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The number of categorical observations that are unique in a sam-
ple and also unique, or rare, in the population is commonly used to
measure the overall risk of disclosure in the sample data. Many au-
thors have attempted to estimate risk by employing parametric mod-
els on cross classifications of the key variables, i.e. multi-way contin-
gency tables of those categorical variables that permit the identifica-
tion of individuals in the sample. In particular, parametric log-linear
models or local smoothing polynomial models have been employed to
capture the underlying probability structure of the contingency table.
This paper proposes a nonparametric approach assuming a Poisson
model with rates explained by a log-linear mixed model with Dirichlet
process random effects. Risk estimates are obtained by carrying out a
fully Bayesian treatment of the proposed model. The main finding is
that parametric all two-way interactions log-linear models and semi-
parametric log-linear models with main effects only produce roughly
equivalent risk estimates. This fact is observed in applications to real
data, and suggests that the latter can be adopted as “default” mod-
els, as they are able to produce reasonably good risk estimates and
also to defuse potential shortcomings of traditional log-linear models.

1. Introduction. A major concern in releasing files of microdata aris-
ing from sample surveys is protecting the privacy of the subjects in the sam-
ple. The information contained in the files to be released consists of a set of
identifying variables, usually categorical, along with some sensitive variables.
The subset of identifying variables whose values in the population are also
available to potential intruders from a source which is external to the data
under consideration is referred to as the set of key variables. Using the key
variables, an intruder with certain knowledge about a subject may identify
him/her, thereby learning sensitive information about the subject, carried by
the released data. Even if in certain cases synthetic or suitably altered data
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can be released, in other cases sharing record-level data is part of the mission
of many organizations, so that estimating disclosure risk measures is one of
their obligations. For most socio-demographic survey data, the problem is
usually tackled by considering a contingency table representing the cross-
classification of individuals by the key variables and observing that if an
individual belongs to a cell with small sample frequency an identification dis-
closure may occur when that combination of values of the key variables is also
rare in the population. Often, attention is focused only on cell frequencies of
1 (sample uniques) and common disclosure risk measures are the number of
sample uniques which are also population uniques and/or the expected num-
ber of correct guesses when each sample unique is matched with an individ-
ual randomly chosen from the corresponding population cell. Traditionally
those measures are estimated by using parametric models. A common fea-
ture of many such models is the assumption of exchangeability of cells of the
population contingency table, implying that all cells with the same sample
frequency are assigned the same risk estimate. Skinner and Holmes (1998),
Fienberg and Makov (1998), Elamir and Skinner (2006), Forster and Webb
(2007) and Skinner and Shlomo (2008) introduce a log-linear model for the
expected cell frequencies that overcomes this problem. Rinott and Shlomo
(2006) and Rinott and Shlomo (2007a), instead, propose a local smoothing
polynomial model based on the idea that one can learn about the risk in
a given cell from neighbouring cells, if a suitable definition of closeness is
possible (as it is, for instance, with ordinal key variables), without relying
on a “neighbourhood” of cells determined by a log-linear model. Moreover,
in those articles a variety of estimation strategies are suggested, including
combinations of methods ranging from maximum likelihood estimates to
fully Bayesian estimates, and also a method based on multiple imputation.
Recently, Manrique-Vallier and Reiter (2012) have employed a Bayesian ver-
sion of grade of membership (GoM) models to overcome potential short-
comings of log-linear models, which essentially result in: (i) bias of the risk
estimates due to the sparsity of the contingency tables involved, and (ii)
difficulties with model choice because of the huge number of competing log-
linear models when high-order terms are included.

In this paper we introduce a Bayesian semi-parametric version of log-
linear models, which specifically is a mixed effects log-linear model with a
Dirichlet process (DP) prior (Ferguson, 1973) for modeling the random ef-
fects. On the one hand, suitable specifications of the base measure of the
DP allow for useful extensions of many parametric models; here we gener-
alize the one adopted in Skinner and Holmes (1998) and sketch the analog
of one of those proposed in Elamir and Skinner (2006). On the other hand,
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the assumption of DP random effects gives the modeling flexibility of ac-
commodating any possible clustering of cells in the contingency table of
the key variables, with cells in the same cluster receiving the same ran-
dom effect. A practical consequence is that the huge number of patterns
of dependence among cells automatically created by the proposed model
may reduce the number of high-order terms required to achieve a satis-
factory performance of risk estimators (see, e.g., Dorazio et al., 2008). In
particular, in some applications to real data, one of which is presented
in Section 4, we observed roughly equivalent risk estimates under semi-
parametric log-linear models with main effects only (independence mod-
els) and parametric all two-way interactions log-linear models. According
to Manrique-Vallier and Reiter (2012, p. 1390), the latter “have been found
to produce reasonable results in many cases (Fienberg and Makov, 1998;
Elamir and Skinner, 2006; Skinner and Shlomo, 2008), and so represent a
default modeling position”. Therefore, our nonparametric independence mod-
els emerge as default models also able to substantially defuse the above
mentioned shortcomings (i) and (ii). By including main effects only, the
complexity of model choice is obviously reduced and the probability of ob-
serving sample marginal counts which are random zeros drastically falls,
thereby reducing the bias of risk estimates. As it is well known, sparsity
may prevent the estimation of high-order terms structurally required by
traditional log-linear models: maximum likelihood estimates of parameters
for cells corresponding to zero sample marginal counts do not exist, and
treating the inestimable parameters as if they were zero implies that all
other cells of the population contingency table are overestimated, with the
consequence that risk measures are underestimated (Skinner and Shlomo,
2008). As in Manrique-Vallier and Reiter (2012), the estimation method we
adopt is fully Bayesian and explicitly considers the randomness of popu-
lation frequencies which thus represents an additional source of variability
of risk estimators. In this respect our work is very different from previous
works based on log-linear models, including the one by Rinott and Shlomo
(2007b) on conditional variances and confidence intervals for disclosure risk
measures. We also remark that in a disclosure limitation context, the sample
to be released is unique and fixed and, unlike repeated sampling schemes, the
Bayesian approach is quite appealing as it casts the risk estimation problem
conditional on the observed data.

The outline of the paper is as follows. In Section 2 we define the dis-
closure risk measures we are interested in, describe the model adopted by
Skinner and Holmes (1998) and introduce two possible nonparametric ex-
tensions of this model. In the first extension, we assume DP random effects



4 C. CAROTA ET AL.

and, mimicking Skinner and Holmes (1998), we keep the fixed effects con-
stant. Next, we relax the latter assumption and consider a model all effects
of which are unknown. In both extended models the total mass parameter of
the DP is also unknown and in Section 3 the MCMC methods used for infer-
ence are extensively discussed. Finally, in Section 4 we compare parametric
and nonparametric models based on a random sample extracted from the
population defined by the Italian National Social Security Administration
(2004), benchmarking risk estimates against the true values of risks.

2. Semi-parametric Log-linear Models for disclosure risk esti-

mation. In the contingency table of key variables we denote by fk and
Fk the sample and population frequencies in the k-th cell, respectively, and
by K the total number of cells. Our goal is to estimate global risks of re-
identification, or disclosure risks, defined as

(1) τ1 =
K
∑

k

I(fk = 1, Fk = 1),

i.e. the number of sample uniques which are also population uniques, and

(2) τ2 =
K
∑

k

I(fk = 1)
1

Fk

,

i.e. the expected number of correct guesses if each sample unique is matched
with an individual randomly chosen from the corresponding population cell
(see, e.g., Rinott and Shlomo, 2006). Usually these measures are approxi-
mated by τ∗1 =

∑K
k=1 I(fk = 1)Pr{Fk = 1|fk = 1} and τ∗2 =

∑K
k I(fk =

1)E(1/Fk|fk = 1), i.e. E(τi|f1, ..., fK), i = 1, 2, under the assumption of cell
independence, and estimated by using parametric models, which often are
elaborations of the Poisson model.

Although many relevant models in the disclosure literature are para-
metric, we explore the possibility of dealing with this issue in a Bayesian
nonparametric context, specifically extending the model and the estima-
tion strategy introduced by Skinner and Holmes (1998). We briefly review
their work and then report the proposed nonparametric extensions. As-
suming that Fk ∼ Poisson(λk) and fk ∼ Poisson(πλk) independently for
k = 1, . . . ,K, Skinner and Holmes model the parameters λk through a log-
linear model with mixed effects:

(3) λk = eµk , µk = w′
kβ + φk,

where wk is a q×1 design vector depending on the values of the key variables
in cell k, β is a q×1 parameter vector (typically main effects and low-order
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interactions of the key variables), and φk is a random effect accounting for
cell specific deviations. The sampling fraction π is supposed to be known.
Finally, as far as the distribution of random effects goes, Skinner and Holmes
assume that φk ∼ iid N (0, σ2). This implies λk ∼ Lognormal(w′

kβ, σ
2),

independently for k = 1, . . . ,K.
In Skinner and Holmes (1998) the goal is to estimate τ∗1 , whose summands

Pr{Fk = 1|fk = 1}, are given by τ∗1,k = e−(1−π)λk . Their estimation strategy
is as follows:

• preliminary estimates (β̂, σ̂2) of β and σ2 are obtained from the sample
frequencies fk via iterative proportional fitting and by a conditional
application of the moment method respectively;

• the pair (w′
kβ, σ

2) is substituted by (w′
kβ̂, σ̂

2) in the Lognormal prior;
• different estimates of the per-record risk of disclosure τ∗1,k are derived:

(4) τ̂∗1,k =

∫

e−λke−
1

2σ̂2 (log λk−w
′

k
β̂)2dλk

∫

e−πλke−
1

2σ̂2 (log λk−w
′

k
β̂)2dλk

,

obtained from the posterior of λk; τ̂
∗
1,k = e−(1−π)e

w
′

k
β̂+ σ̂2

2 , obtained
from the prior expected value of λk, and

(5) τ̂∗1,k = e−(1−π)e
w

′

k
β̂

,

obtained ignoring the randomness of λk (plug-in estimate).

Equation (4) is an empirical Bayes estimate of τ∗1,k; the second expression is
a simplified empirical Bayes estimate of τ∗1,k. Equation (5) is recommended
by Skinner and Holmes when the conditional moment method produces
negative values of σ̂2, which is interpreted as evidence that the simpler
model without random effects is more appropriate. In all three cases, this is
a two-stage estimation procedure where, in the first stage, the association
among cells is exploited to estimate the hyper-parameters of the Lognormal
prior, while, in the second (and completely separate) stage, the estimates of
τ∗1,k are obtained cell by cell, independently.

More recently, Skinner and Shlomo (2008) resort to a log-linear model
without random effects, so that τ∗1,k is always estimated by equation (5),
and similarly a plug-in estimate is used for the summands in τ∗2 , i.e. τ

∗
2,k =

E(1/Fk|fk = 1) = 1
(1−π)λk

(1 − e−(1−π)λk). The inclusion of random effects
in the log-linear model is also unnecessary according to Elamir and Skinner
(2006), who, all other things being equal, take the priors of λks to be inde-
pendent Gamma distributions instead of Lognormal.
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In this paper, we go back to the model defined in Skinner and Holmes
(1998) and remove the assumption of normality of random effects. We model
the distribution function G of the random effects as unknown and a priori
distributed according to a DP D with base probability measure G0 and total
mass parameter m (Ferguson, 1973),

(6) φk|G ∼ iid G, G ∼ D(m,G0),

where G0 = N(α, σ2). Since E(G) = G0 and m controls the variance of
the process, in practice G0 specifies one’s “best guess” about an underlying
model of the variation in φ, and m specifies the extent to which G0 holds.

Two distinct generalizations of the Skinner and Holmes model are pre-
sented, based on different specifications of the model parameters. In the first
extension, our prior on β degenerates at β = β̂ML, where β̂ML is the maxi-
mum likelihood estimate of the parameter vector. This extension is directly
inspired by both the structure of the model and the estimation strategy
in Skinner and Holmes (1998). Therefore, the corresponding risk estimates
will be referred to as nonparametric empirical Bayes estimates of the risk
and represent a generalization of (4). The hyper-parameters (α, σ2) in the
normal base measure G0 are considered unknown; in the case when α = 0
we simply have some variability around the normal model assumed by Skin-
ner and Holmes. In the second extension, we add the uncertainty about β.
To overcome identifiability issues, following Li, Mueller and Lin (2011), we
drop the overall effect β0, referred to as the “intercept term”, from β and
attempt to infer α in G0 instead.

The clustering induced by the DP prior on the random effects can be seen
from a Polya-urn scheme representation of the joint distribution of realiza-
tions from a D(m,G0) process. Blackwell and MacQueen (1973) provide this
as the product of successive conditional distributions having the following
form:

(7) φi|φ1, . . . , φi−1,M ∼
m

m+ i− 1
G0(φi) +

1

m+ i− 1

i−1
∑

k=1

δ(φk = φi),

with δ(·) denoting the Dirac delta function. The above representation shows
that clusters in the K cells of the population contingency table are induced
by the existence of a positive probability that a newly generated φi coin-
cides with a previous one. Moreover, it shows that m, the mass or precision
parameter of the DP, affects the number of clusters.

Therefore, under the previous assumptions, in the more general case the
likelihood function turns out to be a sum of terms where all possible par-
titions (clusterings) C of the K cells in c nonempty clusters are considered
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(see, e.g., Lo, 1984; Liu, 1996),

(8)
K
∑

c=1

∑

C:|C|=c

Γ(m)

Γ(m+K)
mc

c
∏

j=1

Γ(nj)

∫

p(f(j)|β, φj)dG0(φj),

where f = f1, . . . , fK and nj (1 ≤ nj ≤ K) denotes the number of cells in
the j-th cluster,

(9)
Γ(m)

Γ(m+K)
mc

c
∏

j=1

Γ(nj) = Pr{n1, . . . , nc|C, c},

and finally

(10) p(f(j)|β, φj) =
∏

k∈cluster j

1

fk!
eπfk(w

′

k
β+φj)e−e

π(w′

k
β+φj)

.

In the likelihood, starting from the latter formula, we can observe that the
same random effect is assigned to all cells belonging to the same cluster,
i.e. to f(j), that Pr{n1, . . . , nc|C, c} is the multivariate Ewens distribution
(MED) of K distinguishable objects, or cells {1, . . . ,K} (see Takemura,
1999; Johnson, Kotz and Balakrishnan, 2004, chap. 41), and that the num-
ber of clusters in each partition ranges from 1 to K. We stress that the total
number of summands in the likelihood is the Bell number, BK , which is a
combinatorial quantity assuming large values even for moderate K; just to
fix ideas, when K = 10, BK = 115975. The model by Skinner and Holmes
(1998) corresponds to just one term (namely, c = K) in the likelihood and
consequently, even for moderate values of K, our model implies a huge num-
ber of additional patterns of dependence among cells. In conclusion, the fixed
effects included in the log-linear model imply specific patterns of dependence
among cells (for instance, an independence model implies that inference on a
given cell depends on all cells sharing a value of a key variable with it, since
the sufficient statistics are given by the marginal counts); the addition of
independent normal random effects allows for departures from the Poisson
log-linear model such as overdispersion, but does not affect the way one can
learn about a given cell from other cells. On the contrary, the addition of
DP random effects implies that the model encompasses all other nonempty
subsets of the K cells and that, for each given partition, a possible relation
of dependence among cells in the same subset (i.e. whether or not one can
learn from those cells about any fixed cell in such a subset) is explicitly
evaluated. This suggests both the potential for the proposed model to im-
prove the risk estimates and the computational complexity associated with
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it. Similar advantages, with a similar effort, follow from suitable inclusion
of DP random effects in the Elamir and Skinner (2006) model. Moreover,
we conjecture that some advantages in terms of risk estimates might also be
achieved by introducing DP random effects in the local smoothing polyno-
mial model of Rinott and Shlomo (2006, 2007a), where for each fixed cell k,
k = 1, . . . ,K, a “more local” neighbourhood, compared to the one implied
by a log-linear model, is considered.

In order to describe the computational aspects, for each partition C in c
clusters, we introduce a K× c allocation matrix A such that entries ak,j = 1
when the random effect φk is from cluster j and zero otherwise. Then, setting
φk = ηj when φk ∈ cluster j, we have φ = Aη, and the likelihood can be
rewritten as

K
∑

c=1

∑

A∈Ac

Γ(m)

Γ(m+K)
mc

c
∏

j=1

Γ(nj) ×(11)

∫ K
∏

k=1

1

fk!
eπfk(w

′

k
β+(Aη)k)e−e

π(w′

k
β+(Aη)k)

dG0(η1, . . . , ηc),

where Ac is the set of all allocation matrices A and the parameters η are
independent.

3. Inference. Rather than focusing on τ∗1 and τ∗2 , in this paper we
directly estimate τ1 and τ2 in a fully Bayesian way. Note that τ1 and τ2 de-
pend on the population and sample cell frequencies, and that F1, . . . , FK are
unobservable random quantities (parameters), with Fk|λk ∼ Poisson(λk),
k = 1, . . . ,K. To perform posterior inference, we consider values of λks
drawn from their joint posterior distribution and then values of F1, . . . , FK

drawn from the corresponding Poisson distributions. In order to keep the
notation uncluttered, let θ denote the set of all parameters conditioning
λ1, . . . , λK for each of the models analyzed in this article. A Bayesian treat-
ment of such models amounts to marginalizing out θ from the terms in the
re-identification risks τ1 and τ2. In a Monte Carlo sense, this can be achieved
by

(12) I{Fk = 1|fk = 1, f} ≃
1

H

H
∑

h=1

I{F
(h)
k = 1|fk = 1,θ(h)} =

1

H

H
∑

h=1

τ
(h)
1,k

(13) (1/Fk|fk = 1, f) ≃
1

H

H
∑

h=1

(1/F
(h)
k = 1|fk = 1,θ(h)) =

1

H

H
∑

h=1

τ
(h)
2,k ,
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where {θ(1), . . . ,θ(H)} denotes a set of H samples from the posterior dis-
tribution p(θ|f). This approach takes into account the randomness of both
groups of unobservable parameters (λks and Fks), with twofold consequences.
First, since a posteriori the λks are dependent on each other, we avoid
the unrealistic assumption underlying the second stage of the estimation
procedure of Skinner and Holmes (1998), where the cell risks are treated
as if they were independent. Second, since the randomness of the Fks is
also explicitly considered, we obtain risk estimates whose variability de-
pends on the variability of the Fks as well as the variability of the λks and
the association between λks. This means, for instance, that, in the more
general case, our conditional (i.e., posterior) variance of τ1, V ar(τ1|f) =

V ar
(

∑K
k I(fk = 1)I(Fk = 1|fk = 1)

)

, cannot be expressed in the form

(14)
K
∑

k

I(fk = 1)Pr{Fk = 1|fk = 1}(1− Pr{Fk = 1|fk = 1})

as in Rinott and Shlomo (2007b) because of the covariances of the λks. More-
over, we estimate these conditional variances (more precisely, the standard
errors, s.e., provided in Section 4, Table 1) by using the posterior distribu-
tions of τi, i = 1, 2, instead of applying a plug-in method.

In order to obtain samples from the posterior distribution p(θ|f), we pro-
pose to use Markov chain Monte Carlo (MCMC) techniques (Neal, 1993). In
particular, we propose to use a Gibbs sampler where we sample one group
of parameters at a time, namely β|rest, φ|rest, m|rest, (α, σ2)|rest. The
proposed Gibbs sampler steps are briefly discussed next.

Sampling β – Given the form of the Poisson likelihood, it is not possi-
ble to sample β using an exact Gibbs step, and so called Metropolis within
Gibbs samplers need to be employed, whereby a proposal is accepted or
rejected according to a Metropolis ratio (Roberts and Rosenthal, 2009). Re-
cent work shows that it is possible to efficiently sample from the posterior
distribution of parameters of linear models using so called manifold MCMC

methods. Briefly, such samplers exploit the curvature of the logarithm of
the likelihood p(f |β, rest) by constructing a proposal mechanism on the ba-
sis of the Fisher Information matrix (see Girolami and Calderhead, 2011,
for further details). In this work we adopt Simplified Manifold Metropolis
Adjusted Langevin Algorithm (SMMALA) to sample β as previously done
in Filippone, Mira and Girolami (2011), which simulates a diffusion on the
statistical manifold characterizing p(f |β, rest). Define M to be the metric
tensor obtained as the Fisher Information of the model plus the negative
Hessian of the prior, and ǫ to be a discretization parameter. SMMALA is es-
sentially a Metropolis-Hastings sampler, with a position dependent proposal
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akin to the Newton method in optimization, p(β′|β) = N (β′|µ, ǫ2M−1),

with µ = β+ ǫ2

2 M
−1∇β log[p(f |β, rest)]. Gradient and metric tensor can be

computed in linear time in the number of cells K and in cubic time in the
size of β; therefore the method scales well to large data sets but it may be
computationally intensive for highly parameterized models.

Sampling φ – The representation of the random effects through the
allocation matrix A makes it possible to apply simple schemes to obtain
samples from the posterior of the random effects as extensively discussed in
Neal (2000). In this work we adopted Algorithm 5 in Neal (2000), as it is
easy to implement and as it achieves satisfactory performance in the given
application.

Sampling m – In the literature, it has often been reported that inference
in models involving DPs is heavily affected by the mass parameter m, and
that setting it by means of Maximum Likelihood is bound to yield poor
results (see, e.g., Liu, 1996). Rather than fixing this parameter, we propose
to sample from its posterior distribution and to account for uncertainty
about it when inferring τ1 and τ2. In order to do that, we log-transform
m and sample ψm = log(m) instead, using a standard Metropolis-Hastings
sampler. To avoid the Metropolis step, the approach of Escobar and West
(1994) could also be employed.

Sampling α and σ2 – Given that we chose a Gaussian base measure, by
imposing a Gaussian prior on the mean α and an inverse gamma prior on
the variance σ2 of the base measure, we can exploit conjugacy and obtain
the conditional distribution of α and σ2 in closed form. This yields an exact
Gibbs step to sample directly from p(α, σ2|rest).

4. Application to Italian National Social Security Administra-

tion data and discussion. To evaluate the performance of the proposed
approach, we use data from the 7% microdata sample of the Italian National
Social Security Administration, 2004. In the application the N = 450, 238
individuals in the sample above whose workplace falls into 4 specific ge-
ographic areas are treated as the population. We draw a random sample
with fraction π = 0.1, yielding n = 45, 023, and consider five key variables
(number of categories in parentheses), namely area (4), sex (2), age (11),
ethnicity (5), and economic activity (9), giving a total of K = 3, 960 cells.
Such variables originate from a study on individual health and psychological
well-being (W2H&back: From Work to Health and Back, Project funded by
Regione Piemonte 2010). We also reconsider the same key variables except
for age that is grouped in 6 bands, giving a smaller table with K = 2, 160
cells.
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In the application we examine several versions of the log-linear model
with random effects (3), obtained by combining different specifications of
its components. First of all, we consider either a parametric (P) or a non-
parametric (NP) specification of the random effects. Under the parametric
specification P, the random effects are modeled by a N (0, σ2) distribution as
in Skinner and Holmes (1998). Under the nonparametric specification NP,
the random effects are assumed to follow a distribution drawn from a DP,
whose base measure is N (α, σ2); the base measure may be assumed to have
α = 0, i.e. a zero mean (NP ZM), or more generally an unknown mean
(NP UM). The previous options are then combined with different models
for describing the fixed effects. In particular, we investigate several standard
log-linear specifications, namely a model containing the intercept term only,
referred to as the intercept model (O), the independence model (I) and the
all two-way interactions model (II). We also consider two nonparametric
models with no fixed effects (noF). In all cases, the presence or absence of
the intercept β0 in the linear combination defining the µk in (3) is denoted
by “Yes” or “No”, respectively. Finally, all models are estimated by the
fully Bayesian method described in Section 3, except for two nonparametric
models, where the prior of fixed effects is taken to be degenerate at β̂ML;
here Emp denotes use of empirical Bayes estimates. The latter option is
introduced to explore the performance of the estimation strategy adopted
in Skinner and Holmes (1998) in the presence of DP random effects. We
assume independent and reasonably vague Gaussian priors N (0, 10) on βs.
In turn, the prior on α is taken to be N (0, 10) and the prior on σ2 to be
invGamma(1, 1). Finally, we assume a Gamma(1, 1) prior onm. Convergence
of the chains in the MCMC sampling was checked using the Gelman and
Rubin’s potential scale reduction factor (R̂; Gelman and Rubin, 1992), by
running 10 parallel chains comprising 10, 000 iterations and assessing that
chains had converged when R̂ < 1.1 for all the parameters. According to
this criterion, all chains converged within a few thousands of iterations that
were then discarded before evaluating the risk scores.

Table 1 reports true and estimated values of τ1 and τ2 (s.e. in parenthe-
ses) for eleven models formed by combining different modeling options as
described above. Hereafter, these models will be denoted by labels denoting
the selected modeling options. Inspection of Table 1 reveals a good per-
formance of the all two-way interactions model among parametric models,
which is in line with what reported in the literature. If, however, we enlarge
the context to include nonparametric models, new and interesting findings
are as follows:

1. the performance of nonparametric independence models, (NP & I)
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Table 1

Estimated values of τ1 and τ2 by means of τ̂1 and τ̂2 for the two settings analysed
(K = 2, 160; K = 3, 960). True values of the global risks are τ1 = 18 and τ2 = 50.1 in the

small table, and τ1 = 39 and τ2 = 94.4 in the large table.

K = 2, 160 K = 3, 960

Model Intercept Fixed
Effects

τ̂1 τ̂2 τ̂1 τ̂2

P Yes O 0.0 (0.0) 1.0 (0.0) 0.0 (0.0) 3.2 (0.0)

P Yes I 20.5 (3.1) 44.6 (2.1) 32.1 (3.9) 77.0 (2.8)

P Yes II 21.5 (3.8) 50.2 (3.2) 32.5 (4.6) 84.8 (3.7)

NP Emp UM Yes I 19.6 (3.5) 48.2 (2.9) 32.5 (4.4) 85.8 (3.8)

NP Emp UM Yes II 17.5 (2.9) 46.1 (2.0) 26.0 (3.7) 78.4 (2.6)

NP ZM No noF 8.0 (3.7) 36.6 (5.0) 13.4 (5.4) 68.9 (8.3)

NP ZM No I 22.3 (3.7) 52.3 (3.0) 33.2 (4.9) 87.9 (4.5)

NP ZM No II 20.5 (3.6) 49.5 (2.9) 28.0 (3.5) 80.1 (3.1)

NP UM No noF 9.6 (4.2) 42.7 (5.0) 16.5 (5.7) 76.4 (7.9)

NP UM No I 22.1 (3.8) 52.0 (3.2)) 32.1 (4.7) 86.5 (4.2)

NP UM No II 20.2 (3.6) 48.9 (2.9) 27.4 (4.0) 79.1 (3.1)

in our notation, is comparable to that of the parametric all two-way
interactions model, (P & II). This means that the DP prior is able to
capture the essential features of heterogeneity without increasing the
dimensionality of the problem.

2. The potential of the DP prior for capturing latent information not
modeled by covariates can be noticed by comparing the results cor-
responding to the parametric log-linear model that only contains the
overall mean, (P & O), and to the nonparametric models without fixed
effects, (NP ZM & noF) and (NP UM & noF). The latter is the model
used in Dorazio et al. (2008).

3. Because of the vague priors we adopted for β and σ2, the fully Bayesian
estimates of τ1 obtained under the models (P & I) and (P & II) can
be considered roughly equivalent to the Empirical Bayes estimates ob-
tained from equation (4). The risk estimates obtained under the models
(NP Emp UM & I) and (NP Emp UM & II) represent their nonpara-
metric counterparts, i.e. a first minor generalization of the results in
Skinner and Holmes (1998). Of course, using plug-in estimates of β, a
source of uncertainty is neglected; this explains why the corresponding
standard errors are slightly smaller than the ones associated with the
remaining nonparametric models.

All those findings can also be noticed by inspecting the plots in Figure 1
which presents the 2.5th, 5th, 50th, 95th and 97.5th percentiles of the pos-
terior distribution of τi, i=1,2, under each of the models reported in Table 1.
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Fig 1. Quantiles of the posterior distributions of τ∗

1 (first column) and τ∗

2 (second column)
under all parametric and nonparametric models considered. The first (second) row refers
to the table with K = 2, 160 (K = 3, 960) cells.

Models appear in order of complexity of the log-linear specification; the solid
horizontal lines represent the true risk values. About finding (2), for instance,
considering the models without main effects and interaction terms (i.e. the
first three models where the exchangeability assumption holds), Figure 1
clearly shows the impact on the posterior distribution of τi, i = 1, 2, arising
from the assumption of DP random effects. Moreover, there is a clear indica-
tion that, as the complexity of the log-linear model increases, the variability
corresponding to parametric models increases as well, while the variability
corresponding to nonparametric models tends to decrease.

The latter fact is even more evident in Table 2 where, all other things be-
ing equal, the variability of the Fk is neglected, and we estimate τ∗1 and τ∗2
instead of τ1 and τ2. Similarly to what Manrique-Vallier and Reiter have ob-
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Table 2

Estimated values of τ1 and τ2 by means of τ̂∗

1 and τ̂∗

2 for the two settings analysed
(K = 2, 160; K = 3, 960). True values of the global risks are τ1 = 18 and τ2 = 50.1 in the

large table and τ1 = 39 and τ2 = 94.4 in the small table.

K = 2, 160 K = 3, 960

Model Intercept Fixed
Effects

τ̂∗

1 τ̂∗

2 τ̂∗

1 τ̂∗

2

P Yes O 0.0 (0.0) 1.0 (0.0) 0.0 (0.0) 3.2 (0.0)

P Yes I 20.5 (0.7) 44.6 (0.8) 32.1 (1.0) 76.9 (1.4)

P Yes II 21.6 (2.3) 50.2 (2.5) 32.5 (2.4) 84.8 (2.5)

NP Emp UM Yes I 19.5 (1.7) 48.2 (2.0) 32.5 (2.1) 85.8 (2.6)

NP Emp UM Yes II 17.5 (0.2) 46.1 (0.3) 26.0 (0.1) 78.4 (0.2)

NP ZM No noF 8.0 (2.9) 36.6 (4.7) 13.5 (4.5) 69.0 (7.9)

NP ZM No I 22.3 (1.9) 52.3 (2.2) 33.2 (2.9) 87.9 (3.6)

NP ZM No II 20.5 (1.9) 49.5 (2.1) 27.9 (1.1) 80.1 (1.6)

NP UM No noF 9.6 (3.1) 42.7 (4.6) 16.5 (4.5) 76.4 (7.4)

NP UM No I 22.1 (2.1) 52.0 (2.4)) 32.1 (2.5) 86.5 (3.2)

NP UM No II 20.2 (1.9) 48.9 (2.1) 27.4 (1.4) 79.1 (1.6)

served under their GoMmodels (Manrique-Vallier and Reiter, 2012, p.1389),
in Table 2 we observe point estimates τ̂∗1 and τ̂∗2 nearly identical to the ones
in Table 1, thereby confirming findings (1)-(3), with smaller standard errors
since only the variability of λ is taken into account (the slight variations are
underlined). Clearly, τ̂∗i =

∑K
k=1 τ̂

∗
i,k, i = 1, 2, where

τ̂∗1,k =
1

H

H
∑

h=1

Pr{Fk = 1|fk = 1,θ(h)}; τ̂∗1,k =
1

H

H
∑

h=1

E

(

1

Fk
|fk = 1,θ(h)

)

.

By exploiting such a simplification, in the the rest of this Section we
explore the behaviour of the per-cell risk estimates τ̂∗1,k and τ̂∗2,k to try to
better understand our findings (1)-(3).

In Figures 2 and 3 we compare per-cell risk estimates τ̂∗i,k and true risks
(red line) for i = 1, 2, respectively. We consider estimates from both the
table with K = 2, 160 cells (first row) and the table with K = 3, 960 cells
(second row) obtained under the parametric models (P & II) and (P & I)
and under the three nonparametric independence models in Table 2. Cells
containing sample uniques (189 in the first row and 356 in the second row)
are arranged in increasing order of the per-cell true risk.

First of all we comment on the performance of nonparametric indepen-
dence models compared to the other models considered. The per-cell risk
estimates τ̂∗i,k corresponding to the (NP Emp UM & I) model and to the
parametric independence model (P & I) perform similarly except for a no-
ticeable reduction of the amplitude of oscillations in the presence of DP ran-
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Fig 2. Comparison of risk estimates τ̂∗

1,k for sample unique cells under the all-two-way
interactions parametric model (P & II) vs the corresponding estimates under the indepen-
dence model (P & I) and three nonparametric models of type (NP & I). First (second) row
represents estimated risks for the small (large) table with K = 2, 160 (K = 3, 960). Cells
are arranged in decreasing order of population cell size; red line represents the true (0/1)
risk.
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Fig 3. Comparison of risk estimates τ̂∗

2,k for sample unique cells under the all-two-way
interactions parametric model (P & II) vs the corresponding estimates under independence
model (P & I) and three nonparametric models of type (NP & I). First (second) row
represents estimated risks for the small (large) table with K = 2, 160 (K = 3, 960). Cells
are arranged in increasing order of true per-cell risk (red line).
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Fig 4. Estimates of τ1,k for population uniques only, under all models with covariates.
Left (right) panel refers to the table with K = 2, 160 (K = 3, 960) cells.

dom effects. In addition to smaller oscillations, the per-cell risk estimates
τ̂∗i,k corresponding to the (NP UM & I) and (NP ZM & I) models — the
fully Bayesian models where the DP random effects also affects estimation
of fixed effects — exhibit an overall increasing trend as the population cell
size decreases. This, compared to what observed under the all two-way inter-
actions model (P & II), suggests that the DP random effects in some sense
supplement the covariates in the log-linear model. Moreover, as to finding
(1), inspection of Figure 3 reveals that the small differences between the
global risks τ̂∗2 found in Table 2 under the (P & II) and the (NP & I) models
can be ascribed mainly to cells with very low risks, that are systematically
over-estimated by the nonparametric independence models. See also Table 3
where the signed, absolute and squared errors for the estimation of τ2,k are
presented for both the small (K = 2, 160) and large table (K = 3, 960).

On the other hand, comparison of parametric and nonparametric inde-
pendence models, (P & I) and (NP & I), in Figure 3 indicates a large im-
provement in per-cell risk estimates under the (NP & I) models, since in
this case smaller oscillations are equivalent to smaller distances between
risk estimates and true risks. See also Table 3. It is worth noting that such
an improvement is achieved at the cost of one or two additional unknown
parameters (m or m and β0 respectively), while (P & II) requires hundreds
of additional parameters with respect to (P & I), namely 357 and 257 in-
teractions, gross of the unidentifiable ones, for the large and small table,
respectively. Moreover, in Table 3 we can observe that, going from non-
parametric independence models to nonparametric all two-way interactions
models, the improvement of per-cell risk estimates for low risk cells tends
to be greater than the improvement of per-cell risk estimates for high risk
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Table 3

Signed, absolute and squared errors for the estimation of τ2k in the small (K = 2, 160)
and large (K = 3, 960) table using the models under analysis (above and below the

horizontal line, respectively). The table also reports the same summaries restricted to cells
having large (Fk > 10), and small (Fk ≤ 10) frequency in the population, respectively.

Model all cells cells s. t. Fk > 10 cells s. t. Fk ≤ 10
sign. abs. sq. sign. abs. sq. sign. abs. sq.

P & I -5.6 52.9 27.9 9.4 10.9 5.4 -15.0 42.0 22.5
NP Emp UM & I -1.9 47.3 22.3 10.8 10.8 4.2 -12.7 36.5 18.2

NP UM & I 1.8 46.9 21.7 10.6 10.6 4.1 -8.7 36.3 17.6
NP ZM & I 2.2 47.1 21.8 10.7 10.7 4.2 -8.5 36.4 17.7

P & II 0.1 45.4 21.8 7.7 8.5 3.2 -7.6 36.9 18.6
NP Emp UM & II -4.0 43.5 21.1 6.8 7.7 2.8 -10.8 35.8 18.3

NP UM & II -1.3 44.6 21.2 7.7 8.5 3.1 -9.0 36.2 18.1
NP ZM & II -0.7 44.6 21.1 7.6 8.2 2.9 -8.2 36.4 18.2

P&I -17.4 94.7 51.6 18.1 19.8 9.8 -35.5 75.0 41.8
NP Emp UM & I -8.6 85.9 42.7 20.4 20.4 7.9 -29.0 65.5 34.8

NP UM & I -7.9 80.5 38.8 18.1 18.1 6.8 -26.0 62.4 32.0
NP ZM & I -6.5 81.4 39.3 18.7 18.7 7.1 -25.2 62.7 32.2

P & II -9.6 84.7 41.8 14.3 15.3 5.2 -23.9 69.4 36.6
NP Emp UM & II -16.0 81.8 41.2 12.8 13.9 4.7 -28.7 68.0 36.5

NP UM & II -15.3 81.4 40.2 12.9 13.9 4.6 -28.1 67.5 35.6
NP ZM & II -14.3 81.7 40.2 13.0 14.0 4.6 -27.3 67.6 35.6

cells. This fact may have a negative impact at level of global risk estimates
inducing bias, as in the large table (K = 3, 960); see also Figure 1. This
fact can be even more clearly noticed in Figure 4, which presents boxplots
for the estimated values of τ∗1,k corresponding to population uniques only,
under all models considered in Table 2. In the right-hand side of the Figure
we can see that, when the true cell risks are 1, the distributions of cell risk
estimates under the parametric and nonparametric all two-way interactions
models are very similar. Therefore, the worse performance of global risk es-
timates we observed in Table 2 under the (NP & II) models than under
the (P & II) model (see also Figure 1) is an unpleasant consequence of the
greater improvement in cell risk estimates for cells where the true risk is
zero achieved under the (NP & II) models than under the (P & II) model.
In other words, under the (P & II) model, the over-estimation of cell risks
whose true value is zero tends to balance the under-estimation of cell risks
whose true values is one. A similar argument explains the good performance
of the global risk estimates under the nonparametric independence models.
In this respect, however, the nonparametric models we have considered are
not equivalent to each other, the performance of the (NP Emp & I) model
being less convincing. Further evidence of these facts is given in Figures 5
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Fig 5. Proportion of population uniques plotted against the average estimated risk τ̂∗

1,k,
for cells categorized into 10 equal-width intervals according to the values of τ̂∗

1,k. The size
of the plotting points depends on the number of cells in each interval. First (second) line
refers to the table with K = 2, 160 (K = 3, 960) cells.

and 6. In Figure 5 we consider a subset of the models presented in Table 2
and, as in Forster and Webb (2007), we plot the proportion of population
uniques against the average value of τ̂∗1,k, for cells categorized into 10 equal-
width intervals according to the values of τ̂∗1,k. Similarly, in Figure 6, as in
Elamir and Skinner (2006) we plot the mean of 1/Fk against the mean of
the estimated risk τ̂∗2,k after grouping cells into 10 intervals according to the
values of τ̂∗2,k.

Finally, Figure 7 and Figure 8 present the per-cell risk estimates τ̂∗i,k under
parametric and nonparametric all two-ways interaction models, (P & II) and
(NP & II), for i = 1 and i = 2, respectively. If we consider the deviances of
the per-cell risk estimates τ̂∗i,k around their mean τ̂∗i /K for the four models
in these figures, we obtain very similar values and, given that the τ̂∗i,k are in
turn means within each cell, from

(15) (s.e.(τ̂∗i ))
2 =

1

H

H
∑

h

(

K
∑

k

τ∗hi,k − τ̂∗i

)2
= A+B + C,

where

(16) A =
K
∑

k

1

H

H
∑

h

(τ∗hi,k)
2 −

K
∑

k

(τ̂∗i,k)
2
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Fig 6. Mean of 1/Fk against the mean of the estimated risk τ̂∗

2,k, for cells categorized
into 10 equal-width intervals according to the values of τ̂∗

1,k. The size of the plotting points
depends on the number of cells in each interval. First (second) line refers to the table with
K = 2, 160 (K = 3, 960) cells.

represents the sum of the variances within each cell,

(17) B =
K
∑

k

(τ̂∗i,k)
2 −K

( τ̂∗i
K

)2

is the deviance between cells and

(18) C =
K
∑

k

K
∑

j 6=k

1

H

H
∑

h

τ∗hi,kτ
∗h
i,j −K(K − 1)

( τ̂∗i
K

)2

is the sum of codeviances between cells, we can conclude that the smaller
standard errors observed in Table 2 under the (NP & II) models (compared
to the one under the (P & II) model) are essentially due to a reduction of
the variances within cells and/or to codeviances between per-cell risks. On
the other hand, the components A and C are essentially the only dominant
factors of the s.e. under the nonparametric models without fixed effects (B <
0.001), and, for nonparametric models in general, the decrease of A and/or
C as the complexity of the log-linear model increases prevails over the slight
increase of B. Vice versa, going from the parametric independence model
(P & I) to the all two-way interactions model (P & II), the component B
slightly decreases and is overwhelmed by the increase of A and/or C. In this
respect, consider that with parametric models the only way to increase the
association between cells is by means the introduction of further covariates
(interaction terms).
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Fig 7. Risk estimates τ̂∗

1,k for sample unique cells under the all-two-way interactions para-
metric and nonparametric models (P & II, NP & II). First (second) row represents esti-
mated risks for the small (large) table with K = 2, 160 (K = 3, 960). Cells are arranged
in increasing order of true per-cell risk (red line).

In conclusion, unlike the (P & II) model, for each cell the nonparametric
independence models (NP & I) combine learning from two neighbourhoods
of cells, one driven by the log-linear model, and one driven by the data and
implied by the clustering of the random effects. In turn, this reduces the
need for further covariates. In this respect, it is also worth saying that in
our application the MCMC output for the nonparametric models shows that,
as the complexity of the log-linear model increases, a posteriori the average
number of clusters decreases (results not reported). This is a further indica-
tion that clusters play a supplementary role with respect to covariates in the
log-linear model. Prospectively, moreover, we are induced to expect that the
inclusion of DP random effects in a local smoothing polynomial model could
improve the global risk estimates in a similar way, that is producing roughly
similar risk estimates in the presence of a polynomial of lower degree than
the one required without random effects or with normal random effects.

Even if the paper’s primary interest is analyzing the impact of introducing
DP random effects in the log-linear model (3) and model choice is beyond the
scope of this paper, we observe that the (NP Emp UM & I), that represent
the direct extension of the model presented in Skinner and Holmes (1998),
produces good global risk estimates. Compared to this model, where two
completely different estimation methods are combined as done in the largest
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Fig 8. Risk estimates τ̂∗

2,k for sample unique cells under the all-two-way interactions para-
metric and nonparametric models (P & II, NP & II).First (second) row represents esti-
mated risks for the small (large) table with K = 2, 160 (K = 3, 960). Cells are arranged
in increasing order of true per-cell risk (red line).

part of the literature, the fully Bayesian independence nonparametric models
are also able to produce better estimates of the per-cell risks. Moreover for
all our estimators a full account of all sources of uncertainty is produced.
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