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Abstract—Sound source localization and separation from a mix-

ture of sounds are essential functions for computational auditory

scene analysis. The main challenges are designing a unified frame-
work for joint optimization and estimating the sound sources

under auditory uncertainties such as reverberation or unknown

number of sounds. Since sound source localization and separation
are mutually dependent, their simultaneous estimation is required

for better and more robust performance. A unified model is

presented for sound source localization and separation based
on Bayesian nonparametrics. Experiments using simulated and

recorded audio mixtures show that a method based on this model

achieves state-of-the-art sound source separation quality and has
more robust performance on the source number estimation under

reverberant environments.

Index Terms—Audio source separation and enhancement (AUD-

SSEN), Bayesian nonparametrics, blind source separation, micro-
phone array processing, sound source localization, spatial andmul-

tichannel audio (AUD-SMCA), time-frequency masking.

I. INTRODUCTION

C OMPUTATIONAL auditory scene analysis (CASA)

aims at a machine listening that can extract and analyze

useful information and/or meaningful auditory events such as

speech content and sound source type from audio recordings

[1], [2]. The decomposition of these constituent sound sources

is essential for CASA systems because a mixture of audio

signals containing multiple sound sources is common in our

daily environment [3].

Many CASA systems use multiple sensors, e.g., a micro-

phone array, to decompose the observed mixture into the in-

dividual sound sources [4]. Microphone arrays spatially filter

the sound sources to act as a decomposition function. That is,

they retrieve audio signals from different directions, which is

referred to as sound source separation [3], [5]. If the alignment

of the microphone array is available, the direction of arrival of
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each sound source can be estimated, which is sound source lo-

calization [6]. While these two problems of separation and lo-

calization are mutually dependent, most existing methods deal

with a specific part of these problems, and combined in a cas-

cade manner to handle both problems. The overall quality of this

combinational approach is prone to be determined by the worst

component. For example, the HARK sound source localization

and separation system separates the sound sources using the di-

rection of each source estimated by the preceding localization

step [7]. Therefore, a localization failure affects the separation.

Thus, a unified method is necessary to optimize the mutually

dependent problems.

Designing the unified framework for sound source localiza-

tion and separation involves two challenges; how to model the

unified microphone array processing and how to overcome the

auditory uncertainties such as reverberation and an unknown

source number. Though the localization and separation have

been unified by a Bayesian topic model [8], [9], this method

assumes that the source number is available a priori, which is

not always the case in practice. On the other hand, the estima-

tion of a source number has also been tackled separately from

the separation [10], [11]. The drawbacks of these approaches are

the necessity of parameter learning in advance or elaborate con-

figuration depending on the auditory environments. An overall

framework that unifies the localization and separation under the

uncertainty of the source number will contribute to a more flex-

ible CASA system than that by combinational approaches.

This paper presents a model based on Bayesian nonparamet-

rics for sound source separation and localization with source

number estimation using a microphone array. We formulate

this as a unified twofold clustering problem in which the sound

source separation is formulated as a clustering of time-fre-

quency points in the time-frequency domain of the observed

spectrogram and sound source localization is formulated as an

assignment of each cluster to a certain direction. The clusters

corresponding to the different sound sources are generated

using a hierarchical Dirichlet process to cope with the source

number uncertainty. To infer the latent variables, we derive a

collapsed Gibbs sampler that drastically improves the source

number estimation accuracy.

II. PROBLEM AND RELATEDWORK

Fig. 1 outlines our problem. The inputs are a multichannel

mixture audio signal and steering vectors that carry informa-

tion about the alignment of microphones. The outputs are the re-

spective audio signals comprising the observed mixture, the ar-

rival directions of the sound sources, and the number of sources.
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Fig. 1. Illustration of our problem; sound source localization and separation with source number estimation. The process is carried out in the time-frequency

domain to generate TF masks. Our Bayesian nonparametrics-based model dispenses with environment-dependent model configurations such as a priori source

number information.

Fig. 2. Histogram of time-frequency amplitudes . The power of each

time-frequency point is close to zero in most cases. This implies the power

sparsity of sound sources in the time-frequency domain. That is, at most one

source is assumed dominant at each time-frequency point.

Steering vectors are necessary for sound source localization. A

steering vector conveys the time difference of sound arrivals at

each microphone given a certain direction and a frequency bin.

We use the steering vectors measured in an anechoic chamber so

that the vectors can be used independently of the reverberation

or environment. We can also synthesize steering vectors when

we use a microphone array in a simple shape such as a linear

array in Fig. 1.

We make three assumptions on our auditory setup: (1) spa-

tial sparsity of sound sources, (2) power sparsity of the audio in

the time-frequency domain, and (3) non-moving sound sources.

The first assumption means that all sound sources are located

in different directions because a microphone array extracts an

audio signal coming from a certain direction. The second as-

sumption is illustrated in Fig. 2. The histogram of the spec-

trogram amplitudes reveals the energy of most time-frequency

points is close to zero. In other words, we are likely to have only

one dominant source for each time-frequency point even for a

mixture of sound sources. This supports the use of a clustering-

based approach for sound source separation [5], [8], [12]. The

third assumption means that the sound sources do not change

their directions over time and is made for simplicity.

Sound source separation and localization in practical situ-

ations have two inherent problems: reverberation and source

number uncertainty. When we observe a sound in a room, the

observation contains reverberation that can bemodeled as a con-

volutive process [13]. Though methods in the time-frequency

domain through a short-time Fourier transform (STFT) are often

used to cope with the reverberation, this causes a permutation

problem [14]. The permutation problem occurs when the sepa-

ration is carried out independently of frequency bins in an un-

supervised manner, e.g., using independent component analysis

(ICA) [3]. To aggregate the spectrogram of a certain source,

we must identify the signals of the same sound source from all

frequency bins. Independent vector analysis (IVA) [15], [16]

avoids the permutation problem by maximizing the indepen-

dence of the constituent sound sources across all frequency bins

simultaneously.

Due to the uncertainty of the number of sources, we have to

deal with a model complexity problem and a possibly underde-

termined situation.With ICA and IVA, the number of sources

is assumed not to exceed the number of microphones . How-

ever, in practice, is not always guaranteed to be capped at

, especially when we are unaware of the source number. The

case in which is called an underdetermined problem.

An approach to this condition is the clustering formulation that

generates a time-frequency (TF) mask for each sound source

[5], [6], [17], [18], [19].

If the source number is unknown, we need to determine the

number of TF masks, which is equal to the number of sources,

to estimate. A Bayesian topic model is proposed for the sound

source localization and separation [8] in which a TF mask cor-

responds to a topic regarding the spectrogram as a document.

A sufficient number of TF masks are prepared and variational

Bayes inference with a sparse prior is carried out to shrink the

weight of unnecessary masks. Here, the number of sources is

still required when the method extracts the sound sources be-

cause the variational Bayes inference is often trapped at a local

optimum in terms of the cluster shrinkage. Sources are separated

with masks excluding the other redundant masks that have

unnecessary weights. While the posterior inference by Gibbs

sampling is presented [9] to avoid local optima, a priori source

number information is still necessary due to slow mixing of the

Markov chain involving multichannel precision matrices. The

local optimum may deteriorate the source number estimation.

The source number uncertainty is closely related to the se-

lection of model complexity. For example, source separation

methods using ICA or IVA often reduce the dimensionality of

the multichannel observation from the microphone number to

the source number by using principal component analysis when

the number of sources is available [20]. PCA is employed in

order to reduce the number of latent parameters in the separa-

tion matrices as a preprocessing of ICA [21], [22]. Similarly, TF
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TABLE I

NOTATIONS

masking-based separation methods often use the same number

of TF masks as that of sources so that the model complexity

should fit the source separation problem [5]. In case of source

number uncertainty, where an appropriate model complexity

is unknown, a simple solution is to use a sufficiently flexible

model. For example, if we can assume the source number is at

most four, four TF masks are sufficient. This approach is prob-

lematic in two ways: first, a model with a finite number of TF

masks fails in the separation when the source number exceeds

the number of TFmasks. Second, using a too flexiblemodelmay

affect the performance because redundantly flexible models are

apt to overfit the data.

Nonparametric Bayesian models are helpful in such situation

since we can bypass a careful selection of the mask number

by assuming an infinite number of TF masks in the model. Fur-

thermore, the prior distribution for the TF masks penalizes un-

necessary emergence of TF masks. This property helps the in-

ference to avoid an overfitting that may affect the separation

and localization performance. Some Bayesian nonparametric

models have been related to microphone array processing tech-

niques. Infinite independent component analysis [23] is a non-

parametric counterpart of ICA. Because this model allows only

for real-valued variables, the separation is limited to the time

domain, which is vulnerable to reverberation. While Nagira et

al. extend the model into the time-frequency domain [24], they

cope with the permutation resolution separately after the sepa-

ration. This naïve extension into the time-frequency domain is

problematic because the inference results in each frequency bin

may converge to different number of sources.

The contribution of this paper is twofold. (1) We present a

nonparametric Bayesian model that unifies sound source local-

ization, separation, and permutation resolution using a hierar-

chical Dirichlet process (HDP) [25]. This hierarchical model

is advantageous in that the number of sources is globally han-

dled instead of locally for each frequency bin. (2) We derive a

collapsed Gibbs sampler (CGS) that promotes the shrinkage of

the classes for more accurate sound source estimation. This col-

lapsed inference accelerates the inference by marginalizing out

the multichannel precision matrices that a usual Gibbs sampler

have to explicitly generate samples [9]. While Kameoka et al.

develop a similar framework based on Bayesian nonparametrics

without an HDP [26], the use of this hierarchical structure in

our model is expedient to encourage the temporal synchroniza-

tion of source dominance over frequency bins so as to generate

the time-frequency masks. This mechanism gains a robustness

against the reverberation because reverberation is apt to obscure

the temporal synchronization in the time-frequency domain.

III. HDP-BASED SOUND SOURCE LOCALIZATION

AND SEPARATION

As mentioned, the problem of sound source separation and

localization is tackled as a clustering problem. The observed

multichannel mixture signal is converted into the TF domain

by using STFT. The separation is the clustering of multichannel

vectors at each TF point while the localization is the matching

of each cluster with steering vectors. A separation with permu-

tation resolution has been developed based on latent Dirichlet

allocation (LDA) [27] in which the time frames are regarded as

documents and the TF points are treated as words [8]. In this

model, a few sound sources (corresponding to topics in the con-

text of LDA) are preferred in each time frame to help the permu-

tation resolution by synchronizing the appearance of the same

source across frequency bins. Because LDA is limited to a finite

number of sources in spite of the source number uncertainty,

we introduce an unbounded model in terms of the number of

sources by using HDP [25].

Our model is designed to achieve a balance between the capa-

bility to deal with an unbounded number of sound sources and

tractable inference of the latent parameters. In order to satisfy

these properties, we employ a likelihood distribution suitable to

model multichannel observation of directional sound sources as

well as conjugate prior distributions. The conjugate priors are

helpful to develop an efficient inference procedure in that the

parameter estimation is accelerated and stabilized with analytic

derivation of the posterior distribution and marginalization of

some of the latent parameters.

The notations used in this section are listed in Table I. Fig. 3

shows the graphical representation of our model. The double-

circled is the observation, the circled symbols are latent

probability variables, and the plain symbols are fixed values.

Section III-A explains how the multichannel input signal is ob-

served and associated with steering vectors. Section III-B de-
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Fig. 3. Graphical model depicting the generative process. Observed variables

are double-circled. Latent random variables are denoted with a single circle.

Fixed values are denoted by plain symbols. Variables inside a boxwith an upper-

case symbol are independent and identically distributed with respect to the cor-

responding lower-case index.

Fig. 4. Scatter plot of multichannel observation at 3200 Hz. Each plot corre-

sponds to each time-frequency point in the multichannel space. Two sources

located in different directions form two subspaces (in blue and red dots). The

subspace indicated by red and blue arrows corresponds to the direction of ar-

rival of the source.

scribes the inference by using CGS. Section III-C shows how

the sound sources are retrieved or localized and how the number

of sources is estimated using the sampled latent variables. Fi-

nally, Section III-D shows the initialization procedures. A set of

variables is denoted with a tilde without subscripts, e.g.,

. As revealed in the subsequent

sections, the inference of corresponds to the estimation of TF

masks for separation, and the inference of corresponds to the

localization.

A. Multichannel Observation and Generative Model

This section explains the generative process described in

Fig. 3. We use a covariance model [28] for the likelihood func-

tion of the multichannel observation in the TF domain: each

sample follows a complex normal distribution with zero mean

and time-varying covariance. Fig. 4 shows a scatter plot of the

two-channel observations for two sources drawn in blue and

red, respectively. We assume that these samples are generated

as follows. Let a source located in direction be dominant in

time frame and frequency bin . The multichannel signal

at and is then observed in parallel to a steering vector as

, where corresponds to the source signal

existing at and and is the steering vector for direction

. Vector is an -dimensional vector, and each element in

corresponds to a microphone observation. The covariance

is , where means Hermitian

transposition.

The covariance matrix of each source, shown as ellipses in

Fig. 4, has an eigenvector with a salient eigenvalue. This vector

corresponds to the steering vector associated with the direction

of the source. That is, the class estimation of each sample corre-

sponds to the separation, and the investigation of the eigenvec-

tors of the clustered covariances corresponds to the localization

of sources.

The covariance above is factorized into a time-varying scale

term and a fixed direction term , and the sound

sources are assumed not to move over time. We rewrite these

terms as , where is the scale parameter corre-

sponding to the inverse of , ,

and is the identity matrix. We use this inverse

notation for the convenience of placing a conjugate prior over

. While has been treated as a probability variable in

[8], we fix this parameter as so that an efficient

collapsed inference is analytically derived by marginalizing out

. The likelihood function is a complex normal distribution:

(1)

where and indicate the class of and the direction

of class , respectively. Thus, denotes the direction in

which is located. The probability density function (pdf)

of a complex normal distribution is defined as

[29] with mean and precision . is the

determinant of matrix .

The direction matrix follows the conjugate prior, i.e.,

complex Wishart distribution [30].

(2)

where the pdf of complex Wishart distribution is

; is the trace of and

is the gamma function. The hyperparameters of the complex

Wishart distribution are set as and

. is generated from the given steering vectors ,

where is normalized s.t. and is set to 0.01 to

enable inverse operation.

An HDP [25] is used as the generative process of , which

is an infinite extension of an LDA. We introduce this hierar-

chical generative process to resolve the permutation ambiguity

[8]. First, global class proportion is generated, where the di-

mensionality of is infinitely large. Each element represent the

average weights of infinitely-many classes throughout the spec-

trogram. Then, the time-wise class proportion is sampled in

accordance with . Again, is an infinite-dimensional vector

where the elements represent the weights of infinite classes at

the specific time frame . Finally, each is sampled in accor-

dance with the time-wise class proportion . As Fig. 5 shows

the dominance of each source is synchronized across frequency

bins. Therefore, we achieve the permutation resolution by intro-

ducing . The stick-breaking construction for an HDP [25] is

given by:

(3)

where is the Griffiths-Engen-McCloskey distribution

with concentration ; denotes the Dirichlet process

with concentration and base measure . Here, the expectation
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Fig. 5. Left: class proportion for each time frame. Right: TF mask of two

sources denoted by . Each TF point is assigned to a class in accordance with

the class proportion of the time frame.

of satisfies . We place gamma distribution priors

for concentrations and . The

hyperparameters are set as , , , and

.

Direction indicator contributes to the sound source local-

ization as well as to the permutation resolution because classes

from the same direction are associated with each other across all

frequency bins. This variable is drawn from proportion gen-

erated from a flat Dirichlet distribution.

(4)

where is a -dimensional vector in which all elements are

1 and denotes the Dirichlet distribution with parameter

. Our model is a finite mixture with regard to direction due to

the limitation of the spatial resolution of microphone arrays. We

also place a gamma prior over as , where

and .

B. Inference by Collapsed Gibbs Sampler

For sound source separation and localization, the inference

of and is important. These variables are inferred by using a

CGS with , and marginalized out. The joint distribution

of , and becomes

(5)

where a dot in the subscripts denote summation over the index,

e.g., and . Note that, as explained in

[25], a finite can be handled during the inference so that the

product over is valid. The dimensionality of dynamically

changes over sampling iterations in accordance with the number

of classes actually drawn. The posterior parameters of the com-

plex Wishart distribution, and , are updated using suf-

ficient statistics:

(6)

where means a summation over the samples as-

signed to direction in frequency bin .

From Eq. (5), and are stochastically updated:

(7)

(8)

where denotes all latent variables except , superscripts

and mean the statistics without the sample at and

or samples of class , respectively, and is the inverse

matrix of .

Let be the number of sampled classes. To allow for the

probability of taking an unassigned class in Eq. (7),

has elements, as explained in [25]. To calculate the

probability of , is temporarily drawn

with probability . If is chosen to be , is

updated as , and the dimensionality of increases

by one with and , where is

drawn from a beta distribution: .

The updates of the other parameters, , and , follow a

procedure described in [25], [31]. These parameters are updated

using auxiliary variables.

C. Localization, Separation, and Source Number Estimation

The collapsed Gibbs sampler described in Eqs. (7, 8)

produces the samples of latent variables indexed by :

. Sound sources are retrieved by applying a

TF mask corresponding to a certain direction. The multichannel
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Fig. 6. Posterior weights for three-source mixture with 400-ms reverberation

time. Three salient peaks are found at , 0 , and 60 indicated by red ar-

rows. Some echo component (e.g., reflection on the wall) is observed as TF

masks with small weights.

spectrogram of a sound source in direction , denoted by ,

is retrieved using

(9)

where is the Kronecker delta, i.e., if

, and 0 otherwise. The factor is the

estimated TF mask for direction at time and frequency .

We can distinguish in which direction sound sources exist by

defining the posterior weight for each direction as

(10)

If we want sources from the mixture, we choose direc-

tions in descending order of . The sound sources are thereby

localized and separated.

The number of sound sources is estimated using the pos-

terior weights defined in Eq. (10). Fig. 6 shows the posterior

weights of a three-source mixture with a reverberation time of

400 (ms). We can set three salient peaks (indicated by red ar-

rows) with smaller peaks in the adjacent directions (blue ar-

rows). Reverberation causes additional peaks corresponding to

echoes (green arrows). The number of sources is estimated using

a three-step process. (1) Ignore the weights adjacent to larger

peaks: , if or . (2) Sort the

weights in descending order: . (3) Find

the number where the weight drops most sharply:

while . If mono-

tonically increases until , .

D. Initialization of the Inference

The inference is initialized in a similar way as previously re-

ported [8]. The inference starts with a certain number of classes

. First, is initialized with a uniform distribution whose

support has no overlap with the other classes. Then, each is

drawn using the sampled and the hyperparameter of Wishart

distribution, , generated from the steering vectors:

(11)

where is a pdf of uniform distribution on set .

Fig. 7. Microphone array configuration and positions of sound sources. The

number of microphones is 2, 4, or 8 whereas the number of sources is

set as 2 or 3. When , blue microphones are used. When , blue

and red microphones are used. All microphones are used when . When

, the center source illustrated in red is omitted.

IV. EVALUATION

We evaluate the sound source separation, localization, and

source number estimation performances of our HDP-CGS

method using simulated and recorded mixtures. We compare

the source separation performance with those of state-of-the-art

sound source separation methods: LDA-VB [8] and IVA

[16] for and TF masking with permutation resolution

(TF-perm.) [5] for . The localization and source number

estimation performance are compared between HDP-CGS and

LDA-VB.

A. Experimental Setup

Fig. 7 illustrates the experimental setup. We used two, four,

or eight microphones ( ) to observe two or three

sound source mixtures ( ) with the interval ,

60, and 90 . The microphones depicted in shaded blue were

used when , those depicted in blue and red were used

when , and all microphones in Fig. 7 were used when

. The center speaker (in red) was omitted when .

The steering vectors, , of the microphone array were measured

in an anechoic room such that with 5 resolution.When

, we used the steering vectors ranging from 90 to 90

so as to avoid the front-back ambiguity. The steering vectors

were generated from a Fourier transform of the first 1024 points

of the anechoic impulse responses.

The experiments used both simulated and recorded mixtures

in three rooms with reverberation times (RT) of 150, 400, and

600 (ms). The simulated mixtures were generated by convo-

luting the impulse responses measured in each room. The spec-

trograms of the impulse responses are shown in Fig. 20 with

an explanation in the appendix. For each condition, 20 mixtures

were tested using JNAS phonetically-balanced Japanese utter-

ances. The average length of these mixtures is around 5 (sec).

The audio signals were sampled at 16,000 (Hz), and STFT was

carried out with a 1024 (pt) hanning window and a 256 (pt) shift

size.

We use the signal-to-distortion ratio (SDR) as the metric for

separation quality [32]. Since this ratio is calculated from the
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Fig. 8. Separation results for simulated mixtures with two sources. Larger value means better separation. Bars are the means, and the segments are the standard

deviations. Color represents each method. Left: (ms); middle: (ms); right: (ms).

Fig. 9. Separation results for simulated mixtures with three sources.

original signals and the identical number of separated sig-

nals, we extracted sound sources regardless of the source

number estimation results. We compare five methods in this ex-

periments: HDP-CGS, LDA-VB, IVA, ICA with permutation

resolution [33] (ICA-perm.), and TF masking with permuta-

tion resolution (TF-perm.). HDP-CGS and LDA-VB separate

sources in descending order of the posterior weight, as ex-

plained in Section III-C, whereas IVA and ICA-perm. take

sources in descending order of the power of the separated

audio signals, and TF-perm. carries out TF mask clustering

assuming sources. Note that TF-perm. uses the fact of

sources for the inference while the inferences of HDP-CGS

and LDA-VB are independent of . The number of classes

used by LDA-VB was 12, and HDP-CGS was initialized with

.

In Section IV-D, the source number estimation results are

compared between HDP-CGS, LDA-VB, and source separa-

tion and source counting method developed by Araki et al.

[34]. Since this method is developed for stereo observation

( ), we refer to this method as Stereo hereafter. The

idea of the source counting of Stereo is similar to our method

in that Stereo generates TF masks for each source and then

estimates the source number by counting the TF masks the

weight of which is above a certain threshold. The TF masks

are estimated through the EM algorithm where the observation

is based on the phase difference of two microphone, that is,

the phase of non-diagonal elements of . In contrast, our

method uses both the phase and level difference by considering

in Eq. (6), and extends the model to any number of

microphones.

The inference (parameter estimation) procedures are config-

ured as follows. The collapsed Gibbs sampler for HDP-CGS

was iterated 50 times with the first 20 cycles discarded as a

burn-in period. The other methods are iterated until the evalua-

TABLE II

COMPUTATIONAL COMPLEXITY OF EACH METHOD

tion function converges. LDA-VB typically converged in about

15 iterations. The iteration of IVA was 50 cycles. ICA-perm.

carried out 50 iterations for the separation for each frequency

bin and 30 iterations for the permutation resolution. TF-perm.

required 50 iterations for the separation and 30 iterations for

the permutation resolution, respectively. Computational com-

plexity of each method is compared in Table II. The number

of iterations is the necessary cycles for the convergence. Here,

one iteration involves the whole spectrogram; for example, TF

masking-based methods updates the weight of TF masks at all

TF points in one iteration whereas linear separation methods up-

dates the separation matrices of all frequency bins in each itera-

tion. The class number for HDP-CGS is the number of instan-

tiated classes during the inference. HDP-CGS requires iterative

operations due to the calculation of matrix determinants in

Eqs. (7) and (8). In practice, we can accelerate the computation

by skipping the evaluation of the probability for almost empty

classes and directions.

B. Separation Results

Figs. 8–11 show the separation results for simulated and

recorded mixtures with two or three sources. The bars are

grouped by the microphone number for each method. The
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Fig. 10. Separation results for recorded mixtures with two sources.

Fig. 11. Separation results for recorded mixtures with three sources.

SDR scores are averaged over the source interval because

the interval makes little difference in the separation quality.

The color represents each method according to the legend in

the rightmost figures. In general, a longer reverberation time

degrades the SDR of all methods. A comparison of Figs. 8 with

9, and Figs. 10 with 11 shows that a larger number of sources

in the observed mixture degrades the separation quality of the

respective sources.

Our method is superior to or competitive with the other

methods when and 8. In particular, HDP-CGS tends to

produce better SDR than LDA-VB. This is as expected because

LDA-VB has more than masks with non-negligible weights

due to local optima, which results in the limited SDR scores. In

contrast, the performance of our method is limited especially

when . This is explained as follows. Even though the

microphone number is small , the proposed approach

separates the sources considering a variety of possible numbers

of sources with the limited dimensionality of the observation.

This source number uncertainty limits the performance of

HDP-CGS. On the other hand, linear models including ICA

and IVA can assume that the possible source number is two

when . The determined problem of two-source and

two-microphone is also suitable for the linear models in terms

of the model complexity. Thus, the setup is advanta-

geous for the linear models. Similarly, TF-perm. uses the same

number of TF masks as that of the sources. This assumption

improves the separation quality of TF-perm. method. Another

remaining issue is the reverberation. We can note that the long

reverberation (600 ms) in the recorded mixtures deteriorates

the separation quality of any methods. To cope with these sit-

uations, an explicit model for the reverberation is enumerated

as a future work.

The performance with the recorded mixtures in Figs. 10 and

11 is worse than that with the simulated mixtures in Figs. 8 and

9. This is because the recorded audio contains more reverbera-

tion in the lower frequency region than simulated mixtures. As

shown in the appendix, the energy of the reverberation in the

impulse responses used to generate the simulated mixtures is at-

tenuated in the lower frequency range. In contrast, the recorded

mixtures preserve the lower frequency reverberation of the en-

vironments. The intensity of the reverberation in the low fre-

quency region severely affects the separation and localization

performance because the subspace structure shown in Fig. 4

is originally vague and is further disturbed by the reverbera-

tion. Furthermore, the SDR score is likely to be influenced from

the disturbance of the separation quality in the lower frequency

region because speech signals concentrate their power on the

lower part in the frequency domain.

C. Localization Results

Figs. 12–15 show the localization results of HDP-CGS and

LDA-VB in terms of the absolute errors of the localization re-

sults. Similarly to the separation results, the larger number of

microphones improves the localization performance while the

reverberation tends to affect the localization due to the reflection

of the sounds. The errors in LDA-VB is more prominent than

those in HDP-CGS because the posterior probability of

can fall into a local optimum with the variational Bayesian in-

ference of LDA-VB.

For some applications, the localization resolution specified

by the steering vectors (5 in our experiment) may be insuffi-

cient. We can apply the following post-processing to the sep-

arated sound image to enhance the localization resolution.

Let be the autocorrelation of the sound image and

be the eigenvector associated with the largest eigenvalue of

. The vector is a clue to investigate the direction of the

sound source since this vector is parallel to one of the subspaces

illustrated in Fig. 4. The direction that matches is investi-

gated by interpolating the given steering vectors of adjacent di-

rections, and [35], [36].
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Fig. 12. Localization results for simulated mixtures with two sources in terms of absolute errors. Smaller value means better localization. Bars are the means, and

the segments are the standard deviations. Color represents each method: blue bars indicate our HDP-CGS while red bars denote LDA-VB. Left: (ms);

middle: (ms); right: (ms).

Fig. 13. Localization results for simulated mixtures with three sources. Blue: HDP-CGS; red: LDA-VB.

Fig. 14. Localization results for recorded mixtures with two sources. Blue: HDP-CGS; red: LDA-VB.

Fig. 15. Localization results for recorded mixtures with three sources. Blue: HDP-CGS; red: LDA-VB.

D. Source Number Estimation Results

Figs. 16–19 show the source number estimation results

with HDP-CGS, LDA-VB, and Stereo. Each figure show the

histogram of source number estimates for each microphone

number and reverberation. Note that the results of Stereo is

presented for only case. The results are merged in

terms of for this evaluation because this parameter made little

difference to the source number estimation performance. An

ideal result of the estimation is that the bar is concentrated at

the ground truth source number .

A comparison of HDP-CGS and LDA-VB reveals that

HDP-CGS clearly outperforms LDA-VB because the blue bars

are mostly located at the true source number where as the red

bars are distracted to larger source numbers. These results

demonstrate that the CGS works well for source number esti-

mation because it avoids local optima of the latent space, unlike

variational Bayes inference. The results of Stereo tends to have

a larger variance than HDP-CGS with case. This is

considered because the observation model of Stereo uses only

the phase difference between the two microphones and thus the

TF mask generation is sometimes unstable. This makes it diffi-
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Fig. 16. Source number estimation results for simulated mixtures with two sources ( ). Each bar represents the proportion of source number estimates.

Color represents each method, and shade represents the number of microphones. Stereo method is only for . Left: (ms); middle:

(ms); right: (ms).

Fig. 17. Source number estimation results for simulated mixtures with three sources ( ).

Fig. 18. Source number estimation results for recorded mixtures with two sources ( ).

Fig. 19. Source number estimation results for recorded mixtures with three sources ( ).

cult to set a static threshold for the source counting in general

setups. Three points in particular are observed. (1) VB tends to

estimate more sources than CGS apparently because local op-

tima obtained by VB have heavier tails in the posterior weights,

which prevents correct source number estimation. (2) A larger

number of microphones contributes to a better estimation with

HDP-CGS. This means the number of microphones affects

source number estimation as well as source separation quality.

HDP-CGS sometimes underestimates the source number

when is small and reverberation time is large. This is

because the reverberation component is led to merge with

most-weighted TF mask due to HDP prior that encourages a

sparsity of activated masks. Thus, the ratio between the largest

weight and the second largest weight is maximized,

where the notation comes from Section III-C. On the other

hand, Stereo can estimate a larger source number as long as the

threshold for the TF mask weight is accurately configured. For

the improvement of this underestimation of HDP-CGS, more

sophisticated source number estimation mechanism may be

necessary.

E. Discussion and Future Work

The experiments revealed that our method outperforms

state-of-the-art methods in terms of separation quality. In addi-

tion, our method is capable of robust source number estimation

from a multichannel mixture even in a reverberant environment

thanks to the CGS.
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Fig. 20. Spectrograms of measured impulse response for each room.

They also revealed that reverberation particularly affects the

separation quality. We may incorporate a reverberation reduc-

tion technique such as [37] for further improved performance.

Our method assumes non-moving sound sources. The use of

a hidden Markov model would be a natural way to cope with

moving sound sources [38] as it would make the direction indi-

cator a time-series sequence. For source number estimation,

a model selection approach, such as [39], may be useful.

We used the measured impulse responses from the directions

we consider as prior information about the microphone array

we use. Reducing the necessary prior information about the mi-

crophone array can also be enumerated as the future directions.

For example, the impulse responses can be simulated from the

position of microphones or obtained through more casual and

automatic calibration.

V. CONCLUSION

Our sound source localization and separation method using

a microphone array achieves the decomposition function that is

essential to CASA systems in a unified manner based on hierar-

chical Dirichlet process. Source separation experiments using

simulated and recorded mixtures under various conditions

demonstrated that our method outperforms state-of-the-art

methods without a priori source number knowledge. The

Bayesian nonparametrics-based framework contributes to the

basis of CASA systems and robot audition architectures that

work in our daily environments.

APPENDIX

IMPULSE RESPONSES FOR SIMULATED MIXTURES

This appendix describes the impulse responses used to gen-

erate the simulated mixtures used in the experiment. The im-

pulse responses were measured by recording the time-stretched

pulse (TSP) signal. The TSP signal was recorded with 16000

(Hz) sampling rate. The length of the TSP signal was set 16384

points, that is, an approximately 1 (s) signal.

Fig. 5 visualizes the impulse responses measured in three

rooms with different reverberant conditions in the time-fre-

quency domain. We can confirm that the energy of the impulse

response is extended along the time axis with a larger re-

verberation time. We can also notice that the energy of the

reverberation is more concentrated on the higher frequency

region than the lower range, especially in RT 400 (ms) and RT

600 (ms) rooms. This may be because the frequency charac-

teristics of the loudspeaker used for the TSP recording or the

short length of the TSP signal attenuated the reverberation of

the lower frequency range.
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