turns out that this exponential family is the Wishart
distribution as stated in the following theorem:

Theorem 1. Let Xc be the covariance matrix of m iid zero-
mean Gaussian-distributed random vectors xi, i.e. Xc =
1
n

∑m
i=1 xixi

T where xi ∈ R
d, xi ∼ N (0,Σ) and n = m−1.

Then the probability density of Xc follows:

p(Xc|Σ) = W (Xc;n, d,Σ)

∝ exp

{

−
1

2
DΨ(Σ, Xc)

}

p0(Xc),

where DΨ is the Bregman matrix divergence function for the
convex function ψ(.) = −n log |.| and p0 is the base measure.

Proof: Let X ∈ Sd++ and assume X =
∑m
i=1 xix

T
i .

Thus, X = nXc. From the definition of the Wishart
distribution, we have X ∼ W (n, d,Σ). Substituting for
X and rearranging the terms, we get:

p(X|Σ) ∝ |Xc|
−

(d+1)
2 exp

{

−
n

2

[

Tr
(

Σ−1Xc

)

− log|Σ−1Xc|
]

}

(14)

∝ exp {−DΨ(Σ, Xc)} |Xc|
−(d+1)/2. (15)

It is well-known in multivariate statistics that for the
Wishart distribution W (n, d,Σ), the conjugate prior is the
Inverse-Wishart distribution parametrized as IW (n, d, S)
where S ∈ Sd++ is the inverse scale matrix, and has the
following form:

IW (Σ;S, n, d) =
|S|

n

2 |Σ|−
(n+d+1)

2

ω(n, d)
exp

(

−
1

2
Tr(Σ−1S)

)

.

(16)
Utilizing this observation, we derive the posterior and
the predictive distributions for the Wishart-Inverse-
Wishart (WIW) conjugate pair next.

5.3 Posterior and Predictive Distributions

For deriving the posterior distribution p(Σ|X,S, n), we
will need the marginal distribution p(X|S, n). The fol-
lowing Lemma will come useful in our derivations to
follow.

Lemma 2. Let A be a d × d nonsingular matrix and define
the function g on the linear space of d × d real symmetric
matrices by

g(Z) = AZAT = (A⊗A)Z. (17)

Then the Jacobian Jg(Z) = abs(|A|)d+1.

Proof: See [19], Proposition 5.12.
The marginal distribution can be derived by inte-

grating out the cluster parameter Σ (of each Wishart
distribution) from the Wishart-Inverse-Wishart conjugate
pair. The following theorem formalizes the expression
for the marginal.

Theorem 3 (Marginal). Given X ∼ W (n, d,Σ) and Σ ∼
IW (S, n, d),

p(X|S, n) =
1

ω(n, d)2
|S|

n

2 |X|
(n−d−1)

2
ω(2n, d)

|X + S|n
. (18)

Proof: We have

p(X|S, n) =

∫

Sd

++

p(X|Σ, n)p(Σ|S, n)dΣ (19)

=
1

ω(n, d)2
|X|

n−d−1
2 |S|

n

2 ...

∫

Sd

++

|Σ|−
2n+d+1

2 exp

{

−
1

2
Tr Σ−1(X + S)

}

dΣ.

(20)

Using the transformation Σ−1 ⇒ Σ, let Σ−1 = R. Since
we deal with symmetric matrices, the Jacobian of this

transformation is JΣ(Σ−1) = |Σ|−(d+1). See the Appendix
of [2] for details. This Jacobian can be written as dΣ =
dR

|R|d+1 , using which we can write (20) as:

⇒
1

ω(n, d)2
|S|

n

2 |X|
n−d−1

2 ... (21)

∫

Sd

++

|R|
2n−d−1

2 exp

{

−
1

2
TrR(X + S)

}

dR.
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Now, let
Y = R(X + S). (22)

Using Lemma 2 and assuming A = (X + S)
1
2 , we get

the Jacobian of the transformation (22) as |X + S|
d+1
2 ,

such that we have |X + S|
d+1
2 dR = dY . Substituting this

in (21) and using the definition of ω(n, d), we have the
required marginal.

Using the above marginal, the posterior distribution
p(Σ|X,S, n) can be derived as below:

p(Σ|X,S, n) =
p(X|Σ, n) p(Σ|S, n)

p(X|n)
(23)

=
|S +X|n |Σ|−

(2n+d+1)
2

ω(2n, d)
exp

{

−
1

2
Tr Σ−1(X + S)

}

.

(24)

Assuming conditional independence of N data matri-
ces X1, X2, · · · , XN belonging to the same cluster, if Σ
is the parameter associated with this cluster (the scale
matrix of the Wishart mixture component), the joint
distribution of these N covariances is given by:

p(X1, · · · , XN ) =

∫

Sd

++

p(X1, · · · , XN |Σ, n) p(Σ|S, n) dΣ

=
ω ((N + 1)n, d)

ω(n, d)N+1
|S|

n

2

∏N
i=1 |Xi|

(n−d−1)
2

∣

∣

∣

∑N
i=1Xi + S

∣

∣

∣

(N+1)n

2

. (25)

Referring back to Algorithm 1, our last step is to derive
the expression for the predictive distribution, required
by the collapsed Gibbs sampler for inference.

Theorem 4. Let Xi ∈ Sd++, i = 1, 2, · · · , N − 1, belong
to a cluster C such that each Xi ∼ W (n, d,Σ), where Σ
is the Wishart scale matrix and n, the degrees of freedom.
Let Σ ∼ IW (n, d, S) with inverse scale matrix S. Then the
predictive distribution of a data matrix XN to belong to the
cluster C = {X1, X2, · · · , XN−1} will be:

p(XN |X1, ..., XN−1) =

∫

Sd

++

p(XN |Σ, n) p(Σ|X1...XN−1)dΣ

=
ω ((N + 1)n, d)

ω(n, d) ω(Nn, d)

|XN |
(n−d−1)

2 |
∑N−1
i=1 Xi + S|

Nn

2

|
∑N
i=1Xi + S|

(N+1)n

2

.

Proof: This can be proved directly from Bayes theo-
rem followed by substitutions using (24) and (25).

6 ALTERNATIVE DPM MODELS

As we alluded to above, there are alternative similar-
ity measures, both statistical and differential geomet-
ric, that we could potentially use instead of the log-
det divergence, leading to other DPM models. We will
consider two such alternatives, namely (i) using the
squared matrix Frobenius norm as the base measure,
and (ii) the squared log-Euclidean distance. Both these
distances vectorize the SPD matrix, suggesting the tra-
ditional Gaussian-Inverse-Wishart DPMM for nonpara-
metric clustering. We detail this below.

6.1 Frobenius Norm based DPMM

Using the base measure as the squared Frobenius norm,
it can be shown that the exponential family for the as-
sociated Bregman divergence is the multivariate normal
distribution. That is, given X, µX ∈ Sd++, and a variance
σ2,

p(X|µX , σ
2) ∝ exp

{

−
‖X − µX‖2

F

2σ2

}

(26)

∝ exp

{

−
‖V(X) − V(µX)‖2

2

2σ2

}

, (27)

where V : Sd++ → R
d(d+1)/2 is the half-vectorization op-

erator. The variance σ2 in (27) can be generalized using a
covariance matrix Λ, leading to a standard GIW DPMM,
where the V(µX) ∼ N (µ, S1) and Λ ∼ IW (n, d, S2);
S1, S2 are the hyper-scale matrices and µ is the hyper-
mean [6].

6.2 Log-Euclidean based DPMM

Similar to the approach above, we can derive the as-
sociated density function for the log-Euclidean distance
(which computes the Euclidean distance between data
matrices via the matrix-logarithm operator). Using the
Euclidean embedding suggested in [55], the density
function takes the form:

p(X|µX , σ
2) ∝ exp

{

−
1

2

‖V(log(X)) − µx‖
2
2

σ2

}

(28)

where log(.) is the matrix logarithm, µX =

1/N
∑N
i=1 V(log(Xi)) and σ2 is the assumed variance.

We can approximate µX to follow a multivariate normal
distribution, in which case the DPMM follows the
standard GIW model as mentioned earlier.

7 EXPERIMENTS AND RESULTS

In this section, we provide experimental results on sim-
ulated and real-world data demonstrating the effective-
ness of our algorithm compared to state of the art in
supervised and unsupervised clustering on covariance
valued data. Before going into the details of our exper-
iments, we will review our performance metrics in the
next subsection.

7.1 Performance Metrics

Cluster analysis is a fundamental problem in statistics
and machine learning for which several standard metrics
exist [47]. Of these various metrics, we chose the pair
counting F-measure and cluster purity as our performance
metrics. We detail these metrics below.
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7.1.1 F1-score

Considering the generality of our proposed algorithm to
work with large numbers of clusters of various sizes, we
decided to use the pair counting F-measure as our primary
performance metric. See [67] for a review of the various
methods along with their pros and cons. Assuming the
ground-truth cluster labels are known for every data
point, the F-measure computes the accuracy of clustering
in a precision-recall framework. Considering all pairs
of data points in every cluster, we can define the true
positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) for the clustering depending
on the ground truth labels of the points in the pair
and whether they belong to the same cluster. Under
this notation, we can define the precision and recall of
clustering as:

P =
TP

TP + FP
R =

TP

TP + FN
. (29)

Then, the F-measure defines the harmonic mean between
Precision and Recall, that is:

F (β) = (β2 + 1)PR/(β2P +R), (30)

for a weighting factor β. When β = 1, we have the
F1-score, which we will be using in our performance
analysis.

To explore the adequacy of covariance matrices as a
means of data representation and to evaluate the ability
of the DPMM to automatically cluster the data, we
further explore variants of the F1-score for performance
evaluation; the new metrics we call purity. Performance
results of our methodology are analyzed and presented
in the light of two such purity measures: (i) cluster purity
and (ii) class purity.

7.1.2 Cluster Purity

This measure captures the ability of the proposed DPMM
methodology (and the associated measure employed)
to partition the symmetric positive definite matrix data
in the multi-dimensional space they exist. It is defined
for every cluster automatically created by the DPMM
process as the fraction of class instances that dominate
the respective cluster. For example, in Figure 1, cluster 1
is dominated by class instances denoted by the triangles
although instances belonging to another class (denoted
by the stars) are also included in the same cluster.

Fig. 1. Illustration of the measure of purity.

Mathematically, we can write this measure as follows:
for a cluster Ci, if label(Ci) represents the set of labels
of all the data points in Ci, then we define the cluster
purity as:

Pcluster(Ci) =
# {label(Ci) = ℓ∗}

#Ci
subject to

ℓ∗ = max
ℓ

# {label(Ci) = ℓ} , (31)

where #{.} defines the cardinality of the set. An issue
with this measure is that it does not take into account
the cardinality of each ground truth cluster. For example,
in the cluster 2 in Figure 1, there are circle labels which
have a low cardinality as compared to star labels and
are ignored in Pcluster.

7.1.3 Class Purity

This measure helps better understand if the feature
vectors that we chose for building the covariances ad-
equately capture the differentiating properties of the
classes. For a label ℓ, we define the class purity, Pclass
as:

Pclass(ℓ) =
# {label(Ck∗) = ℓ}

#Ck∗
subject to

k∗ = max
k

# {label(Ck) = ℓ} , (32)

that is, class purity measures the cluster purity with
respect to a ground truth class label; the underlying
assumption being that if the features used for covari-
ances are adequate, the clustering algorithm must be
able to spawn separate clusters for distinct class labels.
This measure also circumvents the issues associated with
evaluating unbalanced clusters as mentioned above.

We remark that neither Pcluster nor Pclass can be
used as absolute measures of clustering performance.
For example, when data with the same label gets split
into multiple clusters, each cluster might be pure in itself
and thus will have high Pcluster and Pclass scores (for
example, clusters 3 and 4 in Figure 1). Thus, evaluation
should use a combination of Pcluster, Pclass, and the
estimated number of clusters; which is what is done
using the F1 measure implicitly.

7.2 Comparison Methods

We compare our method WIW-DPMM against five
standard clustering algorithms, namely (i) K-Means
clustering with the affine invariant Riemannian metric
(GeoKM) [55] (using the Karcher mean algorithm to
compute the cluster centroids), (ii) K-Means clustering
using the Log-Euclidean metric (LEKM), (iii) Expectation
Maximization (EM) algorithm [32] using a mixture of
Wishart distributions, (iv) Spectral Clustering (SP) [50]
(using the affine invariant Riemannian metric as the
underlying distance), and (v) K-Means using the matrix
Frobenius distance (FKM). We also report results com-
paring our method to other unsupervised clustering al-
gorithms, namely (i) the two alternative DPMM models
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on covariances that use the GIW prior on the squared
Frobenius norm and the squared log-Euclidean distance,
and (ii) the non-linear MeanShift algorithm [62] using the
log-Euclidean distance.

Our main evaluation strategy is as follows: for all
the supervised clustering algorithms, we increase the
preferred number of clusters (K) from a low value to
a high value (generally the lowest value is chosen to
be half of the true number of clusters and the highest
value is chosen as double the true number), and we
report the accuracy on the three metrics defined above.
As GeoKM convergence is often found to be very slow
(using the Karcher mean algorithm), we stop the itera-
tions when the number of cluster changes is less than
1% of the data size. The spectral clustering algorithm
requires computing a similarity matrix for every pair of
data points, later an eigendecomposition of this matrix
is used. We found that computation of this similarity
matrix is difficult when the data sizes are beyond 10K
and the matrix dimensions are large. Thus, we skip
experiments for these methods that are difficult.

7.3 Simulated Experiments

We first evaluate the scalability of our algorithm in a
simulated environment via three experiments demon-
strating DPMM performance (i) for increasing matrix
dimensions, and (ii) the scalability to increasing number
of true data clusters, and (iii) increasing data size. All
simulation results are averaged over 100 repetitions with
different data. We will briefly review our simulation
setup next before introducing our experiments in detail.

7.3.1 Simulation Setup

We used the following baseline setup for all our sim-
ulation experiments. We used data covariances of size
5 × 5 in our baseline setup. We fixed the number of
true clusters at 50; the positive definite scale matrices
associated with each Wishart distribution (from which
the data clusters are generated) were generated from
100 uniformly distributed vectors. Using these scale
matrices and a fixed number for the degrees of freedom
n = 100, we sampled 100 data covariances from Wishart
distributions using the Bartlett decomposition [37] for a
total dataset size of 50K.

7.3.2 Increasing Matrix Dimensionality

Computer vision algorithms using region covariances
work with diverse data dimensionalities. For example,
texture recognition generally uses covariances of size
5× 5, while face recognition uses 40× 40 covariances of
Gabor filter outputs. In the absence of public covariance
datasets for these different applications, we decided to
test the effectiveness of our algorithm in the simulated
setup for varying dimensionality. Towards this end, we
used the baseline simulation setup, but changed the
matrix dimensionality to vary from 5 to 100. In Figure 2,
we compare the performance of WIW-DPMM against

the standard clustering algorithms on the F1 score. As is
clear from the figure, WIW-DPMM scales well with the
dimensionality and achieves perfect clustering accuracy.

7.3.3 Increasing Number of True Clusters

Recall that our main motivation for investigating a
Bayesian formalism for clustering covariances is due to
its ability to cluster covariances of increasing complexity
(that is, the number of ground truth clusters). Towards
this end, we changed the baseline setup using 5 × 5
covariances, with the true number of clusters increasing
from 10 to 1000, with each cluster containing 100 covari-
ances each. In Figure 2(b), we plot the accuracy of WIW-
DPMM against other methods. We assumed K is known
for the supervised clustering algorithms. As is clear from
the figure, our DPMM model (which does not assume
K) achieves similar performance as other algorithms
with known K, demonstrating the correctness and effec-
tiveness of our approach. The decreasing performance,
we suspect, is due to the increased similarity between
the hyper-prior scale matrices used to sample the data
covariances, when the number of true clusters increased.
Note that this experiment also evaluates the performance
of DPMM for an increasing dataset size.

7.3.4 Computational Performance

In this experiment, we benchmark the computational
performance of our DPM model against other algorithms
on SPD matrices. Figure 2(d) shows the average clus-
tering time when the true number of clusters increases
from 50 to 500 with 100 covariances in each cluster.
Each algorithm was implemented in Matlab, and we
used a single core 3GHz Pentium machine for the ex-
periment. The algorithms were run until convergence or
for 100 iterations whichever happened earlier. It is to
be noted that the Geodesic K-Means is computationally
very expensive. Figure 2(c) shows a similar comparison
for increasing matrix dimensions. These two experiments
piggybacked the setup that we used above. The figures
show that the computational expenditure incurred by
WIW-DPMM is comparable to that of spectral clustering
or EM algorithms.

7.4 Real World Experiments

Let us move on to the real-world applications of our
clustering framework. We experimented on four applica-
tions, namely (i) texture recognition, (ii) appearance clus-
tering, (iii) object recognition, and (iv) face recognition.
Below we detail the datasets used in these experiments,
along with describing the features used for generating
the covariance objects.

7.4.1 Brodatz Texture

Region covariances have demonstrated superior perfor-
mances in texture recognition applications [44], [52]. We
used the Brodatz texture dataset3, which consists of 110

3. http://www.ux.uis.no/̃ tranden/brodatz.html
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Fig. 2. Simulation results: 2(a) shows accuracy for increasing matrix dimensions keeping the true number of clusters at

50 and each cluster consisting of 100 covariances. Figure 2(b) shows accuracy for increasing number of true clusters

keeping the matrix dimensionality fixed at 5 × 5 and 100 covariances in each cluster. Figure 2(c) plots the time taken

for 100 iterations of each algorithm using the experiment shown in Figure 2(a). We do not show results for GeoKM and

EM for this plot as they are not found to converge in reasonable time, especially for large covariance dimensions. In

Figure 2(d), we plot the time taken for clustering until convergence when the dataset size increases from 500 to 50K

at the same time the number of true clusters increasing number from 5 to 500, using 5 × 5 covariances.

gray scale texture images, each of dimension 512 × 512.
We sampled 300 patches of dimensions 25 × 25 from
random locations of each image. Those patches, with-
out any useful textures (low entropy), were removed.
This resulted in approximately 10K patches. We used a
5D feature descriptor to generate the covariances, with
features defined by: Ftextures = [x, y, I, abs(Ix), abs(Iy)]

T ,
where the first two dimensions are the coordinates of a
pixel from the top-left corner of a patch, the last three
dimensions are the image intensity, and image gradients
in the x and y directions respectively. Region covariances
of size 5×5 were computed from all features in a patch.

7.4.2 ETHZ Person Re-identification Dataset

Tracking and recognition of people appearances is an
essential component of visual surveillance applications.
Compared to other areas of computer vision, the vi-
sual data in these applications are often of very low
resolution, are corrupted by illumination changes, pose
variations due to multiple camera views, and suffer
from occlusions. Region covariances have been shown
to provide a robust platform for person re-identification
in surveillance tasks [30], [45]. In this experiment, we
evaluate the performance of clustering people appear-
ances on the benchmark ETHZ dataset [58]. This dataset
consists of real world surveillance images of resolutions
ranging between 78×30 to 400×200. The images are from
146 different individuals, and the cluster cardinalities
range from 5 to 356. Sample images from this dataset
are shown in Figure 3. There are a total of 8580 images
in this dataset.

Clustering on this dataset expects the covariance de-
scriptors from the same individual to be grouped to-
gether. Several types of features have been suggested
in literature that have shown varying degrees of suc-
cess; examples include Gabor wavelet based features
as in [45], color gradient based features as in [30],
etc. Rather than detailing the results on several feature
combinations, we describe here the feature combination

that worked the best in our experiments.4 We used a
combination of nine features for each image as described
below:

FETHZ = [x Ir Ig Ib Yi abs(Ix) abs(Iy) (33)

abs(sin(θ) + cos(θ)) abs(Hy)] ,

where x is the x-coordinate of a pixel location, Ir, Ig, Ib
are the RGB color of a pixel, Yi is the pixel intensity
in the YCbCr color space, Ix, Iy are the gray scale pixel
gradients, and Hy is the y-gradient of pixel hue. Further,
we also use the gradient angle θ = tan−1(Iy/Ix) in our
feature set. Each image is resized to a fixed size 300×100,
and is divided into upper and lower parts. We compute
two different region covariances for each part, which
are combined as two block diagonal matrices to form
a single covariance descriptor of size 18 × 18 for each
appearance image.

7.4.3 ETH80 Object Recognition

Region covariances have shown promising results for the
task of object recognition [57]. In this experiment, we
demonstrate the performance of unsupervised cluster-
ing of object appearances on the ETH80 dataset, which
consists of 8 ground truth categories. Each category has
ten different instances of an object and each instance
has 41 different views. Although the images are clean,
we cannot rely on a single image cue to recognize each
category due to the high intra-class diversity. Further,
the instances undergo severe view point change. Sample
images demonstrating the difficulty of this dataset are
provided in Figure 3. The dataset has 3,198 images.

Inspired by the experiments in [40], we use a combi-
nation of texture and color features for generating the
region covariances. First, the objects are segmented out
from the images using the given ground truth masks.
To preserve the object boundaries, we used a dilation of

4. We used a validation set of 500 covariances and 10 true clusters
from this dataset. The performance was evaluated over LEKM.
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(a) Brodatz textures

(b) ETHZ appearances

(c) ETH80 objects

(d) FERET faces

Fig. 3. Sample images from the various datasets that we

use in our experiments.

these masks. Next, texture features were computed by a
bank of three separable Laws filter masks [39]. Suppose
H1 = [1 2 1]T , H2 = [−1 0 1]T , and H3 = [−1 2 − 1]T are
these filters, then the filter bank is defined as:

Lbank =
[

H1H
T
1 , H1H

T
2 H1H

T
3 H2H

T
1 (34)

H2H
T
2 H2H

T
3 H3H

T
1 H3H

T
2 H3H

T
3

]

.

Let FLaws be a 9D feature vector obtained from a
pixel after applying Lbank. We also append other texture
and color features as provided by the pixel color, and
gradients. The complete feature vector has the following

form:

FETH80 = [FLaws, x, y, Ir, Ig, Ib, abs(Ix), (35)

abs(Iy), abs(ILoG),
√

I2
x + I2

y

]

,

where ILoG stands for the Laplacian of Gaussian filter,
useful for edge detection. With this feature set, we
generate covariances of size 18× 18 for each segmented
image.

7.4.4 FERET Face Recognition

Our main motivation for this experiment is to analyze
the performance of our clustering framework in real-
world applications that use large region covariances. To
this end, we selected the feature set in [53] for face
recognition. We used the benchmark FERET face dataset,
which consists of face images of multiple people, with
each face undergoing pose variations to varying degrees.
Sample images from this dataset are shown in Figure 3.
We used 800 images from this dataset from 110 different
faces. As suggested in [53], we used a filter bank of 40
Gabor filters with 5 scales and 8 different orientations to
extract the facial features.

7.4.5 Experimental Setup: Hyperparameters

One important challenge in the DPM model is to choose
the hyperparameters of the model, such as the concentra-
tion parameter α and the inverse-Wishart scale matrix S.
We sampled α from a Gamma prior (G(1, 0.5)) for every
iteration of the collapsed Gibbs sampler as suggested in
[70]. The hyperparameter scale matrix S was estimated
by taking the Karcher mean of all the covariances in the
dataset. The DPMMs in all the experiments start with an
initial set of 1000 clusters, with data points assigned to
each cluster randomly. The number of degrees of free-
dom (n) was chosen to be twice the data dimensionality,
which seemed to work well in all our experiments.

7.4.6 Results

The collapsed Gibbs sampler was found to converge
in approximately 200 iterations in all our experiments.
Our results are averaged over 10 different repetitions
of the algorithms with different initializations. In Fig-
ures 4(a), 4(b), 4(c), and 4(d) we show the F1-score,
the cluster purity score, and the class purity score of
our WIW-DPMM model against standard soft-clustering
algorithms. As is clear from the figures, the Frobenius
norm based K-Means show the worst performance in all
our experiments, validating our assumption that treating
the covariances as Euclidean vectors is not appropriate.
The accuracies of the K-Means based algorithms (such
as LEKM, GeoKM, SP, and FKM) showed similar trends
in the various performance metrics, while EM is seen
to showcase a slightly different trend. This is perhaps
due to a better cluster initialization. Note that, in EM,
we initialize the clusters from the output of a K-Means
algorithm (using the Log-Euclidean distance).



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JULY 2015 11

From Figure 4, we see that the performance of the
various comparison methods are similar to ours when
the covariance dimensionality is low and the cluster
cardinality is high (such as the Brodatz textures), while
differs significantly when the dimensionality is high,
while each cluster has very few instances (such as the
FERET dataset). The latter phenomenon is perhaps due
to three important reasons, namely (i) large covariances
are often found to be close to being semi-definite; as a
result leads to numerical instability when computing the
geodesic distances (such as the GeoKM and SP methods),
(ii) large covariances are more vulnerable to the curse of
dimensionality (FKM and LEKM), and (iii) small cluster
cardinalities lead to poor estimation of the cluster param-
eters (as in the EM). In contrast, in the DPMM setup, the
predictive distribution is computed in the log domain
leading to better numerical stability, while the DPMM
procedure (via the concentration parameter) brings in
more flexibility in generating new clusters leading to
better accuracy. On the other extreme, when the number
of instances in a cluster are not sufficient to estimate
the parameters, the DPMM framework over-clusters the
data, which can be seen for the estimated number of
clusters (K) in Figures 4(b) and 4(c); the former has 146
true clusters, but DPMM finds more than 250 clusters
as some of the true clusters in this dataset have only
a few (about 10 or less) instances. On the other hand,
for the ETH80 dataset, there are only 8 true clusters, but
each has a large number of instances, resulting in better
clustering.

The performance of GeoKM is sometimes seen inferior
to LEKM (in the texture and face datasets), which is
not unexpected and may be attributed to the early
stopping when convergence is slow. Further, we found
that the FERET face dataset often produced highly ill-
conditioned covariances. As a result, LEKM which uses
the matrix logarithm, shows improved results. Com-
pared to all the standard algorithms, our WIW-DPMM
model showed excellent performance, especially in the
F1-score. We also find that the cluster purity is generally
high for all the approaches, implying that large clusters
are mostly pure. The class purity is also very high near
to the true number of clusters, suggesting the choice of
our features is adequate for discriminating the classes. A
high class purity around the ground truth K indicates
that classes with low cardinalities often fall into their
own clusters (note that it increases with more clusters).

7.4.7 Comparisons Against Unsupervised Methods

In this subsection, we show results comparing WIW-
DPMM against alternative unsupervised methods,
specifically the GIW DPM models and the Log-Euclidean
based mean-shift algorithm. For the GIW DPMMs, the
vectorized covariances are of high dimensionality (e.g.,
an 18 × 18 matrix results in a half-vector of 171D); the
dataset size might not be sufficient to estimate useful
hyper-parameters. We found that such a vectorization
often results in GIW DPM models performing poorly.

Thus, we used an intermediate PCA step to reduce
the dimensionality to 10D for the ETHZ, ETH80, and
FERET datasets. We experimented with several other
dimensionalities (on a small validation set) and found
inferior results. The bandwidth of the mean-shift algo-
rithm was decided as the mean of a k-NN search on the
datasets using the log-Euclidean distance. In Figure 5, we
show the results of these experiments. As is clear from
the bar plots, our WIW-DPMM method demonstrates
superior clustering performance to other unsupervised
methods. This is especially evident when the covariance
dimensionality is high, especially for the FERET dataset.
This is perhaps because the FERET dataset has a large
number of clusters (110) while each cluster has only 7
face instances; as a result, the PCA step could have failed
to capture the appropriate principal components that
was essential for distinguishing the cluster boundaries.
An method that might have been useful in this context
is the manifold based dimensionality reduction strategy
proposed in [29], which we leave as interesting future
work.

In Figure 6, we show a few qualitative results when
applying our algorithm to two problems, namely (i) tex-
ture recognition, and (ii) texture based aerial image5 seg-
mentation. For the former case, we show a comparison
against the mean-shift algorithm. We used covariances
computed using the 5D texture features we defined in
Subsection 7.4.1 for this experiment. For the aerial image,
we used a texture recognition approach as before, but
used gradients of each color channel as well, leading to
each covariance of size 11× 11. For this experiment, we
used a patch size of 16×16, leading to approximately 39K
covariances. Each segment found using our algorithm is
shown in Figure 6 using a unique color.

8 CONCLUSIONS AND FUTURE WORK

In this paper, a nonparametric Bayesian framework was
introduced for clustering SPD matrices by extending
the Dirichlet process Mixture Models. Using the log-
det divergence as the underlying similarity measure for
comparing SPD matrices, we derived a collapsed Gibbs
sampler using the Wishart Inverse Wishart conjugate
prior. Our experiments demonstrated the superiority of
our scheme against other supervised and unsupervised
clustering algorithms, especially substantiating that ap-
plying vector based DPMMs to covariances is not useful.
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(a) Brodatz textures - 10K covariances of dimension 5 × 5 from 110 classes.
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(b) ETHZ person re-identification dataset - 8580 covariances of dimension 18 × 18 from 146 classes.
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(c) ETH80 object recognition dataset - 3198 covariances of dimension 18 × 18 from 8 classes.
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(d) FERET face dataset - 800 covariances of dimension 40 × 40 from 110 classes.

Fig. 4. The red vertical lines in the plots show the result from our DPMM framework for which we do not need to

provide the number of clusters K.
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Fig. 5. Comparison of unsupervised clustering algorithms on the four datasets.

(a) Texture group (b) WIW-DPMM (c) Mean-shift (d) Aerial Image (e) WIW-DPMM

Fig. 6. Figures 6(a), 6(b), 6(c) show segmentation results for Brodatz textures. Figures 6(d), 6(e) show results from

an aerial image segmentation using our WIW-DPMM method.
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