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Abstract

We analyze a dataset arising from a clinical trial involving multi-stage chemotherapy regimes for 
acute leukemia. The trial design was a 2 × 2 factorial for frontline therapies only. Motivated by the 
idea that subsequent salvage treatments affect survival time, we model therapy as a dynamic 
treatment regime (DTR), that is, an alternating sequence of adaptive treatments or other actions 
and transition times between disease states. These sequences may vary substantially between 
patients, depending on how the regime plays out. To evaluate the regimes, mean overall survival 
time is expressed as a weighted average of the means of all possible sums of successive transitions 
times. We assume a Bayesian nonparametric survival regression model for each transition time, 
with a dependent Dirichlet process prior and Gaussian process base measure (DDP-GP). Posterior 
simulation is implemented by Markov chain Monte Carlo (MCMC) sampling. We provide general 
guidelines for constructing a prior using empirical Bayes methods. The proposed approach is 
compared with inverse probability of treatment weighting, including a doubly robust augmented 
version of this approach, for both single-stage and multi-stage regimes with treatment assignment 
depending on baseline covariates. The simulations show that the proposed nonparametric Bayesian 
approach can substantially improve inference compared to existing methods. An R program for 
implementing the DDP-GP-based Bayesian nonparametric analysis is freely available at https://
www.ma.utexas.edu/users/yxu/.

Keywords

Dependent Dirichlet process; Gaussian process; G-Computation; In-verse probability of treatment 
weighting; Markov chain Monte Carlo

*Address for Correspondence: Department of Mathematics UT Austin 1, University Station, C1200, Austin, TX 78712 USA. 
pmueller@math.utexas.edu. 

HHS Public Access
Author manuscript
J Am Stat Assoc. Author manuscript; available in PMC 2017 October 18.

Published in final edited form as:
J Am Stat Assoc. 2016 ; 111(515): 921–935. doi:10.1080/01621459.2015.1086353.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ma.utexas.edu/users/yxu/
https://www.ma.utexas.edu/users/yxu/


1 Introduction

We analyze a dataset arising from a clinical trial involving multi-stage chemotherapy 
regimes for acute leukemia. The trial design was a 2×2 factorial for frontline therapies only. 
However, motivated by the idea that subsequent salvage therapies affect survival time, 
Wahed and Thall (2013) modeled and analyzed treatments in the trial as a dynamic treatment 
regime (DTR), that is, an alternating sequence of treatments or other actions and transition 
times between disease states. We propose a Bayesian nonparametric (BNP) approach for 
evaluating such DTRs in which the outcome at each stage is a random transition time 
between two disease states. The final overall survival (OS) time outcome of primary interest 
is the sum, T, of a sequence of transition times. The actually observed sequence is 
determined by the way that a patient’s treatment regime plays out, and the mean of T may be 
expressed as an appropriately weighted average over all possible sequences of event times. 
Our proposed BNP methodology for estimating the mean of T is based on the idea of 
Robins’ G-computation (Robins, 1986, 1987).

An algorithm commonly used by oncologists in chemotherapy of solid tumors is to choose 
the patient’s initial (frontline) treatment based on his/her baseline covariates, continue as 
long as the patient’s disease is stable, switch to a different chemotherapy (salvage) if 
progressive disease (P) occurs, stop chemotherapy if the tumor is brought into complete or 
partial remission (C), and begin salvage if P occurs at some time after C. There are many 
elaborations of this in oncology, including multiple attempts at salvage therapy, use of 
consolidation therapy for patients in remission, suspension of therapy if severe toxicity is 
observed, or inclusion of radiation therapy or surgery in the regime. Another important 
application of this general adaptive structure occurs in treatment regimes for psychological 
disorders or drug addiction. For example, in treatment of schizophrenia one may replace P 
by a psychotic episode or other worsening of the subject’s psychological status, C by a 
specified improvement in mental status, and death by a psychological breakdown severe 
enough to require hospitalization.

Denote the action at stage ℓ of the DTR by Zℓ, which may be a treatment or a decision to 
delay or terminate therapy. Here, stage refers to the decision point in the DTR – that is, the 
choice of frontline and possible salvage therapies. At each stage one observes a disease state 
sℓ, such as P, C or death (D). Let T(j,r) denote the transition time from disease state j to state 
r, with j = 0 the patient’s initial disease status. See Figure 1 for an example (details of which 
will be provided later) with up to nstage = 3 stages, nstate = 4 disease states, and a total of nT 

= 7 different transition times. Because the actions are adaptive, the actual number of stages 
and observed transition times vary between patients depending on how the specific 
treatment-outcome sequence plays out.

Formally, a DTR is the sequence Z = (Z1, Z2, ⋯), where each Zℓ is an adaptive action based 
on the patient’s history ℋℓ−1 of previous treatments and transition times, and ℋ0 is the 
patient’s baseline covariate vector. One possible treatment-outcome sequence is (ℋ0, Z1, T
(0,C), Z2, T (C,D)), in which the initial chemotherapy Z1 was chosen based on ℋ0, complete 
remission (C) was achieved, Z2 was chosen based on ℋ1 = (ℋ0, Z1, T(0,C)). In this case, Z2 

would be consolidation therapy given to keep the patients in remission, that is, prevent 
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relapse, although consolidation treatments were not included in the dataset that we will 
analyze. OS time is T = T(0,C) + T(C,D). In this case, s1 = C and s2 = D. Similarly, a patient 
brought into remission who later suffers progressive disease has sequence (ℋ0, Z1, T(0,C), 
T(C,P), Z2, T(P,D)) and T = T(0,C) +T(C,P) +T(P,D). We will apply BNP methods to estimate 
the conditional distributions of the transition times given the most recent histories, with the 
goal to estimate the mean of T for each possible DTR. This also will include estimates given 
specific baseline covariates, for so called “individualized” therapy. Key elements of our 
proposed approach are quantification of all sources of uncertainty and prediction of T under 
a reasonable set of viable counterfactual DTRs (Wang et al., 2012). BNP methods have been 
used in estimating regime effects by Hill (2011) and Karabatsos and Walker (2012). Hill 
(2011) focused on modeling outcomes flexibly using Bayesian additive regression trees 
(BART), which required less assumptions in model fitting. However, the uncertainty of 
BART increases dramatically when there is complete treatment-subgroup confounding, and 
hence limited empirical counterfactuals, which often occurs in causal inference. Karabatsos 
and Walker (2012) proposed a nonparametric mixture model with a stick-breaking prior for 
the probability of treatment assignment to provide a more accurately estimated propensity 
score in the inverse probability of treatment weighting (IPTW) method.

Since all elements of a DTR may affect T, the clinically relevant problem is optimizing the 
entire regime, rather than the treatment at one particular stage. Most clinical trials or data 
analyses attempt to reduce variability by focusing on one stage of the actual DTR, usually 
frontline or first salvage treatment, or by combining stages in some manner. This often 
misrepresents actual clinical practice, and consequently conclusions may be very 
misleading. For example, an aggressive frontline cancer chemotherapy may maximize the 
probability of C, but it may cause so much immunologic damage that any salvage treatment 
given after rapid relapse, i.e. short T(C,P), may be unlikely to achieve a second remission. In 
contrast, a milder induction treatment may be suboptimal to eradicate the tumor, but it may 
debulk the tumor sufficiently to facilitate surgical resection. Such synergies may have 
profound implications for clinical practice, especially because effects of multi-stage 
treatment regimes often are not obvious and may seem counter-intuitive. Physicians who 
have not been provided with an evaluation of the composite effects of entire regimes on the 
final outcome may unknowingly set patients on pathways that include only inferior regimes.

A major practical advantage of BNP models is that they often provide better fits to 
complicated data structures than can be obtained using parametric model-based methods. In 
the case study that we analyze here, leukemia patients were randomized among initial 
chemotherapy treatments but not among later salvage therapies, and the BNP model 
provides a good fit for each transition time distribution conditional on previous history. 
Failure to randomize patients in treatment stages after the first is typical in clinical trials, 
most of which ignore all but the first stage of therapy. In contrast, sequential multi-arm 
randomized treatment (SMART) designs, wherein patients are re-randomized at stages after 
the first, have been used in oncology trials (Thall et al., 2000, 2007a,b; Wang et al., 2012), 
and are being used increasingly in trials to study multi-stage adaptive regimes for behavioral 
or psychological disorders (Dawson and Lavori, 2004; Murphy et al., 2007a,b; Connolly and 
Bernstein, 2007).
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While re-randomization is desirable, it is not commonly done and inference has to adjust for 
this lack of randomization. A wide array of methods have been proposed for evaluating 
DTRs from observational data and longitudinal studies, beginning with the seminal papers 
by Robins (1986, 1987, 1989, 1997) on G-estimation of structural nested models. Additional 
references include applications to longitudinal data in AIDS (Hernán et al., 2000), inverse 
probability of treatment weighted (IPTW) estimation of marginal structural models (Murphy 
et al., 2001; van der Laan and Petersen, 2007; Robins et al., 2008), augmented IPTW 
(AIPTW) (Tsiatis, 2007; Zhao et al., 2015), G-estimation for optimal DTRs (Murphy, 2003; 
Robins, 2004), and a review by Moodie et al. (2007). A variety of methods have been 
developed to evaluate DTRs from clinical trials (Lavori and Dawson, 2000; Thall et al., 
2002; Murphy, 2005; Goldberg and Kosorok, 2012; Zajonc, 2012). For survival analysis, 
Lunceford et al. (2002) introduced ad hoc estimators for the survival distribution and mean 
restricted survival time under different treatment policies. These estimators, although 
consistent, were inefficient and did not exploit information from auxiliary covariates. Wahed 
and Tsiatis (2006) derived more efficient, easy-to-compute estimators that included auxiliary 
covariates for the survival distribution and related quantities of DTRs. Their estimators 
compared DTRs using data from a two-stage randomized trial, in which two options were 
available for both stages and the second-stage treatment assignments were determined by 
randomization. However, these estimators must be adapted for more general or more 
complicated designs that permit various numbers of treatment options at each stage and 
involve the scenarios where second-stage treatment is not randomized, but rather is 
determined by the attending physicians.

For settings where the DTR’s final overall time, such as survival time, is the sum of a 
sequence of transition times, our proposed BNP approach employs a nonparametric survival 
regression model for each transition time conditional on the most recent history of actions 
and outcomes. We assume a dependent Dirichlet process prior with Gaussian process base 
measure (DDP-GP), and summarize a joint posterior by Markov chain Monte Carlo 
(MCMC) simulation. To address the important issue that Bayesian analyses depend on prior 
assumptions, we provide guidelines for using empirical Bayes methods to establish prior 
hyperparameters. Posterior analyses include estimation of posterior mean overall outcome 
times and credible intervals for each DTR.

The rest of the paper is organized as follows. In Section 2 we review the motivating study, 
and give a brief review of DTRs in settings with successive transition times in Section 3. We 
present the DDP-GP model in Section 4. A simulation study of the BNP approach in single-
stage and multi-stage regimes, with comparison to frequentist IPTW and AIPTW, is 
summarized in Section 5. We re-analyze the leukemia trial data in Section 6, and close with 
brief discussion in Section 7.

2 A Study of Multi-Stage Chemotherapy Regimes for Acute Leukemia

Our case study was a clinical trial conducted at The University of Texas M.D. Anderson 
Cancer Center to evaluate chemotherapies for acute myelogenous leukemia (AML) or 
myelo-dysplastic syndrome (MDS). Patients were randomized fairly among four frontline 
combination chemotherapies for remission induction: fludarabine + cytosine arabinoside 
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(ara-C) plus idarubicin (FAI), FAI + all-trans-retinoic acid (ATRA), FAI + granulocyte 
colony stimulating factor (GCSF), and FAI + ATRA + GCSF. The goal of induction therapy 
for AML/MDS was to achieve complete remission (C), a necessary but not sufficient 
condition for long-term survival. Patients who did not achieve C, or who achieved C but later 
relapsed, were given salvage treatments as another attempt to achieve C. Following 
conventional clinical practice, patients were not randomized among salvage therapies, which 
instead were chosen by the attending physicians based on clinical judgment. Since there 
were many types of salvage, these are broadly classified into two categories as either 
containing high dose ara-C (HDAC) or other. This dataset was analyzed initially using 
conventional methods (Estey et al., 1999), including logistic regression, Kaplan-Meier 
estimates, and Cox model regression, including comparisons of the induction therapies in 
terms of OS, that ignored possible effects of salvage therapies.

Figure 1 illustrates the actual possible therapeutic pathways and outcomes of the patients 
during the trial, which is typical of chemotherapy for AML/MDS. Death might occur (1) 
during induction therapy, (2) following salvage therapy if the disease was resistant to 
induction, (3) during C, or (4) following disease progression after C. Wahed and Thall 
(2013) re-analyzed the data from this trial by accounting for the structure in Figure 1, and 
identified 16 DTRs including both frontline and salvage therapies. To correct for bias due to 
the lack of randomization in estimating the mean OS times, they used both IPTW (Robins 
and Rotnitzky, 1992) and G-computation based on a frequentist likelihood. In the G-
computation, for each transition time they first fit accelerated failure time (AFT) regression 
models using Weibull, exponential, log-logistic or lognormal distributions, and chose the 
distribution having smallest Bayes information criterion (BIC). They then performed 
likelihood-based G-computation by first fitting each conditional transition time distribution 
regressed on patient baseline covariates and previous transition times, and then averaging 
over the empirical covariate distribution.

Like Wahed and Thall, the primary goal of our analyses of the AML/MDS dataset is to 
estimate mean OS and determine the optimal regime. We build on their approach by 
replacing the parametric AFT models for transition times with the DDP-GP model. We also 
demonstrate the usefulness of the BNP regression model for G-computation in simulation 
studies of single-stage and multi-stage regimes in which treatment assignments depend on 
patient covariates.

3 Dynamic Regimes with Stochastic Transition Times

The case study involves more complicated structure than a stylized linear sequential study, 
as often is assumed in papers on DTRs that focus on basic methodology. We introduce the 
following notation to accommodate this more complex structure. Denote the set of possible 
disease states by {0, 1, ⋯, nstate}, with 0 denoting the patient’s initial state before receiving 
the first treatment. The pairs of states (sℓ−1, sℓ) for which a transition sℓ−1 → sℓ is possible at 
stage ℓ of the patient’s therapy depend on the particular regime. Here s0 = 0 refers to the 
patient’s initial state, before start of therapy. We will identify specific states using letters 
such as P, C, etc., as in the earlier examples, to replace the generic integers. For example, in 
cancer therapy, sℓ−1 → C means that a patient’s disease has responded to treatment, P → D 
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means a patient with progressive disease has died, and of course D → sℓ is impossible. We 
denote the transition time from state sℓ−1 to state sℓ in stage ℓ of treatment by T(sℓ−1,sℓ), for ℓ = 
1, ⋯, nstage, the maximum number of stages in the DTR. In general it might be necessary to 
add a third index to indicate the stage ℓ when the same transitions are possible in multiple 
stages. However, in our case study no ambiguity arises by simply writing T(r,s). To simplify 
notation for the transition time distributions, we denote the history of all covariates, 
treatments, and previous transition times through ℓ stages, before observation of T(sℓ−1,sℓ) but 
including the stage ℓ action Zℓ by xℓ = (ℋℓ−1, Zℓ) = (x0, Z1, T(s0,s1), ⋯, T(sℓ−1,sℓ), Zℓ), with x0 = 
ℋ0. Thus, a DTR is Z = (Z1, Z2, . . .), a sequence of actions for all possible stages. For 
example, in the leukemia trial (Figure 1), Z1 might be FAI+ATRA given as frontline therapy, 
followed by salvage therapies Z2=salvage with high dose ara-C if the disease is resistant to 
induction, and Z3= other salvage if the patient first achieves a complete remission (C) but he 
later suffers progressive disease (P).

In the leukemia trial, the three possible outcomes following induction chemotherapy, C, R, 
and D, are competing risks. Thus, only one of the transition times, T(0,C), T(0,R), or T(0,D), is 
observed for each patient. The distribution of s1 is determined by these three transition 
times. For example, the probability of C is

This could be made explicit by including the states in the notation for xl. We chose not to do 
this for notational parsimony.

When no meaning is lost, we will further simplify notation and use a single running index on 
the transition times, and write T(sℓ−1,sℓ) as Tk, where k = 1, . . . , nT is a running index of all 
possible state transitions. For example, in Figure 1 we have up to nstage = 3 stages and nT = 7 
possible transitions. Similarly, we will write xk for the corresponding covariate vector. Our 
use of a single index to identify stage is a slight abuse of notation since, for example, the 
actual second stage of therapy might differ depending on the sequence of outcomes. For 
example, stage 2 treatment Z2 of a patient with sequence (x0, Z1, T(0,R), Z2) is first salvage 
for resistant disease during induction with Z1, while stage 3 treatment Z3 of a patient with 
sequence (x0, Z1, T(0,C), T(C,P), Z3) is first salvage for progressive disease after achieving 
response initially with Z1. This latter example could be elaborated if, under a different 
regime, consolidation therapy, Z2, were given for patients who enter C, in which case the 
sequence would be (x0, Z1, T(0,C), Z2, T(C,P), Z3).

Below, we will develop a general BNP model for all possible conditional distributions p(Tk | 
xk). For any transition index k, let ℛk denote the risk set, fk the probability density function 

and F ̄k the survival function of the transition time,  is a censoring indicator with  if 

patient i is not censored and  if censored, and  the observed time to the next state or 
censoring for patient i in risk set ℛk. For example, in the leukemia trial consider the 
transition (0, R), corresponding to the single running index k = 1. The risk set is ℛ1 = ℛ(0,R) 

= {1, . . . , n}. Let Ui denote the time from the start of induction to last followup for patient i. 
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Then  if  and the observed time for patient i is 

 since C, R, and D are competing risks. The likelihood 
for all possible sequences of treatments and transition times through nT transitions is the 
product

(1)

The overall time for any counterfactual sequence of transition times is the sum . 
Our goal is to estimate the mean of T for each possible Z. Specific details of the likelihood 
are given in the Appendix.

4 A Nonparametric Bayesian Model for DTR

4.1 DDP and Gaussian Process Prior

Our motivation for using the BNP model described in this section is that it is highly robust 
and has full support. To specify the BNP model, we denote Yk = log(Tk) and write the 
distribution of [Yk | xk] as Fk(· | xk). For convenience, we will refer to xk as ‘covariates’. We 
construct a BNP survival regression model for Fk(· | xk) by successive elaborations, starting 
with a model for a discrete random distribution Gk(·). We then use a Gaussian kernel to 
extend this to a prior for a continuous random distribution Fk(·), and finally endow the kernel 
means with a regression structure by expressing them as functions of xk. The latter 
construction extends Fk to a family {Fk(· | xk)}, indexed by xk. The construction of Gk(·) and 
Fk(·) is outlined briefly below, by way of a brief review of BNP models. In the end we will 
only use the last model {Fk(· | xk)}, which we use as a sampling model for Yk. See, for 
example, Müller and Mitra (2013) and Müller and Rodriguez (2013) for more extensive 
reviews of BNP inference. In the following discussion we temporarily drop the superindex k.

The Dirichlet process (DP) prior was first proposed by Ferguson et al. (1973) as a 
probability distribution on a measurable space of probability measures. The DP is indexed 
by two hyperparameters, a base measure, G0, and a precision parameter, α > 0. If a random 
distribution G follows a DP prior, we denote this by G ~ DP (α, G0). Denoting a beta 
distribution by Be(a, b), if G ~ DP (α, G0) then G(A) ~ Be{αG0(A), α[1 − G0(A)]} for any 
measurable set A, and in particular E{G(A)} = G0(A). Let δ(θ) denote a point mass at θ. 

Sethuraman (1991) provided a useful representation of the DP as , where 

, and the weights wh are generated sequentially from rescaled beta distributions 

as , the so-called “stick-breaking” construction. The discrete 
nature of G is awkward in many applications. A DP mixture model extends the DP model by 
replacing each point mass δ(θh) with a continuous kernel centered at θh. Without loss of 
generality, we will use a normal kernel. Let N(·; μ, σ) denote a normal kernel with mean μ 
and standard deviation σ. The DP mixture model assumes
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(2)

The use and interpretation of (2) is very similar to that of a finite mixture of normal models. 
In practical applications, the sum in (2) is often truncated at a reasonable finite value. This 
model is useful for density estimation under i.i.d. sampling from an unknown distribution, 
and it provides good fits to a wide variety of datasets because a mixture of normals can 
closely approximate virtually any distribution (Ishwaran and James, 2001).

To include the regression on covariates that we will need for the survival model of each 
conditional transition time distribution, Fk(· | xk), we extend the DP mixture to a dependent 
DP (DDP), which was first proposed by MacEachern (1999). The basic idea of a DDP is to 

endow each  with additional structure that specifies how it varies as a function of 

covariates xk. Writing this regression function as  for the argument in each summand 
in (2), and returning to the conditional transition time distributions, we assume that

(3)

This form of the DDP, which includes both the convolution with a normal kernel and 
functional dependence on covariates, provides a very flexible regression model.

To complete our specification of the DDP, we will assume that the ’s are independent 
realizations from a Gaussian process (GP) prior. The GP was first popularized by O’Hagan 
and Kingman (1978) in Bayesian inference for a random function (unrelated to the use in a 
DDP prior). For more recent discussions see, for example, Rasmussen and Williams (2006); 
Neal (1995); Shi et al. (2007). Temporarily suppressing the transition superindex k and 
running index h in (3), a GP is a stochastic process θ(·) in which (θ(x1), . . . , θ(xn)) has a 
multivariate normal distribution with mean vector (μ(x1), . . . , μ(xn)) and (n × n) covariance 
matrix with (i, j) element C(xi, xj) for any set of n ≥ 1 covariate vectors xi. We denote this by 
θ(x) ~ GP(μ, C).

We use the GP prior to define the dependence of  as a function of xk by assuming 

, as a function of xk, for fixed h. That is, there is a separate GP for 
each term indexed by h in (3). We will refer to the DDP with a convolution using a normal 
kernel and a GP prior on the normal kernel means as a DDP-GP model. While the mean and 

covariance processes of the GP can be quite general, in practice,  is often 

parameterized as a function , where ξk is a vector of hyperparameters, and the 

mean function is indexed similarly by hyperparameters  and written as . In the 
DTR setting, since each covariate vector xk is a history, its entries can include baseline 
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covariates, transition times, and indicators of previous treatments or actions. To obtain 

numerically reasonable parameterizations of the GP functions Ck and , we standardize 
numerical-valued covariates such as age. We now have

To specify the form of and Ck, let i = 1, 2, ⋯ , index patients, so that  is the history of 
patient i at transition k, and define the indicator δij = I(i = j) = 1 if i = j and 0 otherwise. We 

model the mean function  as a linear regression, by assuming that

(4)

For patients i and j, we assume that the covariance process takes the form

(5)

where Mk is the number of covariates at transition k and J is the variance on the diagonal 
reflecting the amount of jitter (Bernardo et al., 1999), which usually takes a small value (e.g, 
J = 0.1). There are no further hyperparameters ξk to index the covariance function. For 
binary covariates, the quadratic form in (5) reduces to counting the number of binary 
covariates in which two patients differ. If desired, additional hyperparameters could be 
introduced in (5) to obtain more flexible covariance functions. However, in practice this 
form of the covariance matrix yields a strong correlation for observations on patients with 
very similar xk, and has been adopted widely (Williams, 1998).

Combining all of these structures, we denote the model for the conditional distribution of the 

kth transition time as , recalling that the weights of 

the DDP are generated sequentially as . For later reference we 
state the full model. For k = 1, . . . , nT

(6)
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4.2 Determining Prior Hyperparameters

As priors for  in (6) we assume  for each transition k, h = 1, 2, . . . . For 

σk we assume . Finally, .

To apply the DDP-GP model, one must first determine numerical values for the fixed 

hyperparameters { , k = 1, 2, ...} and λ = (λ1, λ2, λ3, λ4). This is a critical step. 
These numerical hyperparameter values must facilitate posterior computation, and they 
should not introduce inappropriate information into the prior that would invalidate posterior 

inferences. With this in mind, the hyperparameters ( ) for the kth transition time 
covariate effect distribution may be obtained via empirical Bayes by doing preliminary fits 

of a lognormal distribution  for each transition k. Similarly, we 

assume a diagonal matrix for  with the diagonal values also obtained from the 
preliminary fit of the lognormal distribution. Once an empirical estimate of σk is obtained, 
one can tune (λ1, λ2) so that the prior mean of σk matches the empirical estimate and the 
variance equals 1 or a suitably large value to ensure a vague prior. Finally, information about 
αk typically is not available in practice. We use λ3 = λ4 = 1.

This approach works in practice because the parameter  specifies the prior mean for the 
mean function of the GP prior, which in turn formalizes the regression of Tk on the 
covariates xk, including treatment selection. The imputed treatment effects hinge on the 
predictive distribution under that regression. Excessive prior shrinkage could smooth away 
the treatment effect that is the main focus. The use of an empirical Bayes type prior in the 
present setting is similar to empirical Bayes priors in hierarchical models. This type of 
empirical Bayes approach for hyperparameter selection is commonly used when a full prior 
elicitation is either not possible or is impractical. Inference is not sensitive to values of the 
hyperparameters λ that determine the priors of σk and αk for two reasons. First, the standard 
deviation σk is the scale of the kernel that is used to smooth the discrete random probability 
measure generated by the DDP prior. It is important for reporting a smooth fit, that is for 
display, but it is not critical for the imputed fits in our regression setting. Assuming some 
regularity of the posterior mean function, smoothing adds only minor corrections. Second, 
the total mass parameter αk determines the number of unique clusters formed in the 
underlying Polya urn. However, because most clusters are small, changing the prior of αk 

does not significantly change the posterior predictive values that are the basis for the 
proposed inference.

The conjugacy of the implied multivariate normal on { , i = 0, . . . , n} and the normal 
kernel in (3) greatly simplify computations, since any Markov chain Monte Carlo (MCMC) 
scheme for DP mixture models can be used. MacEachern and Müller (1998) and Neal 
(2000) described specific algorithms to implement posterior MCMC simulation in DPM 
models. Ishwaran and James (2001) developed alternative computational algorithms based 
on finite DPs, which truncated (2) after a finite number of terms. We provide details of 
MCMC computations in the online supplement.
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4.3 Computing Mean Survival Time

We apply the Bayesian nonparametric DDP-GP model to obtain posterior means and 
credible intervals of mean survival time for each DTR. In the motivated leukemia trial, recall 
that the disease states are D (death), R (resistant disease), C (complete remission), and P 
(progressive disease). In stage ℓ = 1 (induction chemotherapy), the three events D, R, and C 
are competing risks, so only one can be observed. For the ith patient, the stage 1 outcome is 

denoted by s1i ∈ {D, R, C}, with transition times  or  (Figure 1). In stage 

2, the transition time  is defined only if (s1i, s2i) = (R, D), and similarly for  and 

. Finally,  is defined if (s1i, s2i) = (C, P). We thus define seven counterfactual 

transition times , where k indexes the transitions (0, D), (0, R), (0, C), (R, D), (C, D), (C, 
P) and (P, D). Figure 1 shows a flowchart of the possible outcome pathways. A dynamic 
treatment regime for this data may be expressed as Z = (Z1, Z2,1, Z2,2) where Z1 is the 
induction chemo, Z2,1 is the salvage therapy given if s1i = R, and Z2,2 is the salvage therapy 
given if s1i = C and s2i = P.

Our primary goal is to estimate mean survival time for each DTR Z while accounting for 
baseline covariates and non-random treatment assignment. Under the DDP-GP model, we 
denote the mean survival time for a future patient under Z by

(7)

In terms of the seven counterfactual transition times, the survival time for a future patient i = 
n + 1 is

(8)

The expectation of (8) under the DDP-GP model is evaluated by applying the law of total 
probability, using the same steps as in Wahed and Thall (2013). We first condition on the 
four possible cases, (s1i = D), (s1i = R), (s1i = C, s2i = D) and (s1i = C, s2i = P), compute the 
conditional expectation in each case, and then average across the cases. This computation 
requires evaluating seven expressions for the conditional mean transition times ηk(Z, xk) = 
E(Tk | Z, xk) under Fk(· | xk), for each k. For example, η(P,D)(Z1, Z2,2, x0, T(0,C), T(C,P)) is 
the conditional mean remaining survival time, from P to D, given that C was achieved in 
stage 1 with frontline therapy Z1, followed by P and salvage therapy Z2,2 in stage 2. The 
DDP-GP models for Fk(· | xk), k = 1, . . . , nT = 7 define most of the marginalization for the 
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expectation in η(Z), leaving only conditioning on the baseline covariates . As Wahed and 
Thall (2013), we use the empirical covariate distribution p̂(x0) over the observed patients to 
define an overall mean survival time (7). Note that the DDP-GP model does not 
accommodate time-varying covariates. The described evaluation of η(Z) is an application of 
Robins’ G-computation (Robins, 1986; Robins et al., 2000). The complete expression is 
given as equation (14) in the Appendix. In the upcoming discussion, we will use η(Z) to 
evaluate the proposed approach.

5 Simulation Studies

We conducted four simulation studies to evaluate the performance of the proposed DDP-GP 
model as a tool for estimating the mean of T in survival regression settings. The simulations 
focused on estimation of survival regression (simulation 1); regime effects in a study with 
two treatment arms and single-stage regimes (simulation 2); and regime effects in two 
studies with multi-stage regimes (simulations 3 and 4). For each of the latter three studies, 
the treatment assignment probabilities depended on patient covariates. That is, we 
introduced treatment selection bias. In all four simulations, we implemented inference under 
DDP-GP models. In simulation 1, we used a single survival regression model F(Yi | xi) for a 
patient-specific baseline covariate vector xi. For simulation 2 we still used a single DDP-GP 
model F(Yi | xi, Zi), now adding a treatment indicator Zi to the survival regression model to 
estimate the causal effect. In simulations 3 and 4, we used independent DDP-GP models 

 for multiple transition times, k = 1, . . . , nT , similar to the application in our 
case study. For all four simulation studies, the hyperprior parameters were determined using 
the empirical Bayes approach described earlier. For all posterior computations, the MCMC 
algorithm was implemented with an initial burn-in of 2,000 iterations and a total of 5,000 
iterations, thinning out in batches of 10. This worked well in all cases, with convergence 
diagnostics using the R package coda showing no evidence of practical convergence 
problems. Traceplots and empirical autocorrelation plots (not shown) for the imputed 
parameters indicated a well mixing Markov chain.

5.1 Fitting a Survival Regression Model

In simulation 1, we considered four scenarios, with n = 50, 100, or 200 observations without 
censoring or n = 200 with 23% censoring. The details of simulation 1 are presented in 
Supplement B. Comparing the DDP-GP model with maximum likelihood estimates under 
the AFT model with Weibull, lognormal and exponential distributions, the estimates under 
the DDP-GP model reliably recovered the shape of the true survival function and avoided 
the excessive bias seen with the AFT models.

5.2 Estimating a Treatment Effect in Single-stage Regimes

Simulation 2 was designed to investigate inference under the DDP-GP model for the regime 
effect in a single-stage treatment setting. The simulated data represent what might be 
obtained in an observational setting where treatment is chosen by the attending physician 
based on patient covariates, rather than from a fairly randomized clinical trial. We simulated 
a binary treatment indicator Zi ∈ {0=control, 1=experimental} that depended on two 
continuous covariates, xi = (Li, Wi), for n = 100 patients, i = 1, . . . , n. For example, Li could 
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be a patient’s creatinine to quantify kidney function, and Wi could be body weight. We 

generated Li from a mixture of normals, , which could 
correspond to a subgroup of patients having worse kidney function (higher creatinine level) 

due to damage from prior chemotherapy. We assumed that , a 
uniform with zero mean and unit standard deviation, which could arise from standardizing a 
uniformly distributed raw variable. We generated the treatment indicators using the modified 
logistic regression model

that is, a logistic regression model with intercept 30 and slope 1/5 truncated at 0.05 and 0.95. 
This produces a very unbalanced treatment assignment, for example, p(Zi = 1 | Li = 40) = 
0.88 versus p(Zi = 1 | Li = 20) = 0.12. This could arise in a setting where standard therapy 
(the ‘control’), Z = 0, is known to be nephrotoxic, while it is believed by most of the treating 
physicians that the experimental therapy, Zi = 1, is not, so patients with high creatinine are 
more likely to be given the experimental therapy. In this simulation study, the goal is to 
estimate the comparative effect on survival of the experimental therapy versus the control. In 
the two treatment arms, we generated patients’ responses from

and

with σ = 0.4. We simulated 1,000 trials. Note that under the simulation truth the treatment 
effect, E[Y(1) − Y(0) | x = (L, W)] = 2.5, is constant across L, W.

Figure 2(a) plots the simulation truth for the mean response curve under Z = 1 and Z = 0 
versus L, with W ≡ 0, in one randomly selected trial. The upper red solid curve represents 
E[Y(1) | L, W = 0] and the lower black curve represents E[Y(0) | L, W = 0]. The red dots 
close to the upper curve are the observations for experimental arm patients and the black 
dots close to the lower curve are the observations for the control arm patients. We define an 
average treatment effect for the entire population under the simulation truth as 

.

We implemented inference for a survival regression F(Yi | xi, Zi) using the proposed DDP-
GP model (6). Figure 2(b) summarizes inference for the data from panel (a). Let Ŷi(z) = 
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E(Yn+1 | Ln+1 = Li, Wn+1 = Wi, Zn+1 = z, data) denote the posterior expected response for a 
future patient n + 1. We defined an estimated average treatment effect as 

. Figure 2(b) shows the estimated average treatment effect 
(horizontal red line), and credible intervals for individual effects Ŷi(1) − Ŷi(0) (vertical line 
segments, located at Li).

Inverse Probability of Treatment Weighting (IPTW)—For comparison, we also 
implemented inference using naive linear regression (LR), using an IPTW estimator, and an 
augmented IPTW (AIPTW) estimator for the average treatment effect. The LR estimator is 
based on a linear regression for log survival times, ignoring the lack of randomization. We 
use linear predictor functions Yi(1) = β10+β11Li+β12Wi+ε1i and Yi(0) = 
β00+β01Li+β02Wi+ε0i. Denoting the least squares estimates by β̂zj for z = 0, 1 and j = 0, 1, 
2, the estimated means are Ê{Yi(z)} = βẑ0 + β̂z1Li + β̂z2Wi. We define an estimated average 

treatment effect based on the LR model as . Denote the 
propensity score πi = pr(Zi = 1 | xi). The IPTW method corrects for bias due to lack of 
randomization by assigning each patient i a weight bi equal to the inverse of an estimate of 
p(Zi | xi), the conditional probability of receiving his or her actual treatment (Robins et al., 
2000). When Zi = 1, bi = 1/πi; when Zi = 0, bi = 1/(1 − πi). An estimate of πi is obtained by 
fitting a logistic regression model. We define the IPTW mean outcome estimator

and corresponding average treatment effect estimate ATEIPTW = IPTW(Z = 1)−IPTW(Z = 
0).

Augmented IPTW (AIPTW)—The AIPTW estimate (Robins, 2000) is a doubly robust 
generalization of the IPTW. It is consistent whenever the outcome regression model is 
correct and/or the propensity score model is correct. We evaluate the AIPTW estimator for 
average treatment effect (ATE):

(9)

where π̂i is the estimated propensity score using logistic regression and Ê(Yi | Zi, xi) is 
estimated by a linear regression model, i = 0, 1.

Figure 2(b) shows ATEDDP, ATELR, ATEIPTW and ATEAIPTW for one simulated dataset 
under this simuation setup. We found E(ATEDDP | data) = 2.31, with 90% posterior credible 
interval (1.89, 2.96), compared with the simulation truth ATE★ = 2.5. In contrast, ATELR = 

Xu et al. Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2017 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.13 overestimates, while the IPTW method underestimates, with ATEIPTW = 1.11. The 
AIPTW method reports ATEAIPTW = 2.73. In Figure 2(b), the vertical green and blue 
segments are marginal 90% posterior credible intervals for the treatment effect (under the 
DDP-GP model) at each observed L value. Lengths of posterior credible intervals larger than 
2 are highlighted by blue segments. Note how the uncertainty bounds grow wider in the 
range where there is less overlap across treatment groups, that is, over a range of covariate 
values for which we do not observe reliable empirical counterfactuals for each data point 
(e.g. L > 50). Most of the credible intervals reasonably cover the true treatment effect.

Figure 2(b) reports inference for one hypothetical data set. For a comparison of average 
behavior, we carried out extensive simulations and report the distribution of estimated 
regime effects across these simulations. We compared the regime effect estimates obtained 
by DDP-GP, IPTW, AIPTW and LR based on data from 1,000 simulated trials. Figure 3 
shows density plots of the distributions of estimated regime effects. Compared to the 
estimates obtained from DDP-GP or AIPTW, the IPTW estimates are much more variable, 
ranging from 1.14 to 7.13. The LR estimates are highly biased, and overestimate the true 
effects. The distribution of estimated regime effects under the DDP-GP model is highly 
concentrated around the simulation truth.

5.3 Regime Effect for Multi-stage Regimes

Simulation 3 was designed to examine inference on strategy effects for multi-stage regimes 
with a general DTR setup. This simulation is similar to the scenario in Moodie et al. (2007). 
We simulated samples of size n = 200. Patients were randomized to initial induction therapy 

or not, coded as  and , with the randomization probabilities based on their 
baseline CD4 counts, which were simulated as Li ~ N(450, 102). For frontline therapy, we 

used the model . In order to focus on 
covariate-dependent induction and salvage therapies, we assumed for simplicity that all 
patients were resistant to the induction therapy. Let X ~ LN(m, s) denote a lognormal 

random variable with log(X) ~ N(m, s), we simulated the times . 

The salvage treatment for each patient  was assigned with probability 

 where 
expit(u) = eu/(1 + eu). For the first stage transition times, we generated transition times 

, where β(R,D) = (−0.5, 0.03, 0.2, 0.5, 0.3) and 

.

The goal is to estimate mean survival time for each DTR (Z1, Z2). We have four possible 
DTRs in this simulation. We applied the Bayesian nonparametric DDP-GP model, IPTW 
and AIPTW (Zhang et al., 2013) to each simulated dataset to estimate mean survival for 
each of the four possible DTRs. When implementing IPTW and AIPTW, we estimated the 
propensity score using logistic regression and the outcome model using AFT regression 
models with a lognormal distribution. For the nonparametric Bayesian inference we defined 

independent DDP-GP models  as in (6) for each of the nT = 2 log transition times 

. Figure 4(a) compares the mean survival estimates using boxplots of (Estimated 

Xu et al. Page 15

J Am Stat Assoc. Author manuscript; available in PMC 2017 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mean survival - Simulation truth), based on 1,000 simulated datasets, arranged by inference 
method (DDP-GP, IPTW and AIPTW) and by the four possible DTRs (the four sub-plots). 
Note that the DDP-GP and the AIPTW estimates are on average closer to the truth and have 
much smaller variability, compared to the IPTW estimates, across all four strategies. 
Because we use the same outcome regression models as the simulation truth when 
implementing the AIPTW method, it performs well in this simulation study. In summary, 
both, the DDP-GP and the AIPTW methods show satisfactory performance in this example, 
although the DDP-GP estimates show slightly smaller variability than the AIPTW estimates.

Simulation 4 is a stylized version of the leukemia data that we will analyze in Section 6. We 
simulated samples of size n = 200 and patients’ blood glucose values Li ~ N(100, 102). 
Patients initially were randomized equally between two induction therapies Z1 ∈ {a1, a2}. 
We then generated a response (see below). Patients who were resistant (R) to the assigned 
induction therapies were then assigned salvage treatment Z2,1 ∈ {b11, b12}. Salvage 
treatments were randomized using the rule p(Z2,1 = b11 | Li) = 0.8 I(Li < 100) + 0.2 I(Li ≥ 
100). Patients who achieved C and subsequently suffered disease progression (P), were 
given salvage treatment Z2,2 ∈{b21, b22}, using p(Z2,2 = b21 | Li) = 0.2 I(Li < 100) + 0.85 
I(Li ≥ 100). Finally, the survival time for each patient was evaluated as

We simulated the times of the two competing risks R and C as 

 and , where β(0,R) = (2, 

0.02, 0), β(0,C) = (1.5, 0.03, −0.8), with  for k ∈{(0, R), (0, C)}. For the three 
possible second stage transitions k ∈{(R, D), (C, P), (P, D)}, we generated (competing) 

transition times , where β(R,D) = (−0.5, 0.03, 0.2, 0.5, 0.3), β(C,P) = (1, 
0.05, 1, −0.6), β(P,D) = (0.8, 0.04, 1.5, −1, 0.5, 0.5), with covariate vectors 

 and 

. We simulated N = 1,000 trials with 15% 
censoring.

The goal is to estimate mean survival time for each DTR (Z1, Z2,1, Z2,2). We performed 
inference under the Bayesian nonparametric DDP-GP model, IPTW, and AIPTW for each 
simulated dataset to estimate mean survival for each of the eight possible DTRs. When 
implementing IPTW and AIPTW, we estimated the propensity score using logistic 
regression and the outcome model using AFT regression models with a lognormal 
distribution. For the nonparametric Bayesian inference, we defined independent DDP-GP 

models  for each of the nT = 5 log transition times . Figure 4(b) 
compares mean survival estimates using boxplots of (Estimated mean survival - Simulation 
truth), based on 1000 simulated datasets. The boxplots are arranged by inference method 
(DDP-GP, IPTW, AIPTW) and by all eight possible DTRs. In this simulation, both the 
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propensity score model and the outcome model are incorrect when we implement the IPTW 
and AIPTW methods. In this case, the DDP-GP estimates on average are much closer to the 
truth and have much smaller variability, compared to the IPTW and AIPTW estimates, 
across all eight strategies as shown in Figure 4(b).

6 Evaluation of the Leukemia Trial Regimes

6.1 Leukemia Data – Inference for the Survival Regression

To analyze the AML-MDS trial data under the proposed DDP-GP model, we first implement 
posterior inference for six of the nT = 7 transition times. The exception is T(C,D). Due to the 
limited sample size – only 9 patients died after C without first suffering disease progression 
(P) – we do not implement the DDP-GP model, and instead use an intercept-only Weibull 
AFT model. Table 1 summarizes the data. The table reports the number of patients and 
median transition times for some selected transitions.

We first report results for T (R,D). Of 210 patients, 39 (18.57%) experienced resistance to 
their induction therapies. The rate of resistance varied across regimes, from 31% for patients 
receiving FAI, 24% for FAI plus ATRA, 7.8% for FAI plus GCSF, and 10% for FAI plus 
ATRA plus GCSF. The times to treatment resistance were longer, with greater variability in 
the FAI plus GCSF arm compared to the other three arms. Among the 39 patients who were 
resistant to induction therapies, 27 were given HDAC as salvage treatment, of whom 2 were 
censored before observing death. Figure 5 summarizes survival regression under the 
proposed DDP-GP model by plotting posterior predicted survival functions for a 
hypothetical future patient at age 61 with poor prognosis cytogenetic abnormality. The figure 
shows posterior predicted survival functions, arranged by different induction therapies Z1 

(the four curves in each panel), T (0,R) and Z2,1 (as indicated in the subtitle). Figure 5 shows 
that patients with shorter T (0,R) had lower predicted survival once their cancer became 
resistant. Also, patients with s1 = R who received Z2,1 = HDAC as salvage had worse 
predicted survival than patients who received salvage treatment with non HDAC. Similar 
results can be obtained for other transition times.

Next, we summarize results of the survival regression for T (C,P). Among the n = 210 
patients, 102 (48.6%) achieved C, with C rates of 37%, 48%, 53% and 56% in the FAI, FAI 
plus ATRA, FAI plus GCSF and FAI plus GCSF plus ATRA arms, respectively. Of the 102 
patients who achieved CR, 93 experienced disease progression before death or being lost to 
follow-up. Among these 93 relapsed patients, 53 received salvage treatment with HDAC. For 
a hypothetical future patient at age 61 with poor prognosis cytogenetic abnormality, Figure 6 
summarizes survival regression functions for each of the four induction therapies, with solid 
lines representing T (0,C) = 20 and dotted lines representing T (0,C) = 30. The four dotted 
lines are below the four corresponding solid lines, indicating that T (0,C) was associated with 
T (C,P). This observation coincides with the well-known phenomenon in chemotherapy for 
AML or MDS that, regardless of induction therapy, the longer it takes to achieve C, the 
shorter the period that the patient remains in C.

Similarly, we summarize results for the survival regression for T (P,D). For a patient with 
poor prognosis cytogenetic abnormality, Figure 7 shows the posterior predicted survival 
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functions under different combinations of induction therapy and age. Panels (a) and (c) show 
the survival functions of a patient assigned salvage treatment HDAC with age 46 or 76, 
while panels (b) and (d) plot the corresponding survival functions for the patient assigned 
non HDAC as salvage. Four different colors represent the four induction therapies. Figure 7 
shows that residual survival time after disease progression following C was associated with 
both age and salvage therapy. Older patients were more likely to have shorter residual life 
once their disease progressed, and patients given HDAC as salvage died more quickly than 
patients given non HDAC salvage.

6.2 Estimating the Regime Effects

In the AML-MDS trial, the four induction therapies and two salvage therapies define a total 
of 16 regimes. Mean survival time estimates under each of the 16 regimes were calculated 

using posterior inference under independent DDP-GP models  for each of the nT 

= 7 transition times. For comparison, we also evaluated mean survival times using the IPTW 
method. See equation (16) in the Appendix for details. Table 2 summarizes the results using 
IPTW and the DDP-GP model, including 90% credible intervals. Figure (8) shows boxplots 
of the marginal posterior distributions of survival times under the DDP-GP model for the 16 
regimes.

The two methods give very different estimates for mean survival time, with the DDP-GP 
likelihood-based estimator much larger than the corresponding IPTW estimator for most 
regimes. The differences are expected due to the distinct properties of these two methods. 
The IPTW estimator uses the covariates to estimate the regime probability weights. In 
contrast, the DDP-GP likelihood-based method computes mean survival time, using G-
computation, accounting for patients’ covariates and previous transition times in addition to 
treatment followed by marginalizing over the empirical covariate distribution to obtain η(Z). 
Additionally, the IPTW estimate is calculated from the overall samples, whereas the 
likelihood-based DDP-GP method models each transition time distribution separately, which 
reduces the effective sample size for each model fit and thus increases the overall variability 
even though they share the same prior for the βk’s.

For both methods, the estimates were smallest for the four regimes with FAI as induction 
therapy regardless of salvage treatment, and the 90% credible intervals were relatively small 
for these inferior regimes. Under the IPTW method, the estimates were largest for the four 
regimes with FAI plus ATRA as induction therapy, and the best regime is (FAI+ATRA, 
other, HDAC). With the DDP-GP likelihood-based approach, FAI plus ATRA as induction 
also gave the largest estimates, except for the regimes (FAI+GCSF, HDAC, other) and (FAI
+GCSF, other, other), while the best regime is (FAI+ATRA, other, other). Most importantly, 
the DDP-GP likelihood-based approach showed that (FAI + ATRA, Z2,1, other) was superior 
to (FAI + ATRA, Z2,1, HDAC) regardless of Z2,1. Therefore, our results suggest that (1) FAI 
plus ATRA was the best induction therapy, (2) if the patient’s disease was resistant to FAI 
plus ATRA, then it was irrelevant whether the salvage therapy contained HDAC, and (3) if 
patients experienced progression after achieving C with FAI plus ATRA, then salvage 
therapy with non HDAC was superior.
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These conclusions, although not confirmatory, contradict those given by Estey et al. (1999), 
who concluded that none of the three adjuvant combinations FAI plus ATRA, FAI plus 
GCSF, or FAI plus ATRA plus GCSF were significantly different from FAI alone with 
respect to either survival or event-free survival time, based on consideration of only the 
frontline therapies by applying conventional Cox regression and hypothesis testing.

7 Conclusions

We have proposed a Bayesian nonparametric DDP-GP model for analyzing survival data and 
evaluating joint effects of induction-salvage therapies in clinical trials, using the posterior 
estimates, to predict survival for future patients. The Bayesian paradigm works very well, 
and the simulation studies suggest that our DDP-GP method yields more reliable estimates 
than IPTW and AIPTW. The DDP-GP model can be extended easily to multivariate 
outcomes. In equation (2), this could be done by replacing the normal distribution with a 
multivariate normal distribution as the base measure. A referee has noted that, in settings 
where interpretability is important, our proposed BNP approach could be applied in the 
context of a policy search algorithm (Orellana et al., 2010; Zhang et al., 2012a,b, 2013; Zhao 
et al., 2012, 2014, 2015).

We employed two different methods to evaluate the 16 possible two-stage regimes for 
choosing induction and salvage therapies in the leukemia trial data. The IPTW method 
estimates the regime effect by using covariates only to compute the assignment probabilities 
of salvage therapies to correct for bias. In contrast, likelihood-based G-computation under 
the DDP-GP model accounts for all possible outcome paths, the transition times between 
successive states, and effects of covariates and previous outcomes, on each transition time. 
Although the two methods gave different numerical estimates of mean survival time, they 
both reached the conclusion that FAI plus ATRA was the best induction therapy and FAI was 
the worst induction therapy. Although our current models are set up for two-stage treatment 
regimes, they easily can be extended to other applications with multi-stage regimes.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

Likelihood

The following structure is adapted from Wahed and Thall (2013), and is included here for 
completeness. The risk sets of the seven transition times in the leukemia trial are defined as 
follows. Let ℛ0 = {1, . . . , n} denote the initial risk set at the start of induction 
chemotherapy, and ℛ(0,r) = {i : s1i = r} for r = D, C, R, so ℛ0 = ℛ(0,D) ∪ ℛ(0,C) ∪ ℛ(0,R). 
Similarly, ℛ(C,P) = {i : s1i = C, s2i = P } is the later risk set for T(P,D).

To record right censoring, let Ui denote the time from the start of induction to last followup 
for patient i. We assume that Ui is conditionally independent of the transition time given 
prior transition times and other covariates. Censoring of event times occurs by competing 

risk and/or loss to follow up. For patient i in the risk set for transition time , let  if 

patient i is not censored and 0 if patient i is right censored. For example,  for i ∈ ℛ0 

if . Similarly,  for i ∈ ℛ(0,R) if 

 and  for i ∈ ℛ(C,P) if .

For i ∈ ℛ0, let  denote the observed time for the stage 1 

event or censoring. For i ∈ ℛ(0,C) let  denote the 
observed event time for the competing risks D and P and loss to followup. Similarly, for i ∈ 

ℛ(0,R) , let  and for i ∈ ℛ(C,P) let 

.

The joint likelihood function is the product ℒ= ℒ1ℒ2ℒ3ℒ4. The first factor ℒ1 

corresponds to response to induction therapy,

(10)
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where F̄k = 1 − Fk. The second factor ℒ2 corresponds to patients i ∈ R(0,R) who experience 
resistance to induction and receive salvage Z2,1,

(11)

The third factor ℒ3 is the likelihood contribution from patients achieving C,

(12)

The fourth factor ℒ4 is the contribution from patients who experience tumor progression 
after C,

(13)

The mean survival time of a patient treated with regime Z = (Z1, Z2,1, Z2,2) is

(14)

IPTW

We compute the IPTW estimates for overall mean survival with regime Z as

(15)

where
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(16)

In (16), K ̂is the Kaplan-Meier estimator of the censoring survival distribution K(u) = P (U ≥ 
t) at time t. Ii(Z) is is an indictor of treatment Z and 0 otherwise, and 

 is the probability of receiving salvage treatment Z2,1 

estimated using logistic regression, and similarly for 

. The above estimator has been shown to be 
consistent under suitable assumptions (Wahed and Thall, 2013; Scharfstein et al., 1999).

Xu et al. Page 24

J Am Stat Assoc. Author manuscript; available in PMC 2017 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The scheme
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Figure 2. 
Simulation 2. (a) Simulated data for one (treatment, control) pair. The upper red solid curve 
represents E[Y(1) | X], the lower black curve represents E[Y(0) | X] given W = 0. The red 
dots close to the upper curve are the treated observations and the black dots close to the 
lower curve are the untreated. (b) Average treatment effect estimations ATE★ (black solid 
line), ATEDDP (red line), ATEIPTW (turquoise blue), ATEAIPTW (dark green), ATELR 

(heliotrope). The vertical line segments are marginal 90% posterior intervals for the 
treatment effect at each L value from treated observations (under the DDP-GP model).
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Figure 3. 
Simulation 2. The density plot of estimated regime effects by DDP-GP, IPTW, AIPTW and 
linear regression in 1,000 trials. The truth is indicated by a black vertical line.
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Figure 4. 
(a) Simulation 3 and (b) simulation 4. The yellow boxplots show posterior estimated mean 
OS using the DPP-GP model under each of the regimes as a difference with the simulation 
truth over 1,000 simulations. The green and blue boxes show the corresponding inferences 
under the IPTW and AIPTW approaches, respectively. In each notched box-whisker plot, the 
box shows the interquartile range (IQR) from 1st quantile (Q1) to 3rd quantile (Q3), and the 
mid-line is the median. The top whisker denotes Q3+1.5*IQR and the bottom whisker 
Q1-1.5*IQR. The notch displays a confidence interval for the median, that is 

.
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Figure 5. 
Survival regression for T (R,D) in the AML-MDS trial. Panels (a)–(d) show the posterior 
estimated survival functions for a future patient at age 61 with poor prognosis cytogenetic 
abnormality, with T (0,R) and Z2,1 as indicated. Survival curves are shown for four induction 
therapies. Black, red, green and blue curves indicate Z1 = FAI, FAI+ATRA, FAI+GCSF and 
FAI+ATRA+GCSF, respectively.
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Figure 6. 
The effect of T (0,C) on T (C,P) at age 61 with poor cytogenetic abnormality. Black, red, green 
and blue curves represent induction treatments FAI, FAI+ATRA, FAI+GCSF and FAI
+ATRA+GCSF, respectively. Solid lines and dotted lines represent T (0,C) = 20 and T (0,C) = 
30, respectively. The longer it takes to achieve C, the shorter the period of time that the 
patient remained in C.
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Figure 7. 
AML-MDS trial data in transition (P, D): Panels (a) and (c) show the posterior estimated 
survival functions of patient at age 46 and 76 with poor cytogenetic abnormality assigned to 
salvage treatment HDAC for four induction therapies respectively. Panels (b) and (d) show 
the posterior estimated survival functions of patient at age 46 and 76 with poor cytogenetic 
abnormality assigned to salvage treatment non HDAC for four induction therapies 
respectively. Black, red, green and blue curves represent induction treatments FAI, FAI
+ATRA, FAI+GCSF and FAI+ATRA+GCSF, respectively.
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Figure 8. 
Marginal posterior distributions of overall survival time under the DDP-GP model for all 16 
regimes.
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Table 2

Mean overall survival time under the IPTW method and the posterior mean and 90% credible interval (CI) 
under the DDP-GP model.

Regime (A, B1, B2) Estimated mean OS times (days)

DDP-GP

IPTW Posterior mean 90% CI

(FAI, HDAC, HDAC) 191.67 390.35 (286.47 545.6)

(FAI, HDAC, other) 198.18 416.34 (295.84 581.73)

(FAI, other, HDAC) 216.59 394.2 (287.15 538.63)

(FAI, other, other) 222.42 420.19 (296.51 579.05)

(FAI+ATRA, HDAC, HDAC) 527.43 572.9 (416.63 829.12)

(FAI+ATRA, HDAC, other) 458.85 617.15 (434.4 905.82)

(FAI+ATRA, other, HDAC) 532.29 573.46 (413.59 830.39)

(FAI+ATRA, other, other) 464.39 617.71 (434.49 900.32)

(FAI+GCSF, HDAC, HDAC) 326.15 542.06 (393.49 725.23)

(FAI+GCSF, HDAC, other) 281.78 578.24 (419.69 781.05)

(FAI+GCSF, other, HDAC) 327.66 542.5 (392.77 726.08)

(FAI+GCSF, other, other) 283.36 578.68 (421.46 781.26)

(FAI+ATRA+GCSF, HDAC, HDAC) 337.44 458.34 (327.91 651.21)

(FAI+ATRA+GCSF, HDAC, other) 285.64 502.48 (360.29 727.44)

(FAI+ATRA+GCSF, other, HDAC) 362.56 459.42 (328.09 651.61)

(FAI+ATRA+GCSF, other, other) 309.62 503.56 (358.84 726.88)
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