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M
arkov switching pro-

cesses, such as the 

hidden Markov model 

(HMM) and switching 

linear dynamical sys-

tem (SLDS), are often used to describe 

rich dynamical phenomena. They 

describe complex behavior via repeat-

ed returns to a set of simpler models: 

imagine a person alternating between 

walking, running, and jumping behav-

iors, or a stock index switching 

between regimes of high and low vola-

tility. Classical approaches to identifi-

cation and estimation of these models 

assume a fixed, prespecified number of 

dynamical models. We instead exam-

ine Bayesian nonparametric approach-

es that define a prior on Markov 

switching processes with an unbound-

ed number of potential model parameters (i.e., Markov 

modes). By leveraging stochastic processes such as the beta 

and Dirichlet process (DP), these methods allow the data to 

drive the complexity of the learned model, while still permit-

ting efficient inference algorithms. They also lead to general-

izations that discover and model dynamical behaviors shared 

among multiple related time series.

INTRODUCTION

A core problem in statistical signal pro-

cessing is the partitioning of temporal 

data into segments, each of which per-

mits a relatively simple statistical 

description. This segmentation problem 

arises in a variety of applications, in 

areas as diverse as speech recognition, 

computational biology, natural language 

processing, finance, and cryptanalysis. 

While in some cases the problem is 

merely that of detecting temporal 

changes (in which case the problem can 

be viewed as one of changepoint detec-

tion), in many other cases the temporal 

segments have a natural meaning in the 

domain and the problem is to recognize 

recurrence of a meaningful entity (e.g., a 

particular speaker, a gene, a part of 

speech, or a market condition). This 

leads naturally to state-space models, where the entities that are 

to be detected are encoded in the state. 

The classical example of a state-space model for segmenta-

tion is the HMM [1]. The HMM is based on a discrete state vari-

able and on the probabilistic assertions that the state transitions 

are Markovian and that the observations are conditionally inde-

pendent given the state. In this model, temporal segments are 

equated with states, a natural assumption in some problems but 

a limiting assumption in many others. Consider, for example, 

the dance of a honey bee as it switches between a set of turn 

[Stochastic process priors 

for dynamical systems]
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right, turn left, and waggle danc-

es. It is natural to view these 

dances as the temporal segments, 

as they “permit a relatively sim-

ple statistical description.” But 

each dance is not a set of condi-

tionally independent draws from a fixed distribution as required 

by the HMM—there are  additional dynamics to account for. 

Moreover, it is natural to model these dynamics using continu-

ous variables. These desiderata can be accommodated within the 

richer framework of Markov switching processes, specific exam-

ples of which include the switching vector autoregressive (VAR) 

process and the SLDS. These models  distinguish between the 

discrete component of the state, which is referred to as a 

“mode,” and the continuous component of the state, which cap-

tures the continuous dynamics associated with each mode. 

These models have become increasingly prominent in applica-

tions in recent years [2]–[8]. 

While Markov switching processes address one key limita-

tion of the HMM, they inherit various other limitations of the 

HMM. In particular, the discrete component of the state in the 

Markov switching process has no topological structure 

(beyond the  trivial discrete topology). Thus it is not easy to 

compare state spaces of differ-

ent cardinality and it is not pos-

sible to use the state space to 

encode a notion of similarity 

between modes. More broadly, 

many problems involve a collec-

tion of state-space models (either HMMs or Markov switching 

processes), and within the classical framework there is no 

natural way to talk about overlap between models. A particu-

lar instance of this problem arises when there are multiple 

time series, and where we wish to use overlapping subsets of 

the modes to describe the different time series. In the section 

“Multiple Related Time Series,” we discuss a concrete example 

of this problem where the time series are motion-capture vid-

eos of humans engaging in exercise routines, and where the 

modes are specific exercises, such as “jumping jacks” or 

“squats.” We aim to capture the notion that two different peo-

ple can engage in the same exercise (e.g., jumping jacks) dur-

ing their routine.

To address these problems, we need to move beyond the 

simple discrete Markov chain as a description of temporal seg-

mentation. In this article, we describe a richer class of sto-

chastic processes known as combinatorial stochastic 

processes that provide a useful foundation for the design of 

flexible models for temporal segmentation. Combinatorial sto-

chastic processes have been studied for several decades in 

probability theory (see, e.g., [9]), and they have begun to play 

a role in statistics as well, most notably in the area of Bayesian 

nonparametric statistics where they yield Bayesian approaches 

to clustering and survival analysis (see, e.g., [10]). The work 

that we present here extends these efforts into the time-series 

domain. As we aim to show, there is a natural interplay 

between combinatorial stochastic processes and state-space 

descriptions of dynamical systems. 

Our primary focus is on two specific stochastic processes—

the DP and the beta process—and their role in describing 

modes in dynamical systems. The DP provides a simple descrip-

tion of a clustering process where the number of clusters is not 

fixed a priori. Suitably extended to a hierarchical DP (HDP), 

this stochastic process provides a foundation for the design of 

state-space models in which the number of modes is random 

and inferred from the data. In the section “Hidden Markov 

Models,” we discuss the HDP and its connection to the HMM. 

Building on this connection, the section “Markov Jump Linear 

Systems” shows how the HDP can be used in the context of 

Markov switching processes with conditionally linear dynamical 

modes. Finally, in the section “Multiple Related Time Series,” 

we discuss the beta process and show how it can be used to cap-

ture notions of similarity among sets of modes in modeling 

multiple time series. 

HIDDEN MARKOV MODELS

The HMM generates a sequence of latent modes via a discrete-

valued Markov chain [1]. Conditioned on this mode sequence, 

the model assumes that the observations, which may be 
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[FIG1] Graphical representations of three Markov switching 
processes: (a) HMM, (b) order 2 switching VAR process, and 
(c) SLDS. For all models, a discrete-valued Markov process zt 
evolves as zt11|5pk6k51

K ,  zt = pzt
.For the HMM, observations are 

generated as yt|5uk6k51
K , zt = F 1uzt

2 , whereas the switching 
VAR(2) process assumes yt = N 1A1

1zt2yt21 1 A2
1zt2yt22, S

1zt22 . The 
SLDS instead relies on a latent, continuous-valued Markov 
state xt to capture the history of the dynamical process as 
specified in (15).

WE NEED TO MOVE BEYOND THE 
SIMPLE DISCRETE MARKOV CHAIN 
AS A DESCRIPTION OF TEMPORAL 

SEGMENTATION.
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 discrete or continuous valued, 

are independent. The HMM is 

the most basic example of a 

Markov switching process and 

forms the building block for 

more complicated processes 

examined later. 

FINITE HMM

Let zt denote the mode of the Markov chain at time t, and pj 

the mode-specific transition distribution for mode j. Given the 

mode zt, the observation yt is conditionally independent of 

the observations and modes at other time steps. The generative 

process can be described as 

 
zt 0  zt21 | pzt21

yt 0  zt | F 1uzt
2  (1)

for an indexed family of distributions F 1 # 2  (e.g., multinomial for 

discrete data or multivariate Gaussian for real, vector-valued 

data), where ui are the emission parameters for mode i. The 

notation x | F indicates that the random variable x is drawn 

from a distribution F. We use bar notation x | F | F to specify 

conditioned-upon random elements, such as a random distri-

bution. The directed graphical model associated with the HMM 

is shown in Figure 1(a).  

One can equivalently represent the HMM via a set of transi-

tion probability measures Gj 
5gK

k51 pjkduk
, where du is a unit 

mass concentrated at u. Instead of employing transition distri-

butions on the set of integers (i.e., modes) that index into the 

collection of emission parameters, we operate directly in the 

parameter space U, and transition between emission parameters 

with probabilities 5Gj6. Specifically, let jt21 be the unique emis-

sion parameter index j such that urt215 uj. Then, 

 
urt  0  urt21 | Gjt21

yt 0  urt | F 1urt 2 . (2)

Here, utr [ 5u1, c, uK6 takes the place of uzt
 in (1). A visualiza-

tion of this process is shown by the trellis diagram of Figure 2. 

One can consider a Bayesian HMM by treating the transi-

tion probability measures Gj as random, and endowing them 

with a prior. Formally, a random measure on a measurable 

space U, with sigma algebra A, is defined as a stochastic 

process whose index set is A. That is, G 1A 2  is a nonnegative 

random variable for each A [ A. Since the probability mea-

sures are solely distinguished by their weights on the shared 

set of emission parameters 5u1, c, uK6, we consider a prior 

that independently handles these components. Specifically, 

take the weights pj5 3pj1 cpjK 4 (i.e., transition distribu-

tions) to be independent draws from a K -dimensional 

Dirichlet distribution,

 pj | Dir 1a1, c, aK 2  j5 1, c, K, (3)

implying that g k  pjk5 1, as desired. Then, assume that the 

atoms are drawn as uj | H for some base measure H on the 

parameter space U. Depending 

on the form of the emission 

distribution, various choices of 

H lead to computational effi-

ciencies via conjugate analysis.
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[FIG2] (a) Trellis representation of an HMM. Each circle 
represents one of the K possible HMM emission parameters at 
various time steps. The highlighted circles indicate the selected 
emission parameter urt at time t, and the arrows represent the 
set of possible transitions from that HMM mode to each of the 
K possible next modes. The weights of these arrows indicate 
the relative probability of the transitions encoded by the 
mode-specific transition probability measures Gj. (b) Transition 
probability measures G1, G2, and G3 corresponding to the 
example trellis diagram. (c) A representation of the HMM 
observations yt, which are drawn from emission distributions 
parameterized by the highlighted nodes.

THERE IS A NATURAL INTERPLAY 
BETWEEN COMBINATORIAL STOCHASTIC 

PROCESSES AND STATE-SPACE 
DESCRIPTIONS OF DYNAMICAL SYSTEMS.
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STICKY HDP-HMM

In the Bayesian HMM of the previous section, we assumed that 

the number of HMM modes K is known. But what if this is not 

the case? For example, in the 

speaker diarization task consid-

ered later, determining the 

number of speakers involved in 

the meeting is one of the pri-

mary inference goals. Moreover, 

even when a model adequately 

describes previous observations, 

it can be desirable to allow new modes to be added as more data 

are observed. For example, what if more speakers enter the 

meeting? To avoid restrictions on the size of the mode space, 

such scenarios naturally lead to priors on probability measures 

Gj that have an unbounded collection of support points uk. 

The DP, denoted by DP 1g, H 2 , provides a distribution over 

countably infinite probability measures 

 G05a
`

k51

bk duk
  uk |  H (4)

on a parameter space U. The weights are sampled via a stick-

breaking construction [11] 

 bk5nkq
k21

,51

112n,2     nk |  Beta 11, g2 . (5)

In effect, we have divided a unit-length stick into lengths given 

by the weights bk: the kth weight is a random proportion vk of 

the remaining stick after the first 1k212  weights have been cho-

sen. We denote this distribution by b | GEM 1g 2 . See Figure 3 

for a pictorial representation of this process.

The DP has proven useful in many applications due to its 

clustering properties, which are clearly seen by examining the 

predictive distribution of draws uri 
| G0. Because probability 

measures drawn from a DP are discrete, there is a strictly posi-

tive probability of multiple observations uri taking identical 

 values within the set 5uk6, with uk defined as in (4). For each 

value uri, let zi be an indicator random variable that picks out 

the unique value uk such that uri 5 uzi
. Blackwell and MacQueen 

[12] derived a Pólya urn representation of the uri  

 uri  0  ur1,c, uri 21| 
g

g 1 i 2 1
 H 1a

i21

j51

 
1

g1i21
 durj

 | 
g

g 1 i 2 1
 H 1a

K

k51

 
nk

g 1 i 2 1
 duk

. (6)

This implies the following predictive distribution on the indica-

tor assignment variables 

 p 1zN115 z|z1, c, zN,g2 5 g

N1g
d 1z, K1 12

 1
1

N1ga
K

k51

nk d 1z, k2 . (7)

Here, nk5 gN
i51 d 1zi, k 2  is the number of indicator random 

variables taking the value k, and K11 is a previously unseen 

value. The discrete Kronecker delta d 1z, k 2 5 1 if z 5 k, and 0 

otherwise. The distribution on partitions induced by the 

sequence of conditional distributions in (7) is commonly 

referred to as the Chinese restaurant process. Take i to be a 

customer entering a restau-

rant with infinitely many 

tables, each serving a unique 

dish uk. Each arriving custom-

er chooses a table, indicated 

by zi, in proportion to how 

many customers are currently 

sitting at that table. With some 

positive probability proportional to g, the customer starts a 

new, previously unoccupied table K1 1. From the Chinese 

restaurant process, we see that the DP has a reinforcement 

property that leads to a clustering at the values uk. This repre-

sentation also provides a means of sampling observations 

from a DP without explicitly constructing the infinite proba-

bility measure G0 | DP 1g, H 2 .
One could imagine using the DP to define a prior on the 

set of HMM transition probability measures Gj. Taking each 

transition measure Gj as an independent draw from DP 1g, H 2  
implies that these probability measures are of the form 

g`
k51 pjk dujk

, with weights pj | GEM 1g2  and atoms ujk | H. 

Assuming H is absolutely continuous (e.g., a Gaussian distri-

bution), this construction leads to transition measures with 

nonoverlapping support (i.e., ujk 2 u,kr with probability one.) 

Based on such a construction, we would move from one infi-

nite collection of HMM modes to an entirely new collection 

at each transition step, implying that previously visited 

modes would never be revisited. This is clearly not what we 

intended. Instead, consider the HDP [13], which defines a 

collection of probability measures 5Gj6 on the same support 

points 5u1, u2, c6 by assuming that each discrete measure 

Gj is a variation on a global discrete measure G0. Specifically, 

the Bayesian hierarchical specification takes Gj  | DP 1a, G02, 
with G0 itself a draw from a DP 1g,  H 2 . Through this con-

struction, one can show that the probability measures are 

described as 

 

G05 a
`

k51
bkduk

  b | g | GEM 1g2
Gj5 a

`

k51
pjk duk

  pj | a, b | DP 1a,b2   uk | H | H. 

(8)

Applying the HDP prior to the HMM, we obtain the HDP-HMM 

of Teh et al. [13]. 

β1

β2
β3

β4
β5.

.

.

[FIG3] Pictorial representation of the stick-breaking construction 
of the DP.

THE HMM IS THE MOST BASIC 
EXAMPLE OF A MARKOV SWITCHING 
PROCESS AND FORMS THE BUILDING 

BLOCK FOR MORE COMPLICATED 
PROCESSES EXAMINED LATER.
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Extending the Chinese restau-

rant process analogy of the DP, 

one can examine a Chinese res-

taurant franchise that describes 

the partitions induced by the HDP. 

In the context of the  HDP-HMM, 

the infinite collection of emission parameters uk determine a 

global menu of shared dishes. Each of these emission parame-

ters is also associated with a single, unique restaurant in the 

franchise. The HDP-HMM assigns a customer urt to a restau-

rant based on the previous customer urt21, since it is this 

parameter that determines the distribution of u rt  [see (2)]. 

Upon entering the restaurant determined by urt21, customer urt 

chooses a table with probability proportional to the current 

occupancy, just as in the DP. The dishes for the tables are then 

chosen from the global menu G0 based on their popularity 

throughout the entire franchise, and it is through this pooling 

of dish selections that the HDP induces a shared sparse subset 

of model parameters. 

By defining pj | DP 1a, b 2 , the HDP prior encourages 

modes to have similar transition distributions. In particu-

lar, the mode-specific transition distributions are identical 

in expectation 

 E 3pjk 0 b45 bk. (9)

Although it is through this con-

struction that a shared sparse 

mode space is induced, we see 

from (9) that the HDP-HMM does 

not differentiate self-transitions 

from moves between different 

modes. When modeling data with mode persistence, the flexi-

ble nature of the HDP-HMM prior allows for mode sequences 

with unrealistically fast dynamics to have large posterior prob-

ability, thus impeding identification of a compact dynamical 

model which best explains the observations. See an example 

mode sequence in Figure 4(a). The HDP-HMM places only a 

small prior penalty on creating an extra mode but no penalty 

on that mode having a similar emission parameter to another 

mode, nor on the time series rapidly switching between two 

modes. The increase in likelihood by fine-tuning the parame-

ters to the data can counteract the prior penalty on creating 

this extra mode, leading to significant posterior uncertainty. 

These rapid dynamics are unrealistic for many real data sets. 

For example, in the speaker diarization task, it is very unlikely 

in that two speakers are rapidly switching who is speaking. 

Such fast-switching dynamics can harm the predictive perfor-

mance of the learned model since parameters are informed by 

fewer data points. Additionally, in some applications one cares 

about the accuracy of the inferred label sequence instead of 
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[FIG4] In (a) and (b), mode sequences are drawn from the HDP-HMM and sticky HDP-HMM priors, respectively. In (c)–(e), observation 
sequences correspond to draws from a sticky HDP-HMM, an order two HDP-AR-HMM, and an order one BP-AR-HMM with five time 
series offset for clarity. The observation sequences are colored by the underlying mode sequences.

A STATE-SPACE MODEL PROVIDES 
A GENERAL FRAMEWORK FOR 

ANALYZING MANY DYNAMICAL 
PHENOMENA.
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just doing model averaging. In such applications, one would 

like to be able to incorporate prior knowledge that slow, 

smoothly varying dynamics are more likely. 

To address these issues, Fox et al. [14] proposed to instead 

sample transition distributions pj as 

 b 0  g | GEM 1g 2
 pj | a, k, b | DPaa1 k,

ab1 kdj

a1 k
b. (10)

Here, 1ab1 kdj 2  indicates that an amount k . 0 is added to 

the jth component of ab. This construction increases the 

expected probability of self-transition by an amount  proportional 

to k. Specifically, the expected set of weights for transition 

 distribution pj is a convex combination of those defined by b 

and mode-specific weight defined by k:

 E 3pjk  | b, a, k45 a

a1 k
 bk1

k

a1 k
 d 1 j, k2 . (11)

When k5 0, the original HDP-HMM of Teh et al. [13] is recov-

ered. Because positive k values increase the prior probability 

E 3pjj  | b, a, k 4 of self-transitions, this model is referred to as 

the sticky HDP-HMM. See the graphical model of Figure 5(a) 

and the mode sequence sample path of Figure 4(b). The k 

parameter is reminiscent of the self-transition bias parameter 

of the infinite HMM [15], an urn model obtained by integrat-

ing out the random measures in the HDP-HMM. However, that 

paper relied on heuristic, approximate inference methods. The 

full connection between the infinite HMM and the HDP, as well 

as the development of a globally consistent inference algo-

rithm, was made in [13] but without a treatment of a self-tran-

sition parameter. Note that in the formulation of Fox et 

al. [14], the HDP concentration parameters a and g, and the 

sticky parameter k, are given priors and are thus learned from 

the data as well. The flexibility garnered by incorporating 

learning of the sticky parameter within a cohesive Bayesian 

framework allows the model to additionally capture fast mode-

switching if such dynamics are present in the data. 

In [14], the sticky HDP-HMM was applied to the speaker 

diarization task, which involves segmenting an audio recording 

into speaker-homogeneous regions, while simultaneously iden-

tifying the number of speakers. The data for the experiments 

consisted of a standard benchmark data set distributed by NIST 

as part of the Rich Transcription 2004–2007 meeting recogni-

tion evaluations [16], with the observations taken to be the first 

19 Mel frequency cepstral coefficients (MFCCs) computed over 

short, overlapping windows. Because the speaker-specific emis-

sions are not well approximated by a single Gaussian, a DP 

mixture of Gaussian extension of the sticky HDP-HMM was 

considered. The sticky parameter proved pivotal in learning 

such multimodal emission distributions. Combining both the 

mode-persistence captured by the sticky HDP-HMM, along 

with a model allowing multimodal emissions, state-of-the-art 

speaker diarization performance was achieved.

MARKOV JUMP LINEAR SYSTEMS

The HMM’s assumption of conditionally independent observa-

tions is often insufficient in capturing the temporal depen-

dencies present in many real data sets. Recall the example of 

the dancing honey bees from the “Introduction” section. In 

such cases, one can consider more complex Markov switching 

processes, namely the class of Markov jump linear systems 

(MJLSs), in which each dynamical mode is modeled via a lin-

ear dynamical process. Just as with the HMM, the switching 

mechanism is based on an underlying discrete-valued Markov 
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[FIG5] Graphical representations of three Bayesian nonparametric 
variants of the Markov switching processes shown in Figure 1. 
The plate notation is used to compactly represent replication of 
nodes in the graph [13], with the number of replicates indicated 
by the number in the corner of the plate. (a) The sticky HDP-
HMM. The mode evolves as zt11|5pk6k51

` , zt = pzt
, where 

pk 
| a, k, b = DP 1a 1 k, 1ab 1kdk 2 / 1a1k 22 and b|g =GEM 1g2 , 

and observations are generated as yt|5uk6k51
` , zt =F 1uzt

2 . The 
HDP-HMM of [13] has k 5 0. (b) A switching VAR (2) process and 
(c) SLDS, each with a sticky HDP-HMM prior on the Markov 
switching process. The dynamical equations are as in (17).
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mode sequence. Switched affine and piecewise affine models, 

which we do not consider in this article, instead allow mode 

transitions to depend on the continuous state of the dynami-

cal system [17]. 

STATE-SPACE MODELS, VAR PROCESSES, 

AND FINITE MARKOV JUMP LINEAR SYSTEMS

A state-space model provides a general framework for 

analyzing many dynamical phenomena. The model con-

sists of an underlying state, xt [ Rn, with linear dynam-

ics observed via yt [ Rd. A linear time-invariant state-space 

model, in which the dynamics do not depend on time, is 

given by 

 xt5 Axt211 et        yt5 Cxt1wt, (12)

where et and wt are independent, zero-mean Gaussian noise 

processes with covariances S and R, respectively. The graphical 

model for this process is equivalent to that of the HMM depicted 

in Figure 1(a), replacing zt with xt. 

An order r VAR process, denoted by VAR(r), with observa-

tions yt [ Rd, can be defined as 

 yt5 a
r

i51

Ai yt2i1 et  et | N 10, S2 . (13)

Here, the observations depend linearly on the previous r obser-

vation vectors. Every VAR(r) process can be described in state-

space form by, for example, the following transformation: 

 xt5 ≥ A1 A2 c Ar

I 0 c 0

( f ( (

0 c I 0

¥ xt211 ≥ I

0

(

0

¥ et

 yt5 c I 0 c 0d xt. (14)

On the other hand, not every state-space model may be 

expressed as a VAR(r) process for finite r [18]. 

Building on the HMM of the section “Finite HMM,” we define 

an SLDS by 

 zt | pzt21

 xt5 A 1zt
2xt211 et 1zt2 yt5 Cxt1wt. (15)

Here, we assume the process noise et 1zt2  | N 10, S1zt
22  is mode-

specific, while the measurement mechanism is not. This ass-

umption could be modified to allow 

for both a mode-specific measurement 

matrix C1zt
2  and noise wt 1zt2  | 

N 10, R1zt
22 . However, such a choice is 

not always necessary nor appropriate 

for certain applications, and can have 

implications on the identifiability of 

the model. We similarly define a 

switching VAR(r) process by 

 zt | pzt21

 yt5 a
r

i51

Ai
1zt
2yt2i1 et 1zt 2 . (16)

Both the SLDS and the switching VAR process are contained 

within the class of MJLS, with graphical model representations 

shown in Figure 1(b) and (c). Compare to that of the HMM in 

Figure 1(a). 

HDP-AR-HMM AND HDP-SLDS

In the formulations of the MJLS mentioned in the section 

“Markov Jump Linear Systems,” it was assumed that the num-

ber of dynamical modes was known. However, it is often desir-

able to relax this assumption to provide more modeling 

flexibility. It has been shown that in such cases, the sticky 

HDP-HMM can be extended as a Bayesian nonparametric 

approach to learning both SLDS and switching VAR process-

es [19], [20]. Specifically, the transition distributions are 

defined just as in the sticky HDP-HMM. However, instead of 

independent observations, each mode now has conditionally 

linear dynamics. The generative processes for the resulting 

HDP-AR-HMM and HDP-SLDS are summarized in (17), shown 

at the bottom of the page, with an example HDP-AR-HMM 

observation sequence depicted in Figure 4(d).  

Here, pj is as defined in (10). The issue, then, is in deter-

mining an appropriate prior on the dynamic parameters. 

In [19], a conjugate matrix-normal inverse-Wishart (MNIW) 

prior [21] was proposed for the dynamic parameters 5A1k2, S1k26 
in the case of the HDP-SLDS, and 5A1

1k2, c, Ar
1k2, S1k26 for the 

HDP-AR-HMM. The HDP-SLDS additionally assumes an 

inverse-Wishart prior on the measurement noise R; however, 

the measurement matrix, C, is fixed for reasons of identifiabili-

ty. The MNIW prior assumes knowledge of either the autore-

gressive order r, or the underlying state dimension n, of the 

switching VAR process or SLDS, respectively. Alternatively, 

Fox et al. [20] explore an automatic relevance determination 

(ARD) sparsity-inducing prior [22]–[24] as a means of learning 

MJLS with variable order structure. The ARD prior penalizes 

nonzero components of the model through a zero-mean 

Gaussian prior with gamma-distributed precision. In the con-

text of the HDP-AR-HMM and HDP-SLDS, a maximal autore-

gressive order or SLDS state dimension is assumed. Then, a 

structured version of the ARD prior is employed so as to drive 

entire VAR lag blocks Ai
1k2 or columns of the SLDS matrix A1k2 

to zero, allowing one to infer nondynamical components of a 

given dynamical mode.

 HDP-AR-HMM HDP-SLDS

 Mode dynamics zt | pzt21
zt | pzt21

Observation dynamics yt5 a
r

i51

A i
1zt
2yt2i1 et 1zt2 xt5 A1zt

2xt211 et 1zt2
yt5 Cxt1wt

 

. (17)
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The previous work of Fox et al. [8] considered a related, 

yet simpler   formulation for modeling a maneuvering target 

as a fixed LDS driven by a switching exogenous input. Since 

the number of maneuver modes was assumed unknown, the 

exogenous input was taken to be the emissions of a HDP-

HMM. This work can be viewed as an extension of the work 

by Caron et al. [25] in which the exogenous input was an 

independent noise process generated from a DP mixture 

model. The HDP-SLDS of [19] is a departure from these 

works since the dynamic parameters themselves change 

with the mode, providing a 

much more expressive model. 

In [19], the utility of the 

HDP-SLDS and HDP-AR-

HMM was demonstrated on 

two different problems: 1) 

detecting changes in the vola-

tility of the IBOVESPA stock 

index and 2) segmenting 

sequences of honey bee dances. The dynamics underlying 

both of these data sets appear to be quite complex, yet can 

be described by repeated returns to simpler dynamical mod-

els, and as such have been modeled with Markov switching 

processes [26], [27]. Without prespecifying domain-specific 

knowledge, and instead  simply relying on a set of observa-

tions along with weakly  informative hyperprior settings, the 

HDP-SLDS and HDP-AR-HMM were able to discover the 

underlying structure of the data with performance competi-

tive with these alternative methods, and consistent with 

domain expert analysis.

MULTIPLE RELATED 

TIME SERIES

In many applications, one would like to discover and model 

dynamical behaviors which are shared among several related 

time series. By jointly modeling such time series, one can 

improve parameter estimates, especially in the case of limited 

data, and find interesting structure in the relationships between 

the time series. Assuming that each of these time series is mod-

eled via a Markov switching process, our Bayesian nonparamet-

ric approach envisions a large library of behaviors, with each 

time series or object exhibiting a subset of these behaviors. We 

aim to allow flexibility in the number of total and sequence- 

specific behaviors, while encouraging objects to share similar sub-

sets of the behavior library. Additionally, a key aspect of a flexible 

model for relating time series is to allow the objects to switch 

between behaviors in different manners (e.g., even if two people 

both exhibit running and walking behaviors, they might alternate 

between these dynamical modes at different frequencies). 

One could imagine a Bayesian nonparametric approach 

based on tying together multiple time series under the HDP 

prior outlined in the section “Sticky HDP-HMM.” However, 

such a formulation assumes that all time series share the same 

set of behaviors, and switch among them in exactly the same 

manner. Alternatively, Fox et al. [28] consider a featural repre-

sentation, and show the utility of an alternative family of pri-

ors based on the beta process [29], [30]. 

FINITE FEATURE MODELS OF 

MARKOV SWITCHING PROCESSES

Assume we have a finite collection of behaviors 5u1, c, uK6 
that are shared in an unknown manner among N objects. One 

can represent the set of behaviors each object exhibits via an 

associated list of features. A standard featural representation for 

describing the N  objects employs an N 3 K  binary matrix 

F5 5fik6. Setting fik5 1 implies 

that object i exhibits feature k 

for some t [ 51, c, Ti6, where 

Ti is the length of the ith time 

series. To discover the structure 

of behavior sharing (i.e., the 

feature matrix), one takes the 

feature vector fi5 3fi1, c, fiK 4 
to be random. Assuming each 

feature is treated independently, this necessitates defining a fea-

ture inclusion probability vk for each feature k. Within a 

Bayesian framework, these probabilities are given a prior that is 

then informed by the data to provide a posterior distribution on 

feature inclusion probabilities. For example, one could consider 

the finite Bayesian feature model of [31] that assumes 

 vk | Betaaa
K

, 1b
 fik | vk | Bernoulli 1vk2 . (18)

Beta random variables vk [ 10, 12 , and can thus be thought of 

as defining coin-tossing probabilities. The resulting biased coin 

is then tossed to define whether fik is 0 or 1 (i.e., the outcome of 

a Bernoulli trial). Because each feature is generated indepen-

dently, and a Beta 1a, b2  random variable has mean a/ 1a1 b2, 
the expected number of active features in an N 3 K matrix is 

Na / 1a /K1 12, Na.

A hierarchical Bayesian featural model also requires priors 

for behavior parameters uk, and the process by which each 

object switches among its selected behaviors. In the case of 

Markov switching processes, this switching mechanism is gov-

erned by the transition distributions of object i, pj
1i2. As an 

example of such a model, imagine that each of the N objects is 

described by a switching VAR process (see the section “Markov 

Jump Linear Systems”) that moves among some subset of K 

possible dynamical modes. Each of the VAR process parameters 

uk5 5Ak, Sk6 describes a unique behavior. The feature vector fi 

constrains the transitions of object i to solely be between the 

selected subset of the K  possible VAR processes by forcing 

pjk
1i25 0 for all k such that fik5 0. One natural construction 

places Dirichlet priors on the transition distributions, and some 

prior H (e.g., an MNIW) on the behavior parameters. Then, 

pj
1i2 | fi, g, k | Dir 1  3g, c, g, g1 k, g, c, g4 # fi 2  uk | H, 

 (19)

OUR BAYESIAN NONPARAMETRIC 
APPROACH ENVISIONS A LARGE LIBRARY 
OF BEHAVIORS, WITH EACH TIME SERIES 

OR OBJECT EXHIBITING A SUBSET OF 
THESE BEHAVIORS.
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where # denotes the element-wise, or Hadamard, vector prod-

uct. Let yt
1i2 represent the observation vector of the ith object at 

time t, and zt
1i2 the latent behavior mode. Assuming an order r 

switching VAR process, the dynamics of the ith object are 

described by the following generative process: 

 zt
1i2 | zt21

1i2  | p
zt21
1i21i2  (20)

 yt
1i25 a

r

j51

Aj, zt
1i2 yt2j

1i2 1 et
1i2 1zt

1i2 2 ! Azt

1i2 y|t
1i21 et

1i2 1zt
1i22, (21)

where et
1i2 1k2  | N 10, Sk 2, Ak5 3A1, k    c     Ar, k 4, and y|t

1i25  3yt21
1i2T       c    yt2r

1i2T 4T. The standard HMM with Gaussian emissions 

arises as a special case of this model when Ak5 0 for all k.

A BAYESIAN NONPARAMETRIC FEATURAL MODEL 

UTILIZING BETA AND BERNOULLI PROCESSES

Following the theme of sections “Sticky HDP-HMM” and “HDP-

AR-HMM and HDP-SLDS,” it is often desirable to consider a 

Bayesian nonparametric featural model that relaxes the 

 assumption that the number of 

features is known or bounded. 

Such a featural model seeks to 

allow for infinitely many features, 

while encouraging a sparse, finite 

representation. Just as the DP 

provides a useful Bayesian non-

parametric prior in clustering 

applications (i.e., when each 

observation is associated with a 

single parameter uk), it has been 

shown that a stochastic process known as the beta process is 

 useful in Bayesian nonparametric featural models (i.e., when each 

observation is associated with a subset of parameters) [30]. 

The beta process is a special case of a general class of sto-

chastic processes known as completely random  measures [32]. 

A completely random measure G is defined such that for any 

disjoint sets A1 and A2, the corresponding random measures 

G 1A1 2  and G 1A2 2  are independent. This idea generalizes the 

family of independent increments processes on the real line. All 

completely random measures (up to a deterministic  component) 

can be constructed from realizations of a nonhomogenous 

Poisson process [32]. Specifically, a Poisson rate measure h is 

defined on a product space U # R, and a draw from the speci-

fied Poisson process yields a collection of points 5uj, v j6 that 

can be used to define a completely random measure

 G5 a
`

j51

v jduj
. (22)

This construction assumes h has infinite mass, yielding the 

countably infinite collection of points from the Poisson process. 

From (22), we see that completely random measures are dis-

crete. Letting the rate measure be defined as a product of a base 

measure G0 and an improper gamma distribution

 h 1du, dv2 5 cv 21e2cvdvG0 1du2  (23)

with c . 0, gives rise to completely random measures 

G | GP 1c, G0 2 , where GP denotes a gamma process. Normalizing 

G yields draws from a DP 1a, G0/a2, with a5G0 1U2 . Random 

probability measures G are necessarily not completely random 

since the random variables G 1A1 2  and G 1A2 2  for disjoint sets A1 

and A2 are dependent due to the normalization constraint.

Now consider a rate measure defined as the product of a base 

measure B0, with total mass B0 1U2 5a, and an improper beta 

distribution on the product space U z 30, 14
 n 1dv, du2 5 cv 21 112v2 c21dvB0 1du2 , (24)

where, once again, c . 0. The resulting completely random 

measure is known as the beta process with draws denoted by 

B | BP 1c, B0 2 . Note that using this construction, the weights vk 

of the atoms in B lie in the interval 10, 12 . Since h is s-finite, 

Campbell’s theorem [33] guarantees that for a finite, B has finite 

expected measure. The characteristics of this process define 

desirable traits for a Bayesian nonparametric featural model: we 

have a countably infinite collec-

tion of coin-tossing probabili-

ties (one for each of our infinite 

number of features), but only a 

sparse, finite subset are active 

in any realization. 

The beta process is conju-

gate to a class of Bernoulli pro-

cesses [30], denoted by BeP 1B 2 , 
which provide our sought-for 

featural representation. A real-

ization Xi | BeP 1B 2 , with B an atomic measure, is a collection 

of unit mass atoms on U located at some subset of the atoms in 

B. In particular, 

 fik | Bernoulli 1vk2  (25)

is sampled independently for each atom uk in B, and then 

Xi5 ak
fikduk

. In many applications, we interpret the atom loca-

tions uk as a shared set of global features. A Bernoulli process 

realization Xi then determines the subset of features allocated 

to object i 

 B | B0, c | BP 1c, B02
 Xi | B | BeP 1B2,    i5 1, c, N. (26)

Computationally, Bernoulli process realizations Xi are often 

summarized by an infinite vector of binary indicator variables 

fi5 3fi1, fi2, c4, where fik5 1 if and only if object i exhibits fea-

ture k. Using the beta process measure B to tie together the fea-

ture vectors encourages them to share similar features while 

allowing object-specific variability.

As shown by Thibaux and Jordan [30], marginalizing over 

the latent beta process measure B, and taking c5 1, induces a 

predictive distribution on feature indicators known as the 

Indian buffet process (IBP) [31]. The IBP is a culinary 

JUST AS THE DP PROVIDES A USEFUL 
BAYESIAN NONPARAMETRIC PRIOR 

IN CLUSTERING APPLICATIONS, IT HAS 
BEEN SHOWN THAT A STOCHASTIC 

PROCESS KNOWN AS THE BETA 
PROCESS IS USEFUL IN BAYESIAN 

NONPARAMETRIC FEATURAL MODELS.



IEEE SIGNAL PROCESSING MAGAZINE   [52]   NOVEMBER 2010

 metaphor inspired by the Chinese restaurant process of (7), 

which is itself the predictive distribution on partitions induced 

by the DP. The Indian buffet consists of an infinitely long buf-

fet line of dishes, or features. The first arriving customer, or 

object, chooses Poisson 1a 2  dishes. Each subsequent customer 

i selects a previously tasted dish k with probability mk/i 

 proportional to the number of 

previous customers mk  to 

 sample it, and also samples 

Poisson 1a/i 2  new dishes. The 

feature matrix associated with 

a realization from an IBP is 

shown in Figure 6(b). 

BP-AR-HMM

Recall the model of the section 

“Finite Feature Models of Markov Switching Processes,” in 

which the binary feature  indicator variables fik denote whether 

object i  exhibits  dynamical  behavior k  for some 

t [ 51, c, Ti6. Now, however, take fi to be an infinite dimen-

sional vector of feature indicators realized from the beta pro-

cess featural model of the section “A Bayesian Nonparametric 

Featural Model Utilizing Beta and Bernoulli Processes.” 

Continuing our focus on switching VAR processes, we define a 

beta process autoregressive HMM (BP-AR-HMM) [28], in 

which the features indicate which behaviors are utilized by 

each object or sequence. Considering the feature space (i.e., 

set of autoregressive parameters) and the temporal dynamics 

(i.e., set of transition distributions) as separate dimensions, 

one can think of the BP-AR-HMM as a spatiotemporal process 

comprised of a (continuous) beta process in space and dis-

crete-time Markovian dynamics in time. 

Given fi, the ith object’s Markov transitions among its set of 

dynamic behaviors are governed by a set of feature- constrained 

transition distributions p1i25 5pk
1i26. In particular, motivated 

by the fact that Dirichlet-distributed probability mass func-

tions can be generated via normalized gamma random vari-

ables, for each object i we define a doubly infinite collection of 

random variables:

 hjk
1i2 | g, k | Gamma 1g1 kd 1 j, k2, 1 2, (27)

Using this collection of transition variables, denoted by h1i2, one 

can define object-specific, feature-constrained transition 

 distributions 

 pj
1i25 chj1

1i2       hj2
1i2     c d z fi

ak |fik51
hjk
1i2.  #  (28)

This construction defines pj
1i2 over the full set of positive inte-

gers, but assigns positive mass only at indices k where fik5 1.

The preceding generative process can be equivalently 

 represented via a sample p|j
1i2 from a finite Dirichlet distribu-

tion of dimension Ki5 ak
fik, containing the nonzero entries 

of p j
1i2 

 p| j
1i2 | fi, g, k | Dir 1 3g, c, g, g1 k, g, cg4 2 . (29)

The k hyperparameter places extra expected mass on the 

 component of p|j
1i2 corresponding to a self-transition pjj

1i2, analo-

gously to the sticky hyperpa-

rameter of the section “Sticky 

HDP-HMM.” To complete the 

Bayesian model specification, a 

conjugate MNIW prior is 

placed on the shared collec-

tion of dynamic parameters 

uk5 5Ak, Sk6. Since the dynam-

ic parameters are shared by all 

time series, posterior inference 

of each parameter set uk relies on pooling data amongst the 

time series that have fik5 1. It is through this pooling of data 

that one may achieve more robust parameter estimates than 

from considering each time series individually. The resulting 

model is depicted in Figure 6(a), and a collection of observa-

tion sequences is shown in Figure 4(e). 

THE BAYESIAN NONPARAMETRIC 
FRAMEWORK REQUIRES ONE TO MAKE 

FEWER ASSUMPTIONS ABOUT THE 
UNDERLYING DYNAMICS, AND THEREBY 

ALLOWS THE DATA TO DRIVE THE 
COMPLEXITY OF THE INFERRED MODEL.
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[FIG6] (a) Graphical model of the BP-AR-HMM. The beta process 
distributed measure B|B0 = BP 11,B02 is represented by its masses 
vk and locations uk, as in (22). The features are then 
conditionally independent draws fik|vk =Bernoulli 1vk2 and are 
used to define feature-constrained transition distributions 
pj
1i2 |fi, g, k = Dir 1 3g, c,g, g 1 k, g, c4 z fi 2 . The switching 

VAR dynamics are as in (21). (b) An example feature matrix F 
with elements fik for 100 objects drawn from the Indian buffet 
predictive distribution using B0 1U2 5 a 5 10.
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The ability of the BP-AR-HMM to find common behaviors 

among a collection of time series was demonstrated on data 

from the CMU motion capture database [34]. As an illustrative 

example, a set of six exercise routines were examined, where 

each of these routines used some combination of the following 

motion categories: running in place, jumping jacks, arm circles, 

side twists, knee raises, squats, 

punching, up and down, two vari-

ants of toe touches, arch over, 

and a reach-out stretch. The 

overall performance of the 

BP-AR-HMM showed a clear abil-

ity to find common motions and 

provided more accurate movie frame labels than  previously 

 considered approaches [35]. Most significantly, the 

BP-AR-HMM provided a superior ability to discover the shared fea-

ture structure, while allowing objects to exhibit unique features. 

CONCLUSIONS

In this article, we explored a Bayesian nonparametric 

approach to learning Markov switching processes. This 

framework requires one to make fewer assumptions about 

the underlying dynamics, and thereby allows the data to 

drive the complexity of the inferred model. We began by 

examining a Bayesian nonparametric HMM, the sticky HDP-

HMM, that uses a hierarchical DP prior to regularize an 

unbounded mode space. We then considered extensions to 

Markov switching processes with richer, conditionally linear 

dynamics, including the HDP-AR-HMM and HDP-SLDS. We 

concluded by considering methods for transferring knowl-

edge among multiple related time series. We argued that a 

featural representation is more appropriate than a rigid 

global clustering, as it encourages sharing of behaviors 

among objects while still allowing sequence-specific vari-

ability. In this context, the beta process provides an appeal-

ing alternative to the DP. 

The models presented herein, while representing a flexible 

alternative to their parametric counterparts in terms of defin-

ing the set of dynamical modes, still maintain a number of 

limitations. First, the models assume Markovian dynamics 

with observations on a discrete, evenly-spaced temporal grid. 

Extensions to semi-Markov formulations and nonuniform 

grids are interesting directions for future research. Second, 

there is still the question of which dynamical model is appro-

priate for a given data set: HMM, AR-HMM, SLDS? The fact 

that the models are nested (i.e., HMM ( AR-HMM ( SLDS) 

aids in this decision process—choose the simplest formula-

tion that does not egregiously break the model assumptions. 

For example, the honey bee observations are clearly not inde-

pendent given the dance mode, so choosing an HMM is likely 

not going to provide desirable performance. Typically, it is 

useful to have domain-specific knowledge of at least one 

example of a time-series segment that can be used to design 

the structure of individual modes in a model. Overall, howev-

er, this issue of model selection in the Bayesian nonparamet-

ric setting is an open area of research. Finally, given the 

Bayesian framework, the models that we have presented 

necessitate a choice of prior. We have found in practice that 

the models are relatively robust to the hyperprior settings for 

the concentration parameters. On the other hand, the choice 

of base measure tends to affect results significantly, which is 

typical of simpler Bayesian 

 nonparametric models such as 

DP mixtures. We have found 

that quasi-empirical Bayes’ 

approaches for setting the base 

measure tend to help push the 

mass of the distribution into 

reasonable ranges (see [36] for details). 

Our focus in this article has been the advantages of various 

hierarchical, nonparametric Bayesian models; detailed algo-

rithms for learning and inference were omitted. One major 

advantage of the particular Bayesian nonparametric approaches 

explored in this article is that they lead to computationally effi-

cient methods for learning Markov switching models of 

unknown order. We point the interested reader to [13], [14], 

[19], and [28] for detailed presentations of Markov chain Monte 

Carlo algorithms for inference and learning. 
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