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Abstract—Many complex dynamical phenomena can be effec-
tively modeled by a system that switches among a set of condi-
tionally linear dynamical modes. We consider two such models:
the switching linear dynamical system (SLDS) and the switching
vector autoregressive (VAR) process. Our Bayesian nonparametric
approach utilizes a hierarchical Dirichlet process prior to learn
an unknown number of persistent, smooth dynamical modes. We
additionally employ automatic relevance determination to infer a
sparse set of dynamic dependencies allowing us to learn SLDS with
varying state dimension or switching VAR processes with varying
autoregressive order. We develop a sampling algorithm that com-
bines a truncated approximation to the Dirichlet process with ef-
ficient joint sampling of the mode and state sequences. The utility
and flexibility of our model are demonstrated on synthetic data, se-
quences of dancing honey bees, the IBOVESPA stock index and a
maneuvering target tracking application.

Index Terms—Autoregressive processes, Bayesian methods,
hidden Markov models, state-space methods, time series analysis,
unsupervised learning.

I. INTRODUCTION

L
INEAR dynamical systems (LDSs) are useful in de-

scribing dynamical phenomena as diverse as human

motion [3], [4], financial time-series [5]–[7], maneuvering

targets [8], [9] and the dance of honey bees [10]. However,

such phenomena often exhibit structural changes over time

and the LDS models which describe them must also change.

For example, a ballistic missile makes an evasive maneuver; a

country experiences a recession, a central bank intervention,

or some national or global event; a honey bee changes from a
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waggle to a turn right dance. Some of these changes will appear

frequently, while others are only rarely observed. In addition,

there is always the possibility of a new, previously unseen dy-

namical behavior. These considerations motivate us to develop

a Bayesian nonparametric approach for learning switching

LDS (SLDS) models. We also consider a special case of the

SLDS—the switching vector autoregressive (VAR) model—in

which direct observations of the underlying dynamical process

are assumed available.

One can view the SLDS and the simpler switching VAR

process, as an extension of hidden Markov models (HMMs) in

which each HMM state, or mode, is associated with a linear

dynamical process. Within the signal processing community,

such HMM-based models have received considerable attention

and proven useful in modeling the complex time evolution

of signals. Specifically, HMMs have a long history of signal

processing applications, with major success stories in speech

processing (see the early influential tutorial by Rabiner [11]).

While the HMM makes a strong Markovian assumption that

observations are conditionally independent given the mode,

the SLDS and switching VAR processes are able to capture

more complex temporal dependencies often present in real

data. Applications of switching linear dynamical processes,

with roots in the control and econometrics literature, have

recently become more prevalent within signal processing [10],

[12]–[14]. However, most existing methods for learning SLDS

and switching VAR processes rely on either fixing the number

of HMM modes, such as in the preceding papers, or consid-

ering a change-point detection formulation where each inferred

change is to a new, previously unseen dynamical mode, such

as in [15]. There is growing interest in expanding the modeling

framework to remove the purely parametric assumption of

these previous formulations. In this paper we show how one

can, in a seamless manner, remain agnostic about the number of

dynamical modes while still allowing for returns to previously

exhibited dynamical behaviors.

The rapidly developing field of Bayesian nonparametrics

provides a new direction for analyzing HMMs with unknown

state space cardinality. In particular, it has been shown that the

hierarchical Dirichlet process (HDP) provides a useful prior

on the HMM parameters [16], [17]. An alternative formulation

of a Bayesian nonparametric HMM with application to music

analysis has been presented in [18], though without the shared

sparsity induced by the HDP. Another application of Bayesian

nonparametrics to music analysis was presented in [19], where

the authors propose Dirichlet process clustering of fixed-length

segments of a time series, with each cluster modeling the

dynamics of the given segments via a different finite HMM.

1053-587X/$26.00 © 2010 IEEE
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See also [20] for a signal processing application of Dirichlet

processes, specifically nonparametric modeling of excitations

to a switching dynamical process. In this paper we make use

of a variant of the HDP-HMM—the sticky HDP-HMM of

[21]—to obtain improved control over the number of modes

inferred; such control is crucial for the problems we examine.

Our Bayesian nonparametric approach for learning switching

dynamical processes extends the sticky HDP-HMM formula-

tion to infer an unknown number of persistent dynamical modes

and thereby capture a wider range of temporal dependencies.

We then explore a method for learning which components of

the underlying state vector contribute to the dynamics of each

mode by employing automatic relevance determination (ARD)

[22]–[24]. The resulting model allows for learning realizations

of SLDS that switch between an unknown number of dynamical

modes with possibly varying state dimensions, or switching

VAR processes with varying autoregressive orders.

A. Previous System Identification Techniques

Paoletti et al. [25] provide a survey of recent approaches to

identification of switching dynamical models. The most gen-

eral formulation of the problem involves learning: 1) the number

of dynamical modes, 2) the model order, and 3) the associated

dynamic parameters. For noiseless switching VAR processes,

Vidal et al. [26] present an exact algebraic approach, though

relying on fixing a maximal mode space cardinality and autore-

gressive order. Psaradakis and Spagnolog [27] alternatively con-

sider a penalized likelihood approach to identification of sto-

chastic switching VAR processes.

For SLDS, identification is significantly more challenging

and methods typically rely on simplifying assumptions such

as deterministic dynamics or knowledge of the mode space.

Huang et al. [28] present an approach that assumes deter-

ministic dynamics and embeds the input/output data in a

higher-dimensional space and finds the switching times by

segmenting the data into distinct subspaces [29]. Kotsalis et

al. [30] develop a balanced truncation algorithm for SLDS

assuming the mode switches are independent and identically

distributed (i.i.d.) within a fixed, finite set; the authors also

present a method for model-order reduction of HMMs (see also

[31]). In [32], a realization theory is presented for generalized

jump-Markov linear systems in which the dynamic matrix

depends both on the previous mode and current mode. Finally,

when the number of dynamical modes is assumed known,

Ghahramani and Hinton [33] present a variational approach to

segmenting the data from a mixture of experts SLDS into the

linear dynamical regimes and learning the associated dynamic

parameters. For questions on observability and identifiability

of SLDS in the absence of noise, see [34].

In the Bayesian approach that we adopt, we coherently incor-

porate noisy dynamics and uncertainty in the mode space cardi-

nality. Our choice of prior penalizes more complicated models,

both in terms of the number of modes and the state dimension

describing each mode, allowing us to distinguish between the set

of equivalent models described in [34]. Thus, instead of placing

hard constraints on the model, we simply increase the posterior

probability of simpler explanations of the data. As opposed to a

penalized likelihood approach using Akaike’s information cri-

terion (AIC) [35] or the Bayesian information criterion (BIC)

[36], our approach provides a model complexity penalty in a

purely Bayesian manner.

In Section II, we provide background on the switching linear

dynamical systems we consider herein and previous Bayesian

nonparametric methods of learning HMMs. Our Bayesian non-

parametric switching linear dynamical systems are described

in Section III. We proceed by analyzing a conjugate prior on

the dynamic parameters and a sparsity-inducing prior that al-

lows for variable-order switching processes. The section con-

cludes by outlining a Gibbs sampler for the proposed models.

In Section IV we present results on synthetic and real datasets

and in Section V we analyze a set of alternative formulations

that are commonly found in the maneuvering target tracking and

econometrics literature.

II. BACKGROUND

A. Switching Linear Dynamic Systems

A state-space (SS) model consists of an underlying state,

, with dynamics observed via . A linear time-in-

variant (LTI) SS model is given by

(1)

where and are independent Gaussian noise processes with

covariances and , respectively.

An order VAR process, denoted by , with observa-

tions , can be defined as

(2)

Every process can be described in SS form, though the

converse is not true for finite [37].

The dynamical phenomena we examine in this paper exhibit

behaviors better modeled as switches between a set of linear dy-

namical models. We define a switching linear dynamical system

(SLDS) by

(3)

The first-order Markov process with transition distributions

indexes the mode-specific LDS at time , which is driven

by Gaussian noise . One can view the SLDS

as an extension of the classical hidden Markov model (HMM)

[11], which has the same mode evolution, but conditionally in-

dependent observations:

(4)

for an indexed family of distributions where are the

emission parameters for mode .
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We similarly define a switching process by

(5)

B. Dirichlet Processes and the Sticky HDP-HMM

To examine a Bayesian nonparametric SLDS and thus

relax the assumption that the number of dynamical modes is

known and fixed, it is useful to first analyze such methods

for the simpler HMM. One can equivalently represent the

finite HMM of (4) via a set of transition probability measures

, where is a mass concentrated at . We

then operate directly in the parameter space and transition

between emission parameters with probabilities given by .

That is

(6)

Here, and is equivalent to of (4). A

Bayesian nonparametric HMM takes to be random1 with an

infinite collection of atoms corresponding to the infinite HMM

mode space.

The Dirichlet process (DP), denoted by , provides

a distribution over discrete probability measures with an infinite

collection of atoms

(7)

on a parameter space that is endowed with a base measure .

The weights are sampled via a stick-breaking construction [38]:

(8)

In effect, we have divided a unit-length stick into lengths given

by the weights : the weight is a random proportion

of the remaining stick after the previous weights have

been defined. Letting , we denote this dis-

tribution by .

The DP has proven useful in many applications due to its clus-

tering properties, which are clearly seen by examining the pre-

dictive distribution of draws . Because probability mea-

sures drawn from a DP are discrete, there is a strictly positive

probability of multiple observations taking identical values

within the set , with defined as in (7). For each value ,

let be an indicator random variable that picks out the unique

value such that . Blackwell and MacQueen [39] in-

troduced a Pólya urn representation of the

(9)

1Formally, a random measure on a measurable space � with sigma algebra
� is defined as a stochastic process whose index set is �. That is, ���� is a
random variable for each � � �.

Fig. 1. Sticky HDP-HMM prior on (a) switching VAR(2) and (b) SLDS pro-
cesses with the mode evolving as � ��� � � � � � for � ��� �� � �
������� �����	 �
������. Here, � � � � ��	��� and � �  �  .
The dynamical processes are as in Table I.

Here, is the number of observations taking the value .

From (9) and the discrete nature of , we see a reinforcement

property of the DP that induces sparsity in the number of in-

ferred mixture components.

A hierarchical extension of the DP, the hierarchical Dirichlet

process (HDP) [16], has proven useful in defining a prior on the

set of HMM transition probability measures . The HDP de-

fines a collection of probability measures on the same sup-

port points by assuming that each discrete measure

is a variation on a global discrete measure . Specifically,

the Bayesian hierarchical specification takes ,

with itself a draw from a . Through this construc-

tion, one can show that the probability measures are described

as

(10)

Here, we use the notation . Applying the

HDP prior to the HMM, we obtain the HDP-HMM of Teh et al.

[16]. This corresponds to the model in Fig. 1(a), but without the

edges between the observations.

By defining , the HDP prior encourages

modes to have similar transition distributions. Namely, the

mode-specific transition distributions are identical in expecta-

tion:

(11)

However, it does not differentiate self-transitions from moves

between modes. When modeling dynamical processes with

mode persistence, the flexible nature of the HDP-HMM prior

allows for mode sequences with unrealistically fast dynamics

to have large posterior probability. Recently, it has been shown
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TABLE I
DYNAMIC EQUATIONS FOR THE HDP-AR-HMM AND HDP-SLDS. HERE, � IS AS DEFINED IN (12) FOR THE STICKY HDP-HMM.

THE ADDITIVE NOISE PROCESSES ARE DISTRIBUTED AS ��� � � ���� � AND ��� � � �����

[21] that one may mitigate this problem by instead considering

a sticky HDP-HMM where is distributed as follows:

(12)

Here, indicates that an amount is added to

the component of . This construction increases the ex-

pected probability of self-transition by an amount proportional

to . Specifically, the expected set of weights for transition dis-

tribution is a convex combination of those defined by and

mode-specific weight defined by :

(13)

Here, denotes the discrete Kronecker delta. When

the original HDP-HMM of Teh et al. [16] is recovered. We place

a prior on and learn the self-transition bias from the data. (See

[21] for details.)

III. THE HDP-SLDS AND HDP-AR-HMM

We now consider a significant extension of the sticky

HDP-HMM for both SLDS and VAR modeling, capturing

dynamic structure underlying the observations by allowing

switches among an unknown number dynamical modes. Our

proposed Bayesian nonparametric approach aims to capture

these uncertainties. Additionally, the methodology allows

both learning the number of modes and estimating the di-

mensionality and associated parameterization of the system

state process. Fig. 1(b) illustrates the HDP-SLDS model, while

Fig. 1(a) illustrates the HDP-AR-HMM model (for the case of

VAR(2)). The generative processes for these two models are

summarized in Table I.

The prior on the underlying discrete-valued Markov process

is just as in the sticky HDP-HMM. The question now is in

determining an appropriate base measure for the model pa-

rameters . For the HDP-SLDS, we place priors on the dynamic

parameters and on the measurement noise covari-

ance and infer their posterior from the data. Note that we

assume the dynamics of the latent state process are mode-spe-

cific, while the measurement mechanism is not. This assumption

could be modified to allow for both a mode-specific measure-

ment matrix and noise . However,

such a choice is not always necessary nor appropriate for cer-

tain applications and can have implications on the identifiability

of the model. Based on a shared measurement matrix , we fix

without loss of generality, implying that it is the

first components of the state that are measured. Our choice of

the state dimension is, in essence, a choice of model order and

an issue we address in Section III-A2. For the HDP-AR-HMM,

we similarly place a prior on the dynamic parameters, which in

this case consist of . Our specific choice

of priors is discussed in Section III-A.

A Gibbs sampling inference scheme for our models is de-

rived in Section III-B. There is, of course, a difference between

the steps required for the SLDS-based model (in which there

is an unobserved continuous-valued state ) and the AR-based

model. In particular, for the HDP-SLDS the algorithm iterates

among the following steps.

1) Sample the state sequence given the mode sequence

and SLDS parameters .

2) Sample the mode sequence given the state sequence

, HMM parameters and dynamic parameters

.

3) Sample the HMM parameters and SLDS parameters

given the sequences , and .

For the HDP-AR-HMM, step 1) does not exist. Step 2) then

involves sampling the mode sequence given the observa-

tions (rather than ) and step 3) involves conditioning

solely on the sequences and (not ). Also, we note

that step 2) involves a fairly straightforward extension of the

sampling method developed in [21] for the simpler HDP-HMM

model; the other steps, however, involve new constructs, as they

require capturing and dealing with the temporal dynamics of the

underlying continuous state models. Section III-A provides the

structure of the posteriors needed to develop these steps.

A. Priors and Posteriors of Dynamic Parameters

We begin by developing a prior to regularize the learning of

the dynamic parameters (and measurement noise) conditioned

on a fixed mode assignment . To make the connections be-

tween the samplers for the HDP-SLDS and HDP-AR-HMM ex-

plicit, we introduce the concept of pseudo-observations

and rewrite the dynamic equation for both the HDP-SLDS and

HDP-AR-HMM generically as

(14)

where we utilize the definitions outlined in Table II.

For the HDP-AR-HMM, we have simply written the dynamic

equation in Table I in matrix form by concatenating the lag ma-

trices into a single matrix and forming a lag observation

vector comprised of a series of previous observation vec-

tors. For this section (for the HDP-SLDS), we assume a sample

of the state sequence (and hence ) is available so

that (14) applies equally well to both the HDP-SLDS and the

HDP-AR-HMM. Methods for resampling this state sequence

are discussed in Section III-B.

Conditioned on the mode sequence, one may partition this

dynamic sequence into different linear regression problems,

where . That is, for each mode , we may
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TABLE II
NOTATIONAL CONVENIENCES USED IN DESCRIBING THE GIBBS SAMPLER FOR THE HDP-AR-HMM AND HDP-SLDS

form a matrix with columns consisting of the with

. Then

(15)

where is a matrix of the associated and the as-

sociated noise vectors.

1) Conjugate Prior on : The matrix-normal in-

verse-Wishart (MNIW) prior [40] is conjugate to the likelihood

model defined in (15) for the parameter set . Al-

though this prior is typically used for inferring the parameters

of a single linear regression problem, it is equally applicable

to our scenario since the linear regression problems of (15) are

independent conditioned on the mode sequence . We note

that while the MNIW prior does not enforce stability constraints

on each mode, this prior is still a reasonable choice since each

mode need not have stable dynamics for the SLDS to be stable

[41] and conditioned on data from a stable mode, the posterior

distribution will likely be sharply peaked around stable dynamic

matrices.

Let . The posterior distribution of the

dynamic parameters for the mode decomposes as

(16)

The resulting posterior of is straightforwardly derived to

be (see [42])

(17)

with denoting for a given matrix ,

denoting a matrix-normal prior2 for

with mean matrix and left and right covariances and

and

(18)

The marginal posterior of is

(19)

where denotes an inverse-Wishart prior for

with degrees of freedom and scale matrix and is updated

2If� ��� �������, then ������ � � ��������� �� �, with�
denoting the Kronecker product.

by data terms and

.

2) Alternative Prior—Automatic Relevance Determination:

The MNIW prior leads to full matrices, which (i) be-

comes problematic as the model order grows in the presence

of limited data and (ii) does not provide a method for identi-

fying irrelevant model components (i.e., state components in

the case of the HDP-SLDS or lag components in the case of

the HDP-AR-HMM.) To jointly address these issues, we al-

ternatively consider automatic relevance determination (ARD)

[22]–[24], which encourages driving components of the model

parameters to zero if their presence is not supported by the data.

For the HDP-SLDS, we harness the concepts of ARD

by placing independent, zero-mean, spherically symmetric

Gaussian priors on the columns of the dynamic matrix

(20)

Each precision parameter is given a prior.

The zero-mean Gaussian prior penalizes nonzero columns of

the dynamic matrix by an amount determined by the precision

parameters. Iterative estimation of these hyperparameters

and the dynamic matrix leads to becoming large for

columns whose evidence in the data is insufficient for over-

coming the penalty induced by the prior. Having

drives , implying that the state component does not

contribute to the dynamics of the mode. Thus, examining

the set of large provides insight into the order of that mode.

Looking at the dynamical mode alone, having im-

plies that the realization of that mode is not minimal since the

associated Hankel matrix

(21)

has reduced rank. However, the overall SLDS realization may

still be minimal.

For our use of the ARD prior, we restrict attention to models

satisfying the property that the state components that are ob-

served are relevant to all modes of the dynamics.

3) Criterion 3.1: If for some realization a mode has

, then that realization must have , where

is the th column of . Here we assume, without loss of gen-

erality, that the observed states are the first components of the

state vector.

This assumption implies that our choice of

does not interfere with learning a sparse realization. We could

avoid restricting our attention to models satisfying Criterion 3.1

by considering a more general model where the measurement
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equation is mode-specific and we place a prior on instead

of fixing this matrix. However, this model leads to identifiability

issues that are considerably less pronounced in the above case.

The ARD prior may also be used to learn variable-order

switching VAR processes. Here, the goal is to “turn off” entire

lag blocks (whereas in the HDP-SLDS we were interested

in eliminating columns of the dynamic matrix.) Instead of

placing independent Gaussian priors on each column of

as we did in (20), we decompose the prior over the lag blocks

(22)

Since each element of a given lag block is distributed ac-

cording to the same precision parameter , if that parameter

becomes large the entire lag block will tend to zero.

In order to examine the posterior distribution on the dynamic

matrix , it is useful to consider the Gaussian induced by

(20) and (22) on a vectorization of . Our ARD prior on

is equivalent to a prior on , where

(23)

Here, for the HDP-SLDS with replicates of each

and for the HDP-AR-HMM with replicates of .

(Recall that is the dimension of the HDP-SLDS state vector

, the autoregressive order of the HDP-AR-HMM and the

dimension of the observations .) To examine the posterior dis-

tribution of , we note that we may rewrite the state equation

as

(24)

where for the HDP-SLDS and for the HDP-AR-

HMM. Using (24), we derive the posterior distribution as

(25)

See [42] for a detailed derivation. Here, represents

a Gaussian with information parameters

and . Given and recalling that each precision

parameter is gamma distributed, the posterior of is given

by

(26)

The set contains the indices for which has prior preci-

sion . Note that in this model, regardless of the number of

observations , the size of (i.e., the number of used to

inform the posterior distribution) remains the same. Thus, the

gamma prior is an informative prior and the choice of and

should depend upon the cardinality of (see Section IV-B, for

an example). For the HDP-SLDS, this cardinality is given by the

maximal state dimension and for the HDP-AR-HMM, by the

square of the observation dimensionality .

We then place an inverse-Wishart prior on

and look at the posterior given

(27)

where here, as opposed to in (19), we define

(28)

4) Measurement Noise Posterior: For the HDP-SLDS, we

additionally place an prior on the measurement

noise covariance . The posterior distribution is given by

(29)

where . Here, we assume

that is shared between modes. The extension to mode-specific

measurement noise is straightforward.

B. Gibbs Sampler

For inference in the HDP-AR-HMM, we use a Gibbs sampler

that iterates between sampling the mode sequence, and the

set of dynamic and sticky HDP-HMM parameters. The sampler

for the HDP-SLDS is identical with the additional step of sam-

pling the state sequence, and conditioning on this sequence

when resampling dynamic parameters and the mode sequence.

Periodically, we interleave a step that sequentially samples the

mode sequence marginalizing over the state sequence

in a similar vein to that of Carter and Kohn [43]. We describe

the sampler in terms of the pseudo-observations , as defined

by (14), in order to clearly specify the sections of the sampler

shared by both the HDP-AR-HMM and HDP-SLDS.

1) Sampling Dynamic Parameters : Condi-

tioned on the mode sequence, and the pseudo-observations,

, we can sample the dynamic parameters

from the posterior densities of Section III-A. For the ARD prior,

we then sample given . In practice we iterate multiple



FOX et al.: BAYESIAN NONPARAMETRIC INFERENCE OF SWITCHING DYNAMIC LINEAR MODELS 1575

times between sampling given and given

before moving to the next sampling stage.

2) Sampling Measurement Noise (HDP-SLDS Only): For

the HDP-SLDS, we additionally sample the measurement noise

covariance conditioned on the sampled state sequence .

3) Block Sampling : As shown in [21], the mixing rate

of the Gibbs sampler for the HDP-HMM can be dramatically

improved by using a truncated approximation to the HDP and

jointly sampling the mode sequence using a variant of the for-

ward-backward algorithm. In the case of our switching dynam-

ical systems, we must account for the direct correlations in the

observations in our likelihood computation. The variant of the

forward-backward algorithm we use here then involves com-

puting backward messages

for each with the chosen truncation level,

followed by recursively sampling each conditioned on

from

(30)

Joint sampling of the mode sequence is especially important

when the observations are directly correlated via a dynamical

process since this correlation further slows the mixing rate of the

sequential sampler of Teh et al. [16]. Note that using an order

weak limit approximation to the HDP still encourages the use

of a sparse subset of the possible dynamical modes.

4) Block Sampling (HDP-SLDS Only): Conditioned

on the mode sequence and the set of SLDS parameters

, our dynamical process simplifies to

a time-varying linear dynamical system. We can then block

sample by first running a backward Kalman filter to com-

pute and then recursively

sampling each conditioned on from

(31)

The messages are given in information form by

, where the information parameters are re-

cursively defined as

(32)

The standard and updated information parameters for

a backward running Kalman filter are given by

(33)

See [42] for a derivation and for a more numerically stable ver-

sion of this recursion.

5) Sequentially Sampling (HDP-SLDS Only): For the

HDP-SLDS, iterating between the previous sampling stages can

lead to slow mixing rates since the mode sequence is sampled

conditioned on a sample of the state sequence. For high-dimen-

sional state spaces , this problem is exacerbated. Instead,

one can analytically marginalize the state sequence and sequen-

tially sample the mode sequence from .

This marginalization is accomplished by once again harnessing

the fact that conditioned on the mode sequence, our model re-

duces to a time-varying linear dynamical system. When sam-

pling and conditioning on the mode sequence at all other time

steps, we can run a forward Kalman filter to marginalize the

state sequence producing and

a backward filter to marginalize producing

. Then, for each possible value of , we combine

these forward and backward messages with the local likelihood

and local dynamic and

marginalize over and resulting in the likelihood of the

observation sequence as a function of . This likelihood is

combined with the prior probability of transitioning from

to and from to . The resulting distribution is

given by

(34)

with

(35)

See [42] for full derivations. Here, and are the updated

information parameters for a forward running Kalman filter, de-

fined recursively as

(36)

Note that a sequential node ordering for this sampling step al-

lows for efficient updates to the recursively defined filter param-

eters. However, this sequential sampling is still computationally

intensive, so our Gibbs sampler iterates between blocked sam-

pling of the state and mode sequences many times before inter-

leaving a sequential mode sequence sampling step.

The resulting Gibbs sampler is outlined in Algorithm 1.
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C. Pseudocode for Algorithms

Algorithm 1: HDP-SLDS and HDP-AR-HMM Gibbs Sam-

pler: Given a previous set of mode-specific transition proba-

bilities , the global transition distribution and dy-

namic parameters :

1) Set , and .

2) If HDP-SLDS,

a) For each , compute as in

(36).

b) For each ,

i) Compute as in (33).

ii) For each , compute

as in (35) and set

iii) Sample a mode assignment

c) Working sequentially forward in time sample

d) Set pseudo-observations .

3) If HDP-AR-HMM, set pseudo-observations .

4) Block sample given transition distributions , dy-

namic parameters and pseudo-observations as in

Algorithm 2.

5) Update the global transition distribution (utilizing auxil-

iary variables , and ), mode-specific transition dis-

tributions and hyperparameters , and as in [21].

6) For each , sample dynamic parameters

given the pseudo-observations and

mode sequence as in Algorithm 3 for the MNIW prior

and Algorithm 4 for the ARD prior.

7) If HDP-SLDS, also sample the measurement noise covari-

ance

8) Fix , and .

Algorithm 2: Blocked Mode-Sequence Sampler for

HDP-AR-HMM or HDP-SLDS: Given mode-specific transition

probabilities , dynamic parameters and pseudo-observations

:

1) Initialize messages to .

2) For each and , compute

3) Working sequentially forward in time, starting with transi-

tions counts :

a) For each , compute the probability

b) Sample a mode assignment as follows and incre-

ment :

Note that the likelihoods can be precomputed for each

.

Algorithm 3: Parameter Sampling Using MNIW Prior: Given

pseudo-observations and mode sequence , for each

:

1) Construct and as in (15).

2) Compute sufficient statistics and as in

(18) using pseudo-observations associated with .

3) Sample dynamic parameters:

Algorithm 4: Parameter Sampling Using ARD Prior: Given

pseudo-observations , mode sequence and a previous

set of dynamic parameters , for each

:

1) Construct as in (24).

2) Iterate multiple times between the following steps:

a) Construct given as in (23) and sample the

dynamic matrix:

b) For each , with for the SLDS

and for the switching VAR, sample ARD pre-

cision parameters:

c) Compute sufficient statistic as in (28) and

sample process noise covariance:
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Fig. 2. (a) Observation sequence (blue, green, red) and associated mode sequence (magenta) for a 5-mode switching VAR(1) process (top), 3-mode switching
AR(2) process (middle) and 3-mode SLDS (bottom). The components of the observation vector are offset for clarity. The associated 10th, 50th, and 90th Hamming
distance quantiles over 100 trials are shown for the (b) HDP-VAR(1)-HMM, (c) HDP-VAR(2)-HMM, (d) HDP-SLDS with � � � (top and bottom) and � �
� � � � (middle), and (e) sticky HDP-HMM using first difference observations.

IV. RESULTS

A. MNIW Prior

We begin by examining a set of three synthetic datasets

displayed in Fig. 2(a) in order to analyze the relative mod-

eling power of the HDP-VAR(1)-HMM, HDP-VAR(2)-HMM

and HDP-SLDS using the MNIW prior. Here, we use the

notation HDP- -HMM to explicitly denote an order

HDP-AR-HMM with vector observations. We compare to a

baseline sticky HDP-HMM using first difference observations,

imitating a HDP-VAR(1)-HMM with for all . In

Fig. 2(b)–2(e), we display Hamming distance errors that are cal-

culated by choosing the optimal mapping of indices maximizing

overlap between the true and estimated mode sequences.

We place a prior on the sticky HDP-HMM con-

centration parameters and and a prior on the

self-transition proportion parameter . We choose

the weakly informative setting of , , and

. The details on setting the MNIW hyperparameters from

statistics of the data are discussed in the Appendix.

For the first scenario [Fig. 2 (top)], the data were gener-

ated from a five-mode switching VAR(1) process with a 0.98

probability of self-transition and equally likely transitions to

the other modes. The same mode-transition structure was used

in the subsequent two scenarios, as well. The three switching

linear dynamical models provide comparable performance

since both the HDP-VAR(2)-HMM and HDP-SLDS with

contain the class of HDP-VAR(1)-HMMs. In the

second scenario [Fig. 2 (middle)], the data were generated from

a 3-mode switching AR(2) process. The HDP-AR(2)-HMM has

significantly better performance than the HDP-AR(1)-HMM

while the performance of the HDP-SLDS with

performs similarly, but has greater posterior variability because

the HDP-AR(2)-HMM model family is smaller. Note that

the HDP-SLDS sampler is slower to mix since the hidden,

continuous state is also sampled. The data in the third scenario

[Fig. 2 (bottom)] were generated from a three-mode SLDS

model with . Here, we clearly see that neither the

HDP-VAR(1)-HMM nor HDP-VAR(2)-HMM is equivalent

to the HDP-SLDS. Note that all of the switching models

yielded significant improvements relative to the baseline sticky

HDP-HMM. This input representation is more effective than

using raw observations for HDP-HMM learning, but still much

less effective than richer models which switch among learned

LDS. Together, these results demonstrate both the differences

between our models as well as the models’ ability to learn

switching processes with varying numbers of modes.

B. ARD Prior

We now compare the utility of the ARD prior to the MNIW

prior using the HDP-SLDS model when the true underlying

dynamical modes have sparse dependencies relative to the

assumed model order. That is, the HDP-SLDS may have

dynamical regimes reliant on lower state dimensions, or the

HDP-AR-HMM may have modes described by lower order

VAR processes. We generated data from a two-mode SLDS
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Fig. 3. (a) Observation sequence (green, blue) and mode sequence (magenta) of a 2-mode SLDS, where the first mode can be realized by the first two state
components and the second mode solely by the first. The associated 10th, 50th, and 90th Hamming distance quantiles over 100 trials are shown for the (b) MNIW
and (c) ARD prior (d) Box plots of inferred ARD precisions associated with the first and second dynamical modes at the 5000th Gibbs iteration. The center line
indicates the median, edges the 25th and 75th quantiles and whiskers the range of data excluding outliers which are separately marked. Larger ARD precision
values correspond to non-dynamical components.

with 0.98 probability of self-transition and

with , and . The

first dynamical process can be equivalently described by just the

first and second state components since the third component is

simply white noise that does not contribute to the state dynamics

and is not directly (or indirectly) observed. For the second dy-

namical process, the third state component is once again a white

noise process, but does contribute to the dynamics of the first

and second state components. However, we can equivalently

represent the dynamics of this mode as

where is a white noise term defined by the original process

noise combined with and is the dynamical matrix as-

sociated with this equivalent representation of the second dy-

namical mode. Notice that this SLDS does not satisfy Criterion

3.1 since the second column of is zero while the second

column of is not. Nevertheless, because the realization is in

our canonical form with , we still expect to recover

the sparsity structure. We set the parameters of

the prior on the ARD precisions as and

, where we recall the definition of from (26). This

specification fixes the mean of the prior to 1000 while aiming to

provide a prior that is roughly equally informative for various

choices of model order (i.e., sizes ).

In Fig. 3, we see that even in this low-dimensional example,

the ARD provides superior mode-sequence estimates, as well as

a mechanism for identifying non-dynamical state components.

The box plots of the inferred are shown in Fig. 3(d). From

the clear separation between the sampled dynamic range of

and and between that of and , we

see that we are able to correctly identify dynamical systems with

and .

C. Dancing Honey Bees

Honey bees perform a set of dances within the beehive in

order to communicate the location of food sources. Specifically,

they switch between a set of waggle, turn-right and turn-left

dances. During the waggle dance, the bee walks roughly in a

straight line while rapidly shaking its body from left to right. The

turning dances simply involve the bee turning in a clockwise or

counterclockwise direction. We display six such sequences of

honey bee dances in Fig. 4. The data consist of measurements

, where denotes the

2D coordinates of the bee’s body and its head angle. Both

Oh et al. [10] and Xuan and Murphy [15] used switching dy-

namical models to analyze these honey bee dances. We wish to

analyze the performance of our Bayesian nonparametric vari-

ants of these models in segmenting the six sequences into the

dance labels displayed in Fig. 4.
1) MNIW Prior—Unsupervised: We start by testing the

HDP-VAR(1)-HMM using a MNIW prior. (Note that we did
not see performance gains by considering the HDP-SLDS,
so we omit showing results for that architecture.) We set the
prior distributions on the dynamic parameters and hyperpa-
rameters as in Section IV-A for the synthetic data examples,
with the MNIW prior based on a preprocessed observation
sequence. The pre-processing involves centering the position
observations around 0 and scaling each component of to
be within the same dynamic range. We compare our results
to those of Xuan and Murphy [15], who used a change-point
detection technique for inference on this dataset. As shown in
Figs. 5(a) and 5(b), our model achieves a superior segmentation
compared to the change-point formulation in almost all cases,
while also identifying modes which reoccur over time. Example
segmentations are shown in Fig. 6. Oh et al. [10] also presented
an analysis of the honey bee data, using an SLDS with a fixed
number of modes. Unfortunately, that analysis is not directly
comparable to ours because Oh et al. [10] used their SLDS in
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Fig. 4. Top: Trajectories of the dancing honey bees for sequences 1 to 6, colored by waggle (red), turn right (blue) and turn left (green) dances. Bottom: Sine
of the bee’s head angle measurements colored by ground truth labels for 400 frames of each sequence. The data are available at http://www.cc.gatech.edu/ borg/
ijcv_psslds/.

Fig. 5. (a)-(b) ROC curves for the unsupervised HDP-VAR-HMM, partially supervised HDP-VAR-HMM and change-point formulation of [15] using the Viterbi
sequence for segmenting datasets 1–3 and 4–6, respectively. (c)-(e) The 10th, 50th, and 90th Hamming distance quantiles over 100 trials are shown for sequences
4–6, respectively.

a supervised formulation. Specifically, the ground truth labels
for all but one of the sequences are employed in the inference
of the labels for the remaining held-out sequence, and the
kernels used in the MCMC procedure depend on the ground
truth labels. (The authors also considered a “parameterized
segmental SLDS (PS-SLDS),” which makes use of domain
knowledge specific to honey bee dancing and requires addi-
tional supervision during the learning process.) Nonetheless, in
Table III we report the performance of these methods as well as
the median performance (over 100 trials) of the unsupervised
HDP-VAR(1)-HMM in order to provide a sense of the level of
performance achievable without detailed, manual supervision.
As seen in Table III, the HDP-VAR(1)-HMM yields very good

performance on sequences 4 to 6 in terms of the learned seg-
mentation and number of modes (see Fig. 6); the performance
approaches that of their supervised method.

For sequences 1 to 3—which are much less regular than se-

quences 4 to 6—the performance of our unsupervised proce-

dure is substantially worse. In Fig. 4, we see the extreme vari-

ation in head angle during the waggle dances of sequences 1

to 3.3 As noted by Oh, the tracking results based on the vision-

based tracker are noisier for these sequences and the patterns of

3From Fig. 4, we also see that even in sequences 4 to 6, the ground truth
labeling appear to be inaccurate at times. Specifically, certain time steps are
labeled as waggle dances (red) that look more typical of a turning dance (green,
blue).
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Fig. 6. Estimated mode sequences at the 1000th Gibbs iteration representing the median error over 100 trials. For each sequence we plot the true labels (top),
labels from the partially supervised HDP-VAR-HMM (middle) and unsupervised HDP-VAR-HMM (bottom). Colors are as in Fig. 4.

TABLE III
MEDIAN LABEL ACCURACY OF THE HDP-VAR(1)-HMM USING UNSUPERVISED AND PARTIALLY SUPERVISED GIBBS SAMPLING, COMPARED TO ACCURACY

OF THE SUPERVISED SLDS DATA-DRIVEN MCMC (DD-MCMC) MAP SEGMENTATION AND PS-SLDS APPROXIMATE VITERBI SEGMENTATION PROCEDURES

OF OH et al. [10]

Fig. 7. For an order 1, 2, and 7 HDP-AR-HMM with a MNIW prior and an order 7 HDP-AR-HMM with an ARD prior, we plot the shortest intervals containing
95% of the held-out log-likelihoods calculated based on a set of Gibbs samples taken at iteration 1000 from 100 chains. (a) Log-likelihood of the second half of
honey bee dance sequence 4 based on model parameters inferred from the first half of the sequence. (b)-(c) Similarly for sequences 5 and 6, respectively.

switching between dance modes is more irregular. This dramat-

ically affects our performance since we do not use domain-spe-

cific information. For sequence 2 in particular, our learned seg-

mentations often create new, sequence-specific waggle dance

modes contributing to our calculated Hamming distance errors

on this sequence. Overall, however, we are able to achieve rea-

sonably good segmentations without having to manually input

domain-specific knowledge.

2) MNIW Prior—Partially Supervised: The discrepancy in

performance between our results and the supervised approach

of Oh et al. [10] motivated us to also consider a partially su-

pervised variant of the HDP-VAR(1)-HMM in which we fix the

ground truth mode sequences for five out of six of the sequences

and jointly infer both a combined set of dynamic parameters and

the left-out mode sequence. This is equivalent to informing the

prior distributions with the data from the five fixed sequences

and using these updated posterior distributions as the prior dis-

tributions for the held-out sequence. As we see in Table III and

the segmentations of Fig. 6, this partially supervised approach

considerably improves performance for these three sequences,

especially sequences 2 and 3. In this analysis, we hand-aligned

sequences so that the waggle dances tended to have head angle

measurements centered about radians. Aligning the waggle

dances is possible by looking at the high frequency portions of

the head angle measurements. Additionally, the pre-processing

of the unsupervised approach is not appropriate here as the scal-

ings and shiftings are dance-specific and such transformations

modify the associated switching VAR(1) model. Instead, to ac-

count for the varying frames of reference (i.e., point of origin

for each bee body) we allowed for a mean on the process

noise and placed an independent prior on this param-

eter. See the Appendix for details on how the hyperparameters

of these prior distributions are set.

3) ARD Prior: Using the cleaner sequences 4 to 6, we in-

vestigate the affects of the sparsity-inducing ARD prior by as-

suming a higher order switching VAR model and computing the

likelihood of the second half of each dance sequence based on

parameters inferred from Gibbs sampling using the data from
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Fig. 8. (a) Plot of the estimated probability of a change point on each day using 3000 Gibbs samples for a MSSV variant of the HDP-SLDS using a shared dynamic
matrix and allowing a mean on the mode-specific process noise and a mixture of Gaussian measurement noise model. The observations are log-squared daily return
measurements and the 10 key events are indicated with red lines. (b) Similar plot for the non-sticky HDP-SLDS with no bias towards self-transitions. (d)-(e) and
(g)-(h) Analogous plots for the HDP-SLDS of Table I, a nonsticky variant of the HDP-SLDS, an HDP-AR(1)-HMM and the switching AR(1) product partition
model (PPM) of Xuan and Murphy [15], all using raw daily return measurements. The Viterbi change points provided by the formulation of [15] are shown with
green triangles. (c) For each of the compared MSSV models, box plot of the normalized Hamming distance between a label sequence associated with the true event
dates and that formed for each of the Gibbs sampled change points. (f) Analogous plot for the models analyzed in (d)-(e) and (g)-(h).

the first half of each sequence. In Fig. 7, we specifically compare

the performance of an HDP- -HMM with a conjugate

MNIW prior for to that of an HDP-VAR(7)-HMM

with an ARD prior. We use the same approach to setting the

hyperparameters as in Section IV-B. We see that assuming a

higher order model improves the predictive likelihood perfor-

mance, but only when combined with a regularizing prior (e.g.,

the ARD) that avoids over-fitting in the presence of limited data.

Although not depicted here (see instead [42]), the ARD prior

also informs us of the variable-order nature of this switching

dynamical process. When considering an HDP-VAR(2)-HMM

with an ARD prior, the posterior distribution of the ARD hyper-

parameters for the first and second order lag components asso-

ciated with each of the three dominant inferred dances clearly

indicates that two of the dances (turning dances) simply rely on

the first lag component while the other dance (waggle dance) re-

lies on both lag components. To verify these results, we provided

the data and ground truth labels to MATLAB’s implemen-

tation of Levinson’s algorithm, which indicated that the turning

dances are well approximated by an order 1 process, while the

waggle dance relies on an order 2 model. Thus, our learned or-

ders for the three dances match what is indicated by Levinson’s

algorithm on ground-truth segmented data.

V. MODEL VARIANTS

There are many variants of the general SLDS and switching

VAR models that are pervasive in the literature. One impor-

tant example is when the dynamic matrix is shared between

modes; here, the dynamics are instead distinguished based on

a switching mean, such as the Markov switching stochastic
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TABLE IV
10 KEY WORLD EVENTS AFFECTING THE IBOVESPA STOCK INDEX (SAO PAULO STOCK EXCHANGE) OVER THE PERIOD OF 01/03/1997 TO 01/16/2001, AS

CITED BY CARVALHO AND LOPES [7]

volatility (MSSV) model. In the maneuvering target tracking

community, it is often further assumed that the dynamic matrix

is shared and known (due to the understood physics of the

target). We explore both of these variants in the following

sections.

A. Shared Dynamic Matrix, Switching Driving Noise

In many applications, the dynamics of the switching process

can be described by a shared linear dynamical system matrix

; the dynamics within a given mode are then determined by

some external force acting upon this LDS and it is how this force

is exerted that is mode-specific. The general form for such an

SLDS is given by

(37)

with process and measurement noise and

, respectively. In this scenario, the data are gener-

ated from one dynamic matrix, and multiple process noise co-

variance matrices, . Thus, one cannot place a MNIW prior

jointly on these parameters (conditioned on ) due to the cou-

pling of the parameters in this prior. We instead consider inde-

pendent priors on , and . We will refer to the choice of

a normal prior on , inverse-Wishart prior on and normal

prior on as the N-IW-N prior. See [42] for details on de-

riving the resulting posterior distributions given these indepen-

dent priors.

1) Stochastic Volatility: An example of an SLDS in a sim-

ilar form to that of (37) is the Markov switching stochastic

volatility (MSSV) model [5], [6], [44]. The MSSV assumes

that the log-volatilities follow an AR(1) process with a Markov

switching mean. This underlying process is observed via con-

ditionally independent and normally distributed daily returns.

Specifically, let represent, for example, the daily returns of

a stock index. The state is then given the interpretation of

log-volatilities and the resulting state space model is given by

[7]

(38)

with and . Here,

only the mean of the process noise is mode-specific. Note, how-

ever, that the measurement equation is non-linear in the state

. Carvalho and Lopes [7] employ a particle filtering approach

to cope with these non-linearities. In [6], the MSSV is instead

modeled in the log-squared-daily-returns domain such that

(39)

where is additive, non-Gaussian noise. This noise is some-

times approximated by a moment-matched Gaussian [45], while

So et al. [6] use a mixture of Gaussians approximation. The

MSSV is then typically bestowed a fixed set of two or three

regimes of volatility.

We examine the IBOVESPA stock index (Sao Paulo Stock

Exchange) over the period of 01/03/1997 to 01/16/2001, during

which ten key world events are cited in [7] as affecting the

emerging Brazilian market. The key world events are summa-

rized in Table IV and shown in the plots of Fig. 8. Use of this

dataset was motivated by the work of Carvalho and Lopes [7],

in which a two-mode MSSV model is assumed. We consider a

variant of the HDP-SLDS to match the MSSV model of (38).

Specifically, we examine log-squared daily returns, as in (39)

and use a DP mixture of Gaussians to model the measurement

noise

(40)

We truncate the measurement noise DP mixture to 10 compo-

nents. For the HDP concentration hyperparameters, , and ,

we use the same prior distributions as in Sections IV-A–IV-C.

For the dynamic parameters, we rely on the N-IW-N prior de-

scribed in Section V-A and once again set the hyperparameters

of this prior from statistics of the data as described in the Ap-

pendix. Since we allow for a mean on the process noise and ex-

amine log-squared daily returns, we do not preprocess the data.

The posterior probability of an HDP-SLDS inferred change

point is shown in Fig. 8(a) and in Fig. 8(b) we display the cor-

responding plot for a non-sticky variant (i.e., with so that

there is no bias towards mode self-transitions.) The HDP-SLDS

is able to infer very similar change points to those presented in

[7]. Without the sticky extension, the nonsticky model variant

oversegments the data and rapidly switches between redundant

states leading to many inferred change points that do not align

with any world event. As a quantitative comparison of the in-

ferred change points, we compute a Hamming distance metric
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as follows. For the cited event dates, we form a “true” label se-

quence with labels that increment at each event. Then, for each

inferred set of change points we form a separate label sequence

in an analogous manner (i.e., with incrementing label numbers

at each inferred change point.) We then compute the Hamming

distance between the true and estimated label sequences after

an optimal mapping between these labels. The resulting perfor-

mances are summarized in the table of Fig. 8(c).

We also analyzed the performance of an HDP-SLDS as

defined in Table I. We used raw daily-return observations and

first preprocessed the data in the same manner as the honey

bee data by centering the observations around 0 and scaling the

data to be roughly within a dynamic range. We then

took a MNIW prior on the dynamic parameters, as outlined in

the Appendix. Overall, although the state of this HDP-SLDS

does not have the interpretation of log-volatilities, we see

are still able to capture regime-changes in the dynamics of

this stock index and find change points that align better with

the true world events than in the MSSV HDP-SLDS model.

See Figs. 8(d)–8(h), which also provides a comparison with

the change points inferred by an HDP-AR(1)-HMM4 and a

switching AR(1) product partition model (PPM) of Xuan and

Murphy [15]. The PPM inferred change points align well with

those of the HDP-AR(1)-HMM—we expect this similar per-

formance in such low-dimensional, long time series where the

penalty incurred (in terms of quality of parameter estimates) by

not revisiting modes is minimal.

B. Fixed Dynamic Matrix, Switching Driving Noise

There are some cases in which the dynamical model is well-

defined through knowledge of the physics of the system being

observed, such as simple kinematic motion. More complicated

motions can typically be modeled using the same fixed dynam-

ical model, but with a more complex description of the driving

force. A generic LDS driven by an unknown control input

can be represented as

(41)

where and . It is often appropriate

to assume , as we do herein.

1) Maneuvering Target Tracking: Target tracking provides

an application domain in which one often assumes that the dy-

namical model is known. One method of describing a maneu-

vering target is to consider the control input as a random process

[46]. For example, a jump-mean Markov process [47] yields dy-

namics described as

(42)

4We do not compare to an HDP-AR(1)-HMM for the MSSV formulation
since there is no adequate way to capture the complex MSSV observation model
with an autoregressive process.

Classical approaches rely on defining a fixed set of dynam-

ical modes and associated transition distributions. The state dy-

namics of (42) can be equivalently described as

(43)

This model can be captured by our HDP-SLDS formulation

of (37) with a fixed dynamic matrix (e.g., constant velocity or

constant acceleration models [46]) and mode-specific, non-zero

mean process noise. Such a formulation was explored in [9]

along with experiments that compare the performance to that

of standard multiple model techniques, demonstrating the flex-

ibility of the Bayesian nonparametric approach. Fox et al. [9]

also present an alternative sampling scheme that harnesses the

fact that the control input may be much lower-dimensional than

the state and sequentially block-samples analytically

marginalizing over the state sequence . Note that this

variant of the HDP-SLDS can be viewed as an extension of

the work by Caron et al. [20] in which the exogenous input

is modeled as an independent noise process (i.e., no Markov

structure on ) generated from a DP mixture model.

VI. CONCLUSION

In this paper, we have addressed the problem of learning

switching linear dynamical models with an unknown number of

modes for describing complex dynamical phenomena. We pre-

sented a Bayesian nonparametric approach and demonstrated

both the utility and versatility of the developed HDP-SLDS and

HDP-AR-HMM on real applications. Using the same parameter

settings, although different model choices, in one case we are

able to learn changes in the volatility of the IBOVESPA stock

exchange while in another case we learn segmentations of data

into waggle, turn-right and turn-left honey bee dances. We also

described a method of applying automatic relevance determina-

tion (ARD) as a sparsity-inducing prior, leading to flexible and

scalable dynamical models that allow for identification of vari-

able order structure. We concluded by considering adaptations

of the HDP-SLDS to specific forms often examined in the liter-

ature such as the Markov switching stochastic volatility model

and a standard multiple model target tracking formulation.

The batch processing of the Gibbs samplers derived herein

may be impractical and offline-training online-tracking in-

feasible for certain applications. Due both to the nonlinear

dynamics and uncertainty in model parameters, exact recursive

estimation is infeasible. One could leverage the conditionally

linear dynamics and use Rao-Blackwellized particle filtering

(RBPF) [48]. However, one challenge is that such particle filters

can suffer from a progressively impoverished particle repre-

sentation. A possible direction of future research is to consider

building on the recent work of [49] and embedding a RBPF

within an MCMC algorithm. Another interesting avenue of

research is to analyze high-dimensional time series. Although

there is nothing fundamentally different in considering such

datasets, based on experiments in related models [21] we expect

to run into mixing rate issues with the Gibbs sampler since

the parameter associated with each new considered dynamical
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mode is a sample from the (high-dimensional) prior. Devel-

oping split-merge algorithms similar to those developed in [50]

for the DP mixture model could be useful in ameliorating these

issues.

Overall, the formulation we developed herein represents a

flexible, Bayesian nonparametric model for describing complex

dynamical phenomena and discovering simple underlying tem-

poral structures.

APPENDIX

MNIW General Method: For the experiments of
Section IV-A, we set and . This choice centers
the mass of the prior around stable dynamic matrices while
allowing for considerable variability. The inverse-Wishart
portion is given degrees of freedom. For the
HDP-AR-HMM, we set the scale matrix , where

. Setting the prior directly
from the data can help move the mass of the distribution to
reasonable values of the parameter space. Since each new con-
sidered dynamical mode is associated with a set of parameters
sampled from the prior distribution and this dynamical mode
is compared against others that have already been informed by
the data, setting the base measure in this manner can improve
mixing rates over a noninformative setting. For an HDP-SLDS
with and and , we set . We
then set the inverse-Wishart prior on the measurement noise,

, to have and . For , see [42].
Partially Supervised Honey Bee Experiments: For the par-

tially supervised experiments of Section IV-C, we set
. Since we are not shifting and scaling the observations,

we set to 0.75 times the empirical covariance of the first dif-

ference observations. We also use , making the dis-
tribution tighter than in the unsupervised case. Examining first
differences is appropriate since the bee’s dynamics are better ap-
proximated as a random walk than as i.i.d. observations. Using
raw observations in the unsupervised approach creates a larger
expected covariance matrix making the prior on the dynamic
matrix less informative, which is useful in the absence of other
labeled data.

Ibovespa Stock Index Experiments: For the HDP-SLDS
variant of the MSSV model of (38), we rely on the N-IW-N
prior described in Section V-A. For the dynamic parameter
and process noise mean , we use priors. The
IW prior on was given 3 degrees of freedom and an ex-
pected value of . Finally, each component of the mix-
ture-of-Gaussian measurement noise was given an IW prior with
3 degrees of freedom and an expected value of , which
matches with the moment-matching technique of Harvey et al.

[45].
For the HDP-SLDS comparison using the model of Table I,

we use a MNIW prior with , , and
. The IW prior on was given and an

expected covariance of 25. Our sampler initializes parameters
from the prior and we found it useful to set the prior around
large values of in order to avoid initial samples chattering be-
tween dynamical regimes caused by the state sequence having
to account for the noise in the observations. After accounting
for the residuals of the data in the posterior distribution, we typ-
ically learned .
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