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Bayesian Nonparametric Modelling of the

Return Distribution with Stochastic Volatility

Eleni-Ioanna Delatola∗ and Jim E. Griffin†

Abstract. This paper presents a method for Bayesian nonparametric analysis of

the return distribution in a stochastic volatility model. The distribution of the

logarithm of the squared return is flexibly modelled using an infinite mixture of

Normal distributions. This allows efficient Markov chain Monte Carlo methods

to be developed. Links between the return distribution and the distribution of

the logarithm of the squared returns are discussed. The method is applied to

simulated data, one asset return series and one stock index return series. We

find that estimates of volatility using the model can differ dramatically from those

using a Normal return distribution if there is evidence of a heavy-tailed return

distribution.

Keywords: Dirichlet process, Asset Return, Stock Index, Off-set mixture represen-

tation, Mixture model, Centred representation

1 Introduction

The prices of financial assets are usually thought to behave according to some stylized

facts. The clearest example is that returns (the changes in the log price over a specified

period) have a standard deviation (or volatility) that changes over time. The main

purpose of stochastic volatility (SV) models is to describe this underlying time-varying

volatility. The first publication of a direct time-varying volatility model was by Taylor

(1982) who modelled the log of volatility by a latent AR(1) process. In line with the

work of Clark (1973) and Tauchen and Pitts (1983), the use of the AR process can be

explained as the representation of a random and uneven flow of new information, which

is hard to be modelled in a direct way. Taylor’s model for returns y1, y2, . . . , yn is

yt = βeht/2ǫt (1)

ht+1 = µ+ φ (ht − µ) + σηηt
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where ht is the log-volatility at time t, and ǫt and ηt are independent with mean zero and

unit variance. The log volatility process is an AR(1) process with persistence parameter

φ (which must be between -1 and 1 for the process to be stationary), which implies that

the stationary distribution of ht has mean µ and variance σ2
η/(1 − φ2). The model is

unidentified but setting β = 1 or µ = 0 leads to an identified model. In this case, β or

exp(µ/2) can be interpreted as the modal instantaneous volatility.

Commonly, ǫt and ηt are assumed Normally distributed. However, the assumption

of Normality for ǫt has been questioned in the literature and heavier tailed distribu-

tions have been proposed as alternatives. For example, Nakajima and Omori (2009)

and Jacquier et al. (2004) consider the t-distribution, Barndorff-Nielsen (1997) uses

the Normal-Inverse Gaussian, Mahieu and Schotman (1998) use a mixture of Normals

and Abanto-Valle et al. (2010) apply scale mixture of Normals using different mixing

parameters.

A well-known problem with Bayesian inference in the SV model in equation (1) is

that the likelihood has an intractable form. There are many computational schemes in

the literature that deal with this problem by including the log-volatilities h1, h2, . . . , hn

in a Markov chain Monte Carlo (MCMC) sampler (see Broto and Ruiz (2004) for a

review). Jacquier et al. (1994) proposed a single state cyclic Metropolis-Hastings algo-

rithm to update the log-volatilities one at a time. Shephard and Kim (1994) showed that

when the persistence φ takes values close to unity and the variance σ2
η takes very small

values then the log-volatilities are highly correlated and the single-state algorithm gen-

erates highly correlated draws, leading to slow mixing of the sampler. Kim et al. (1998)

introduced a sampling scheme which updates the log-volatilities simultaneously using a

linearization of the model. Alternatively, random-length blocks of the log-volatilities in

the model in (1) can be jointly updated to reduce correlation in draws (see Jensen and

Maheu 2010; Abanto-Valle et al. 2010, in the context of mixture models).

The approach of Kim et al. (1998) expresses the basic SV model in equation (1) as

a linear state space model by taking the logarithm of the squares of the observations,

y⋆
t = logy2

t :

y⋆
t = ht + zt for t = 1, ..., n (2)

where zt = logǫ2t . The distribution of zt is a logχ2
1 if ǫ2t is Normally distributed and so

Kalman filtering techniques cannot be directly applied. Kim et al. (1998) and Omori

et al. (2007) suggest using a mixture of Normals to approximate this distribution. This

allows a multi-state algorithm to be defined that updates all the log-volatilities simul-

taneously using a filtering forward backward sampling (FFBS) algorithm (Carter and
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Kohn 1994; Frühwirth-Schnatter 1994; Durbin and Koopman 2002) leading to faster

mixing than single-state algorithms. A problem with this parametrization is that the

returns can take values very close to zero or even in some cases zero, leading the trans-

formed values to be largely negative or undefined respectively. This problem is an

inlier problem which can be solved by introducing an offset parameter c and defining

y⋆
t = log(y2

t + c) (Fuller 1996).

Our contribution is to propose a Bayesian nonparametric approach to estimating the

distribution of logǫ2t and so avoid parametric assumptions about the return distribution.

Our model replaces the finite Normal mixture approximating the logχ2
1 distribution with

a Dirichlet process mixture model (DPM). This allows us to use the FFBS algorithm,

and thus to extend the work of Kim et al. (1998) and Omori et al. (2007). We use the

alternative representation of the DPM as introduced by Griffin (2010). Models with

nonparametric return distributions can capture features of the return data which the

parametric equivalents cannot fully capture (Gallant et al. 1997; Mahieu and Schotman

1998; Durham 2006). Durham (2006) states that, “... I find no evidence that even the

simple-factor models are unable to capture the dynamics of the volatility process. The

more critical problem is to capture the shape of the conditional returns distribution”.

From the above, one can conclude that simple parametric models will often be unable

to adequately model the conditional return distribution. A DPM model offers a flexible

alternative as it can be considered an infinite mixture model where the data specify the

number of mixing components. Additionally, efficient algorithms have been developed

that facilitate the sampling from the posterior of a DPM model (Neal 2000).

The idea of using Bayesian nonparametric methods in stochastic volatility literature

has been seen in Jensen (2004) and Jensen and Maheu (2010). Jensen (2004) used a

DPM prior to model the distribution of the wavelet coefficients of zt for a fractionally

integrated SV model. Jensen and Maheu (2010) introduce a semiparametric SV model

which directly models the asset returns, without using the offset mixture model repre-

sentation. The model we propose is a semiparametric offset mixture model, where the

error terms of the observation equation are modelled nonparametrically with the DPM

model and having an AR(1) process for the latent log-volatilities. In the work of Jensen

and Maheu (2010), their semiparametric SV model uses the DPM representation which

mixes over both the mean and the variance.

The outline of this paper is: Section 2 describes the Dirichlet process and its use

in mixture modelling, Section 3 introduces the semiparametric SV model, Section 4

describes an MCMC sampler for inference, Section 5 gives a simulated example and
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some empirical examples, Section 6 is a discussion.

2 Dirichlet Process Mixture model

The Dirichlet process mixture of normals model (DPM) was introduced by Lo (1984)

and Ferguson (1983) and has become one of the most popular models in Bayesian non-

parametrics (for other models in the Bayesian nonparametrics see Müller and Quintana

(2004)). The model can be constructed in the following way. Let

fk(z) =
k∑

j=1

pjN
(
z
∣∣∣µ

′

j , σ
′
j
2
)

where N(z|µ, σ2) represents a Normal distribution with mean µ and variance σ2, and

p1, p2, . . . , pk follow a Dirichlet distribution with parameters
(

M
k ,

M
k , . . . ,

M
k

)
. This is

a k-component normal mixture model where the location parameter µ
′

j and the scale

parameter σ2
j differ from component-to-component and pj are the mixing weights. If

we further assume that (µ
′

j , σ
′
j
2
) are a priori independent and identically distributed,

it is straightforward to show that the limit of fk as k → ∞ is well-defined and it is a

Dirichlet process mixture model. Therefore, the DPM belongs in the class of infinite

mixture models. Alternatively, the k-component normal mixture model can be written

fk(z) =

∫
N
(
z
∣∣∣µ

′

, σ′2
)
dGk(µ′, σ′2)

Gk =

k∑

j=1

pjδ
(
µ′

j , σ
′
j
2
)

where δ (x1, x2) represents the Dirac measure that places mass 1 on (x1, x2). If µ′, σ′2 i.i.d.∼
H, the measure Gk limits to a measure G with a Dirichlet process prior with mass pa-

rameter M and centring distribution H if k → ∞. We will write this as G ∼ DP(M,H).

Many authors have followed Escobar and West (1995) by specifying priors on µ
′

j and

σ′
j
2
. This must be informative for effective inference. We will use an alternative form

of prior suggested by Griffin (2010) which allows non-informative prior distributions for

parameters representing overall location and overall scale. The model for observation
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z1, z2, . . . , zn can be written

zt|µ′
t ∼ N

(
µ

′

t, ασ
2
z

)
, t = 1, 2, . . . , n (3)

µ
′

t ∼ G, t = 1, 2, . . . , n

G ∼ DP (M,H)

H ≡ N
(
µ0, (1 − α)σ2

z

)
, (4)

where µ0 is the overall location, σ2
z is the overall scale and α is interpreted as a smooth-

ness parameter. The data, zt, are conditionally Normally distributed and only the

means µ
′

j are distributed as a Dirichlet process with mass parameter M . This model

assumes that the mixing component variances are constant where σ2
z is the prior vari-

ance of zt. The prior expected distribution of zt is Normal with mean µ0 and variance

σ2
z which centres the prior of the distribution of zt.

Many efficient MCMC sampling schemes for these models have been developed (Es-

cobar and West 1995; Neal 2000). The model in (3) is a conjugate Dirichlet process

and so standard MCMC methods as described by Escobar and West (1995) can be used

directly. Griffin (2010) gives full details of the MCMC sampler needed for this model.

3 Semiparametric SV model

In this section, we present a semiparametric SV model (SPM) which has a nonpara-

metric specification for the conditional return distribution but retains the parametric

specification of the volatility process. In contrast to Jensen and Maheu (2010), the

model uses the linearized parametrization of the basic SV model and so makes use of

the sampling method of Kim et al. (1998) to efficiently update the volatilities in the

MCMC algorithm. The SPM model is

y⋆
t = ht + zt, (5)

ht+1 = µ+ φ (ht − µ) + σηηt,

where y⋆
t = log

(
y2

t + c
)
, zt = logǫ2t ∼ F and ηt ∼ N(0, 1). By modelling the distribution

of y⋆
t , rather than yt directly, information about the sign of the return yt is lost. There-

fore, the distribution of yt or ǫt can only be recovered by making an assumption about

the distribution of the sign of the return. We will assume that the distribution of ǫt, and

so yt, is symmetric. Although a strong assumption, Jensen and Maheu (2010) find little

evidence of skewness in their empirical examples and also find that a symmetric model

gives better out-of-sample prediction performance than a model which allows skewness.
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Figure 1: Plot of logǫ2t for three different distributions of ǫt.

To understand the types of distribution that zt may follow, Figure 1 shows the

distribution of zt for several popular choices for ǫt. These are: the Normal distribution,

the t distribution with 5 degrees of freedom and the Normal-Gamma distribution. The

t5 distribution has a similar left tail to the Normal distribution but it has a heavy right-

hand tail. On the other hand, the Normal-Gamma distribution does not have as heavy

tails as the t5 and the distribution has a flatter left-hand tail and similar right-hand tail

to the Normal distribution.

It is very common to come across zero returns when fitting these models to observed

data. In the literature, different techniques have been proposed to treat these values

(Harvey 1990; Sandmann and Koopman 1998). We will model the zero returns by a

Normal distribution centred around logc (since y⋆
t = logc if yt = 0) and model the

non-zero returns by a Dirichlet process mixture of Normals. This leads to the following

model for zt,

p (zt) = WN
(
logc, σ2

0

)
+ (1 −W )

∞∑

j=1

wjN
(
µ

′

j , ασ
2
z

)
(6)

where W is the probability that a return is a zero return and σ2
0 = 1 throughout the

paper. As well as affecting the fit of the model, the zero returns can also lead to slow

mixing of the MCMC sampling scheme if W = 0 (i.e. there is no component for the

zero returns). This is because the mixture model will capture the zero returns using

a component whose variance ασ2
z will becomes very small which, in turn, leads to a

large number of components. The components in the Dirichlet process mixture model
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for the non-zero returns have the same variances. This is unusual for DPMs where

component variances are allowed to differ. Griffin (2010) shows that the assumption of

the same variances does not greatly affect inference about the unknown distribution in

many circumstances and can often lead to better out-of-sample predictive performance.

If a parametric distribution is assumed for zt, the mean of zt is fixed and so µ is

identified. However, the mean is random if zt is given a nonparametric prior and so µ

cannot be easily separated from the mean of zt without making additional assumptions.

Thus, in the MCMC sampling it is easier to subsume µ into zt leading to the re-

parameterized model

y⋆
t = h⋆

t + z⋆
t , (7)

h⋆
t+1 = φh⋆

t + σηηt (8)

where h⋆
t = ht − µ, z⋆

t = zt + µ and h⋆
1 ∼ N

(
0, σ2

η/(1 − φ2)
)
. After imposing this

constraint, the mean of h⋆
t is fixed to be zero and inference can be made for the SPM.

This constraint has also been used by Bush and MacEachern (1996) and Jensen and

Maheu (2010). It is still useful to have an estimate of µ in order to be able to compare

the results of the SPM to results from the SV model in (1) with ǫt having a Normal

distribution. This is achieved by noting that E[z⋆
t ] = µ + E[zt]. If we assume that

E[zt] = −1.2704 (which is chosen to match the value if ǫt follows a Normal distribution)

which leads to the approximate value µ = E[z⋆
t ] + 1.2704.

Our posterior inference is about the distribution of z⋆
t but we are typically interested

in the distribution of ǫt. If we assume that ǫt is symmetric, then the distribution of ǫt can

be recovered from the distribution of z⋆
t . The variance and kurtosis of ǫt are also useful

summaries of the distribution. The log of the variance of ǫt can be approximated using

the expected value of z⋆
t and the kurtosis of ǫt can be approximated using the variance of

z⋆
t . These statements follow from taking a second order Taylor series expansion around

E[ǫ2t ] and approximating the first term moments of z⋆
t by

E (z⋆
t ) = µ+ E (zt) ≈ µ+ logE

(
ǫ2t
)
− 1

2

V[ǫ2t ]

(E[ǫ2t ])
2

and

V (z⋆
t ) = V (zt) ≈

V
(
ǫ2t
)

(V (ǫt))
2 = K(ǫt) + 1

where K(ǫt) is the kurtosis (the fourth central moment) of ǫt. Therefore,

K(ǫt) ≈ V (z⋆
t ) − 1. (9)
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and

exp{µ}V (ǫt) ≈ exp{E (z⋆
t ) + V (z⋆

t ) /2}.

The formula for µ and the expression for V (ǫt) and K (ǫt) all involve E[z⋆
t ] and V[z⋆

t ].

These are hard to calculate from an MCMC sampler since they involve infinite sums.

We will use the following approximations:

E[z⋆
t |ψ] ≈W logc+ (1 −W )




k∑

j=1

nj

n+M
µ

′

j +
M

M + n
µ0





and

V[z⋆
t |ψ] =W

(
(logc)2 + 1

)
+ (1 −W )

∑k
j=1

(
nj

(
ασ2

z + µ
′2
j

))
+M

(
µ2

0 + σ2
z

)

n
′

2 +M
(10)

− (µ− 1.2704)
2
. (11)

where φ = (W, c, k, n1, . . . , nk, µ
′
1, . . . , µ

′
k, µ0, a, σ

2
z ,M) and nj is the number of ob-

servations allocated to the jth non-zero cluster and k is the number of distinct non-

zero clusters. The posterior expectation, E[z⋆
t |y], can be calculated using the estima-

tor Ê[z⋆
t |y] = 1

N

∑N
j=1 E

[
z⋆
t |ψ(j)

]
where ψ(1), . . . , ψ(N) is an MCMC sample from the

posterior distribution. Similarly V [z⋆
t |y] can be estimated by 1

N

∑N
j=1 V

[
z⋆
t |ψ(j)

]
+

1
N−1

∑N
i=1

(
E
[
z⋆
t |ψ(j)

]
− Ê[z⋆

t |y]
)2

.

We assume the following priors for the parameters of the SPM model:

φ ∼ N (0, 10) × I[−1,1], σ2
η ∼ IG (2.5, 0.025) ,

where IG (a, b) is an inverted Gamma distribution with mean (if a > 1) b
a−1 and variance

(if a > 2) b2

(a−1)(a−2) (as in Kim et al. (1998)) and N
(
µ, σ2

)
× I[a,b] represents a Normal

distribution with mean µ and variance σ2 restricted to the interval (a, b) and so imposes

stationarity of the log-volatility process (as in Jacquier et al. (2004)). The prior for

W follows a Beta distribution, W ∼ Be (0.1, 0.9). The mass parameter of the Dirichlet

process, M , has the prior suggested by Griffin and Steel (2004),

p (M) = θλ Γ (2λ)

(Γ (λ))
2

Mλ−1

(M + θ)
2λ

where θ denotes a prior sample size and λ is a variance parameter. While Griffin (2010)

suggests a sampler for updating α, in this paper we keep the value fixed using two

different values for α = 0.01 and α = 0.05 as suggested by Griffin (2010), to show its

effect in the density estimation process. The effect of the different priors for the DPM

is discussed in Griffin (2010).
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4 MCMC algorithm

In this section we briefly discuss the steps of the MCMC algorithm to fit the SPM model.

More details of the algorithm can be found in Appendix A. Let, y⋆ = (y⋆
1 , y

⋆
2 , ..., y

⋆
n),

h = (h1, h2, ..., hn) and µ
′

=
(
µ

′

1, µ
′

2, ..., µ
′

n

)
. Indicator variables s = (s1, s2, . . . , sn) are

introduced to allocate the observations to the distinct values of the Dirichlet process.

We propose the following steps for the algorithm to update the parameters:

❼ Initialize φ, σ2
η, σ

2
z , µ0,µ

′

,M, s, and W .

❼ Sample h|y⋆, φ, σ2
η, σ

2
z , µ0,µ

′

,M,W, s.

❼ Sample s|y⋆, φ, σ2
η, σ

2
z , µ0,µ

′

,M,W,h.

❼ Sample σ2
z , µ0,µ

′

,M,W |y⋆, φ, σ2
η, s,h.

❼ Sample φ, σ2
η|y⋆, σ2

z , µ0,µ
′

,M,W, s,h.

The full algorithm is described in Appendix A but the steps are briefly described here.

Updating Log-Volatilities

The representation of the SV model in (5) and the choice of a mixture of Normals for

zt enables us to make easier inference. Conditional on s, the model for y⋆ is a Gaussian

dynamic linear model and so the log-volatilities h can be updated simultaneously using

the forward filtering backward sampling (FFBS) algorithm (Carter and Kohn 1994;

Frühwirth-Schnatter 1994; Durbin and Koopman 2002).

Updating Mixture Components

The allocation variables s and the parameters of the mixture model can be updated

using the methods described by Griffin (2010) which uses standard methods for Dirichlet

process mixture models.

Updating SV parameters

We have found that it is necessary to mix between two parameterizations of the model

when updating the SV parameters. This is because the log-volatilities h and the pa-

rameters
(
φ, σ2

η, µ
)

are usually highly correlated. Two main approaches for improving
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the mixing have been proposed in the literature: reparametrize the model into a form

that reduces the dependence between the parameters and the log-volatilities (Gelfand

et al. 1995; Papaspiliopoulos et al. 2007) or to use a scheme that updates jointly the

parameters and the log-volatilities (Kim et al. 1998; Chib et al. 2002; Andrieu and

Roberts 2009). In this paper, we will use the first solution. In particular, we introduce

a centred and non-centred parameterization (Gelfand et al. 1995) of the SPM model and

update the parameters using a hybrid Gibbs sampler that chooses a parameterization

with some probability at each step of the Gibbs sampler. The model in equation (8) is

represented using the non-centred parameterization for µ, i.e. µ and the log-volatilities

are a priori independent. The alternative parametrization is the centered defined by the

reparameterization from (µ′,h) to (µ⋆,h⋆) where µ⋆
j = µ′

j + µ0 and h⋆
t = ht − µ0.

5 Results

In this section, the semiparametric SV model (SPM) is fitted to simulated data, asset

return data and stock index data. The results for the SPM model with α = 0.01 and

α = 0.05 are compared to the results with the parametric SV model (PM) where ǫt

follows a Normal distribution using the algorithm of Kim et al. (1998). The fit of the

models will be assessed using log predictive scores as proposed by Kim et al. (1998).

The average log predictive score for one-step ahead predictions is given by

LPS = − 1

T

T∑

i=1

logp
(
y⋆

i

∣∣∣y⋆
1:(i−1), θ̂

)

where y⋆
1:t = (y⋆

1 , y
⋆
2 , ..., y

⋆
t ) and θ̂ is an estimate of the model parameters and the one-

step ahead predictive density is given by

p
(
y⋆

i

∣∣∣y⋆
1:(i−1), θ̂

)
=

∫ ∫
p
(
y⋆

i

∣∣∣hi, θ̂
)
p
(
hi

∣∣∣hi−1, θ̂
)
p
(
hi−1

∣∣∣y⋆
1:(i−1), θ̂

)
dhidhi−1.

Smaller values of the LPS indicate a better fitting model. Monte Carlo approximations

to the integral in p
(
y⋆

i

∣∣∣y⋆
1:(i−1), θ̂

)
for all i can be efficiently calculated using draws

from p
(
hi−1

∣∣∣y⋆
1:(i−1), θ̂

)
sampled using standard sequential Monte Carlo methods. The

model parameters are (φ, σ2
η, µ) in the parametric model and (φ, σ2

η, F ) in the nonpara-

metric model which are all estimated by their posterior means. In the sequential Monte

Carlo sampler, it is useful to represent the posterior mean of F by a mixture of normals.

The approximating mixture of normals is calculated by minimizing the Kullback-Leibler

divergence between the approximation and the posterior mean of F .
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We often find that the different models have similar LPS values. Consequently, it is

useful to have a measure that concentrates on the prediction of tail events. We propose

the average log predictive tail score for one-step ahead predictions which restricts at-

tention to those events in the upper 100α% of the empirical distribution of the squared

returns and is defined by

LPTSα = − 1
∑T

i=1 I(y⋆
i > zα)

T∑

i=1

I(y⋆
i > zα)logp

(
y⋆

i

∣∣∣y⋆
1:(i−1), θ̂

)

where zα represents the upper 100α% point of the empirical distribution of the returns.

The LPTS cannot be formally used for model selection as it is not considered a proper

scoring rule (see Gneiting and Raftery 2007) but can be useful for understanding how

the model performs for tail events.

The approximation in (9) implies that the kurtosis of the distribution of ǫt can

be approximated by the variance of zt. Therefore, the posterior distribution of σ2 =

V[z⋆
t |ψ], given in (11), is reported in the results.

SPM (α = 0.01) SPM (α = 0.05) PM

Simulated 32930 32210 25738

Microsoft 55734 55349 34413

S&P 500 64274 67328 42530

Table 1: CPU times (in seconds) for the Semiparametric model with α = 0.01 and

α = 0.05 for c = 10−4.

CPU times in seconds of running each model and dataset for 50 000 iterations using

code written in Matlab with a 2GHz Intel Core 2 Duo processor are given in Table 1. All

results are calculated by running the sampler, coded in Matlab, for 200 000 iterations

using two quad core Xeon 2.53Ghz CPUs. The first 100 000 draws are discarded as burn-

in period and, after this period, we retain every 10th draw to reduce autocorrelation

between draws. The datasets that we will be using for our analysis are: simulated

returns, Microsoft returns and S&P 500 returns.

5.1 Simulated Data

We generated 3000 data points from the basic SV model in (1), with φ = 0.97 µ = 0,

σ2
η = 0.0225 and ǫt following a Student t-distribution with 7 degrees of freedom. The

data used are shown in Figure 2.
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Figure 2: Simulated Data: the actual values of yt.

Figure 3 presents the autocorrelation function for sampled values from each param-

eter of SPM with α = 0.01. The autocorrelations decay quickly for all parameters apart

from M and σ2 but these parameters do not show a large degree of autocorrelation.

This suggests that the SPM sampler mixes quickly.

True SPM (α = 0.01) SPM (α = 0.05) PM

φ 0.97 0.960 (0.928, 0.979) 0.965 (0.938, 0.982) 0.904 (0.841, 0.942)

µ 0.000 0.023 (-0.143,0.197) 0.095 (-0.07,0.269) 0.267 (0.135,0.403)

ση 0.15 0.161 (0.116,0.232) 0.145 (0.100,0.202) 0.304 (0.230,0.404)

σ2 5.482 (5.009,6.115) 4.929 (4.778,5.082)

M 0.360 (0.070,1.144) 2.622 (0.445,17.453)

k 4 (2,7) 19 (5,90)

W 0.028 (0.012,0.043) 0.000 (0.000,0.003)

Table 2: Simulated Data: Posterior medians and 95% Credible Intervals for the Semi-

parametric (SPM) and Parametric (PM) for c = 10−4.

Table 2 contains the posterior estimates for the parameters of PM and SPM with

α = 0.01 and α = 0.05. PM poorly estimates all parameters of the model with φ

underestimated, and µ and ση overestimated. In contrast, both instances of the semi-

parametric model estimate all parameters of the model well. The t7 distribution has a

kurtosis of 5. The posterior median kurtosis is approximately 4.5 when α = 0.01 and

3.9 when α = 0.05. Therefore, the kurtosis is a little underestimated but still has a
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Figure 3: Autocorrelation Plot for SPM with α = 0.01

value that is larger than the value associated with a Normal distribution. We also used

the method of Nakajima and Omori (2009) to fit a model with a t-distribution (with

unknown degrees of freedom). The results are very similar to those for the SPMs with

the posterior median kurtosis being 4.5.

Figure 4 shows the fitted volatilities for both the SPM and the PM for c = 10−4

and the posterior mean of the density of logǫ2t . Panel (a) in Figure 4 shows that the

posterior means of the volatilities under PM tend to undersmooth the volatilities with

extra peaks introduced. The SPM models are able to estimate the volatilities well. We

might expect that the semi-parametric model leads to larger uncertainty in the estimates

of the volatilities since the model is less restricted. Panels (c) and (d) of Figure 4 show

the credibility intervals for the SPM models which are very similar to those for a model

with a t-distribution for ǫt. Panel (E) of Figure 4 shows the predictive distribution of

the SPM using different values of α. Both choices lead to a satisfactory fit to the true

distribution used to generate the data. The lack of fit of the Normal distribution used

in PM is shown by the sharper decline of the density in the right-hand tail.

Table 3 shows the log predictive scores for SPM with α = 0.01 and α = 0.05, and for
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Figure 4: Simulated Data: Posterior mean volatilities for the PM and SPMs (Panel A);

posterior median and 95% credible interval for: PM (Panel B), SPM (α = 0.05) (Panel

C) and SPM (α = 0.01) (Panel D); Posterior mean distributions (Panel E).

PM. Overall, the LPS is smaller for the SPMs for all the offsets examined. However, the

differences between the models tend to be small. The results for the two tail measures

show that LPTS0.05 is similar under the PM and the SPMs but the SPMs outperform

the PM for LPTS0.01. We found that small values of the offset, for example c = 10−7,

can lead to poor predictive performance for tails events and this suggests that a larger

value of c would lead to more reliable results. Therefore, we use c = 10−4 in the following

examples.

5.2 Real data examples

We fitted the SPM and PM models to the compounded returns in percentages (which is

yt = 100log(rt/rt−1) where rt is the price at time t) of Microsoft (MSFT) from January

4, 1993 to December 31, 2008, which has 4030 data points, and the Standard and Poors

500 (S&P 500) index from March 13, 1980 to June 6, 2000, which has 5136 data points.
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Offset SPM (α = 0.01) SPM (α = 0.05) PM

LPS c = 10−3 2.10 2.09 2.13

c = 10−4 2.14 2.14 2.15

c = 10−7 2.15 2.15 2.16

LPTS0.05 c = 10−3 3.06 3.08 2.99

c = 10−4 3.13 3.06 3.00

c = 10−7 3.12 3.13 2.99

LPTS0.01 c = 10−3 4.36 4.50 4.60

c = 10−4 4.43 4.13 4.60

c = 10−7 4.41 4.42 4.58

Table 3: Simulated Data: Log-Predictive Scores for competing models: PM, and SPM

with α = 0.01 and α = 0.05.

The data are depicted in Figure 5.

SPM (α = 0.01) SPM (α = 0.05) PM

φ 0.999 (0.996,0.999) 0.996 (0.991,0.999) 0.978 (0.967,0.987)

µ 1.291 (-0.204, 3.311) 1.187 (0.442, 2.120) 1.139 (0.837, 1.439)

σ2
η 0.059 (0.051, 0.067) 0.078 (0.061, 0.103) 0.200 (0.165, 0.240)

σ2 5.421 (5.299, 5.539) 5.546 (5.395,5.722)

M 22.96 (11.39, 44.00) 33.69 (9.67, 73.14)

k 123 (72,197) 141 (55, 283)

W 0.017 (0.019, 0.023) 0.016 (0.010, 0.022)

Table 4: MSFT: Posterior medians and 95% credible intervals for SPM with α = 0.01

and α = 0.05 and PM for c = 10−4.

Table 4 contains the results for the MSFT returns. The posterior median of φ is

larger under the SPMs and the posterior median of σ2
η is smaller under the SPMs. This

suggests that the PM tends to undersmooth the estimated volatilities and over-reacts

to large absolute returns (and shows a similar pattern to the results for the simulated

data). Although the posterior medians of φ for the SPMs are close to 1, this does not

imply violation of the stationarity assumption. With the SPMs, the parameter µ is

smaller, suggesting a smaller variance for ǫt and σ2 is estimated to be much larger than

4 suggesting that the distribution of ǫt is heavy tailed. This suggests that the PM again

over-estimates the variance to compensate for the lighter tails of the assumed return

distribution. Finally, the posterior median of the number of clusters k is relatively big



916 Nonparametric SV modelling

4/01/1993 1/12/2000 31/12/2008
−20

−15

−10

−5

0

5

10

15

20
MSFT

t

y
t

13/03/1980 23/12/1991 6/06/2000
−25

−20

−15

−10

−5

0

5

10
S&P500

t

y
t

Figure 5: The returns of (a) Microsoft and (b) the S & P 500 index.

while the posterior median of W indicates the existence of zero returns. These findings

are similar to those found by Jensen and Maheu (2010).

Other posterior summaries for the MSFT returns are shown in Figure 6. The poste-

rior mean of the density of logǫ2t is shown in panel (E) and shows a bimodal distribution.

The larger mode represents the main body of the data but a second mode is introduced

at a much smaller value of logǫ2t . This secondary mode is caused by the larger number

of zero log-returns. The position of the mode is sensitive to the choice of c since a zero

return is recorded as logc2. The posterior distributions of the volatilities are shown in

the other panels and illustrate a smoother estimate for the SPMs compared to the PM.

The predictive performance of the SPMs and PM for the MSFT asset returns series

are shown in Table 5. The results regarding the LPS score are qualitively the same for

all the offset parameters apart from c = 10−7 where the PM is favoured. That is why

we employ the LPTS to see how the models behave in extreme events. The difference

is much more pronounced for the tail scores which substantially favour the SPMs for
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Figure 6: MSFT: Posterior mean volatilities for the PM and SPMs (Panel A); posterior

median and 95% credible interval for: PM (Panel B), SPM (α = 0.05) (Panel C) and

SPM (α = 0.01) (Panel D); Posterior mean distributions (Panel E).

c = 10−3 and c = 10−4. In the case of c = 10−7, the PM seems to be doing a better job

than the SPM.

Results of applying these models to a further asset price (General Motors from

January 2, 1980 to December 31, 1996) are presented in Delatola and Griffin (2010) and

show similar features to those identified in this analysis.

Table 6 shows the results of fitting the SPMs and the PM to the S & P 500 data. The

inference has similar features to the inference for the asset return data. The posterior

median of the persistence parameter, φ, is estimated to be larger for the SPMs and

the variance of the volatility equation, σ2
η, was estimated to be smaller (again, the 95%

credible intervals for σ2
η with the PM and SPMs do not cross). As in the case of the

Microsoft returns, the posterior median for φ for the SPM model might be close to 1,

but this does not imply a violation of the stationarity. The estimated value of σ2 is

smaller than with the asset return data and suggests that the return distribution has a

lower level of kurtosis.
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Offset SPM (α = 0.01) SPM (α = 0.05) PM

LPS c = 10−3 2.13 2.16 2.13

c = 10−4 2.18 2.18 2.16

c = 10−7 2.26 2.50 2.21

LPTS0.05 c = 10−3 3.99 3.88 4.62

c = 10−4 4.39 4.57 5.40

c = 10−7 8.50 18.57 7.45

LPTS0.01 c = 10−3 3.95 3.61 4.79

c = 10−4 4.14 4.09 5.90

c = 10−7 10.61 26.24 9.10

Table 5: MSFT: Log-Predictive Score for competing models: PM and SPM with α =

0.01 and α = 0.05.

SPM (α = 0.01) SPM (α = 0.05) PM

φ 0.994 (0.989,0.998) 0.994 (0.989,0.998) 0.982 (0.972,0.990)

µ -0.193 (-0.704, 0.303) -0.213 (-0.639,0.251) -0.348 (-0.556,-0.096)

ση 0.072 (0.057,0.090) 0.073 (0.058,0.091) 0.144 (0.113,0.173)

σ2 4.239 (3.346,7.116) 3.592 (3.320,4.621)

M 0.621 (0.135,1.771) 2.195 (0.447, 15.407)

k 6 (3, 13) 17 (6, 46)

W 0.037 (0.001, 0.047) 0.039 (0.001, 0.118)

Table 6: S & P 500: Posterior medians and 95% credible intervals for SPM with α = 0.01

and α = 0.05 and PM for c = 10−4.

Figure 7 shows the estimated volatilities and posterior mean of the distribution of

logǫ2t . The posterior mean volatilities and the credibility intervals for the volatility

are very similar for the PM and SPMs, indicating the similarity of the asset return

distribution for the SPMs and the PM.

As far as predictability is concerned, the results in Table 7 indicate that both the

PM and the SPMs seem to have the same ability for the S & P 500 data with LPS.

The tail LPS scores show a slightly different picture. With the S & P 500 data, the

LPTS0.05 shows better predictive performance for the SPMs, the same can be seen for

the LPTS0.01.



E.-I. Delatola and J. E. Griffin 919

13/3/1980 27/2/1984 9/2/1988 23/12/1991 6/12/1995 6/6/2000
0

2

4

6
(A)

 

 

13/3/1980 27/2/1984 9/2/1988 23/12/1991 6/12/1995 6/6/2000
0

2

4

6
(B)

−10 −5 0 5
0

0.1

0.2

0.3
(E)

 

 

13/3/1980 27/2/1984 9/2/1984 23/12/1991 6/12/1995 6/6/2000
0

2

4

6
(C)

13/3/1980 27/2/1984 9/2/1988 23/12/1991 6/12/1995 6/6/2000
0

2

4

6
(D)

PM SPM α =0.01 SPM α =0.05

SPM α =0.01

SPM α =0.05

Figure 7: S & P 500: Posterior mean volatilities for the PM and SPMs (Panel A);

posterior median and 95% credible interval for: PM (Panel B), SPM (α = 0.05) (Panel

C) and SPM (α = 0.01) (Panel D); Posterior mean distributions (Panel E).

6 Discussion

This paper presents a method for Bayesian semiparametric inference in stochastic volatil-

ity models. The volatility equation is given a parametric form and the return distri-

bution is modelled nonparametrically. The method models logǫ2t rather than ǫt (as

considered by Jensen and Maheu (2010)). This allows efficient computational meth-

ods using forward-filtering backward-smoothing methods to be applied to the difficult

problem of updating the log-volatilities in a Gibbs sampler. We discuss links between

the mean and variance of logǫ2t and the variance and kurtosis of ǫt which allows us to

simply interpret inference from our model. The results of fitting the model to data

suggest that the model can give very different estimates of volatility to the standard

parametric model with a Normal return distribution when there is evidence that the

return distribution has heavy tails. In this case, the parametric model substantially

undersmooths volatility. Out-of-sample results show that the model gives much better

prediction than the parametric model in certain cases, particularly asset returns which

seem to have heavier than Normal tails. We also show that the model gives similar
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Offset SPM (α = 0.01) SPM (α = 0.05) PM

LPS c = 10−3 2.10 2.10 2.10

c = 10−4 2.24 2.13 2.12

c = 10−7 2.13 2.13 2.13

LPTS0.05 c = 10−3 3.56 3.54 3.96

c = 10−4 3.54 4.40 4.55

c = 10−7 4.70 4.70 4.85

LPTS0.05 c = 10−3 3.79 3.77 4.04

c = 10−4 3.97 4.48 5.12

c = 10−7 6.21 6.25 6.52

Table 7: S & P 500: Log-Predictive Scores for competing models: PM, SPM with

α = 0.01 and α = 0.05.

results to the parametric model if the return distribution is Normal or close to Normal.

The current paper is a first step in the development of flexible semiparametric

Bayesian models for stochastic volatility in discrete time which can be fitted efficiently.

The model currently lacks a leverage effect and the volatility equation is given a simple

form. Future work will consider the addition of a leverage effect and further nonpara-

metric modelling of the volatility equation.

Appendix: MCMC algorithm for SPM model

In this section, we give in detail the MCMC scheme for the SPM.

❼ Initialize: φ, σ2
η, µ0, σ

2
z , W , s and µ

′

. We denote s = {st}n
t=1, h = {ht}n

t=1 and

µ
′

=
{
µ

′

i

}k

i=1
where k is the number of clusters.

❼ Updating h|y⋆, φ, σ2
η, s, σ

2
z . The log-volatilities, h, can be updated jointly using

the FFBS algorithm presented in Kim et al. (1998).

❼ Updating s: The indicator variables can be drawn using inversion sampling,

p (st = i) ∝






W 1√
σ2

0

exp
{
− 1

2σ2

0

(y⋆
t − ht − logc)

2
}

i = 1

(1 −W )
n−t

i√
ασ2

z(n
′
2
−1+M)

exp

{
− 1

2ασ2
z

(
y⋆

t − ht − µ
′

i

)2
}

2 ≤ i ≤ k−t

(1 −W ) M√
σ2

z(n
′
2
−1+M)

exp
{
− 1

2σ2
z

(y⋆
t − ht − µ0)

2
}

i = k−t + 1.
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Let n−t
i =

∑n
i=1;j 6=t I (si = k) and k−t be the number of clusters excluding the

observation at time t. Also, denote by n
′

2 the number of observations that belong

to the non-zero return cluster. In the above scheme, we sample the indicator

variables, where st = 1 indicates that the observation belongs to the zero-return

cluster and belongs to the non-zero cluster for all other values of st .

❼ Choosing parametrizations. With probability 0.5 each, choose between updating

the parameters using the centered or non-centered parametrization of the SV

model.

Non-centred Parametrization

– Updating µ
′

i. For each of the nonzero components, the full conditional dis-

tribution follows a Normal distribution :

N





∑
j|sj=i(y⋆

j −ht)
α + µ0

1−α
ni

α + 1
1−α

,
σ2

z
ni

α + 1
1−α



 .

– Updating µ0. For the non-centered parametrization, µ0 is Normal distributed

with mean:

σ2
µ0





1 − φ2

σ2
η

h1 +
1 − φ

σ2
η

n
′

2∑

t=1

(ht+1 − φht)






and

σ2
µ0

=
σ2

η

(n
′

2 − 1)(1 − φ)2 + (1 − φ2)
.

– Updating σ2
z : The full conditional of σ2

z follows an inverted-Gamma:

IG




n

′

2 + k

2
,
1

2





∑n
′

2

i=1

(
y⋆

i − µ
′

si

)2

α
+

∑k
i=1

(
µ

′

i − µ0

)2

1 − α







 .

– Updating φ. The scheme to update φ is a Metropolis-Hastings algorithm.

We propose a value for φ, φ⋆, from a truncated Normal distribution in the

interval [−1, 1],

φ⋆ ∼ N[−1,1]




∑n

′

2
−1

t=1 (ht − µ0)(ht+1 − µ0)
∑n

′
2
−1

t=1 (ht − µ0)
,

σ2
η

∑n
′
2
−1

t=1 (ht − µ0)



 .
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We accept the proposal with probability min(1, exp {g(φ⋆) − g(φ)}) where

g(φ) = logπ(φ) − (h1 − µ0)
2(1 − φ2)

2σ2
η

+
1

2
log(1 − φ2).

– Updating σ2
η. The full conditional distribution for σ2

η is an inverted-Gamma

σ2
η|h,

1..., hn, φ ∼ IG

(
2.5 +

n
′

2

2
, β⋆

)

where

β⋆ = 0.025 +
(h1 − µ0)

2(1 − φ2) +
∑n

′

2
−1

t=1 (ht+1 − µ0) − φ(ht − µ0))
2

2
.

Centred Parametrization

To apply the MCMC scheme for the centered parametrization, set µ⋆
i = µ′

i + µ0

and and h⋆
t = ht − µ0.

– Updating µ0. The full conditional for µ0 in the centered parametrization,

which concerns only the nonzero components, follows a Normal distribution:

N

(∑k
i=1 µ

⋆
i

k
,
(1 − α)σ2

z

n
′

2

)
.

– Updating σ2
z : The full conditional of σ2

z follows an inverted-Gamma:

IG



n
′

2 + k

2
,
1

2




∑n

′

2

i=1

(
y⋆

i − µ⋆
si

)2

α
+

∑k
i=1 (µ⋆

i )
2

1 − α







 .

– Updating φ. The scheme to update φ is a Metropolis-Hastings algorithm.

We propose a value for φ, φ⋆, from a truncated Normal distribution in the

interval [−1, 1],

φ⋆ ∼ N[−1,1]




∑n

′

2
−1

t=1 h⋆
th

⋆
t+1

∑n
′
2
−1

t=1 h⋆
t

,
σ2

η

∑n
′
2
−1

t=1 h⋆
t



 .

We accept the proposal with probability min(1, exp {g(φ⋆) − g(φ)}) where

g(φ) = logπ(φ) − h⋆2
1 (1 − φ2)

2σ2
η

+
1

2
log(1 − φ2).
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– Updating σ2
η. The full conditional distribution for σ2

η is an inverted-Gamma

σ2
η|h⋆

1, ..., h
⋆
n, φ ∼ IG

(
2.5 +

n
′

2

2
,

)

where

β⋆ = 0.025 +
h⋆2

1 (1 − φ2) +
∑n

′

2
−1

t=1 (h⋆
t+1 − φh⋆

t )
2

2
.

We transform to µ′
i = µ⋆

i − µ0 and ht = h⋆
t + µ0 in order to be consistent

with the non-centered parametrization of the SPM.

❼ Updating M : The scheme used to update M is the ones used in Griffin (2010). It

is an independence Metropolis-Hastings sampler.

❼ Updating W . The full conditional of W follows a Dirichlet distribution:

W ∼ Dir
(
1 + (n− n

′

2), 4 + n
′

2

)
.

❼ Updating µ: According to the DPM, µ can be estimated as

µ = W logc+ (1 −W )




k∑

j=1

nj

n+M
µ

′

j +
M

M + n
µ0



+ 1.2704.

❼ Updating σ2: Similar to the step above we have,

σ2 =(1 −W )

∑k
j=1

(
nj

(
ασ2

z + µ
′2
j

))
+M

(
µ2

0 + σ2
z

)

n
′

2 +M

+W
(
(logc)2 + 1

)
− (µ− 1.2704)

2
.
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