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1. Introduction
Biomedical research has clearly evolved at a dramatic rate in the past decade, with improve-
ments in technology leading to a fundamental shift in the way in which data are collected
and analyzed. Before this paradigm shift, studies were most commonly designed to be simple
and to focus on relationships among a few variables of primary interest. For example, in
a clinical trial, patients may be randomized to receive either the drug or placebo, with the
analysis focusing on a comparison of means between the two groups. However, with emerging
biotechnology tools, scientists are increasingly interested in studying how patients vary in
their response to drug therapies, and what factors predict this variability. Such questions are
of fundamental interest in personalizing medicine, so that the physician prescribes the most
appropriate therapy given the patient’s history, genetics and lifestyle factors. Given this fo-
cus, it has become routine to collect large amounts of information for each study subject, with
the statistician’s challenge then being to perform inferences and develop predictive models
based on the massive amount of data available. Clinical trials and personalized medicine are
just one example of a growing trend in biomedicine towards embracing emerging technologies
for collection, storage and analysis of massive amounts of data.

To address big problems of this type, it is crucial for statisticians to have an appropri-
ate toolbox at their disposal. Certainly, classical statistical methods were developed with
simpler data structures and problems in mind. Hence, it has become necessary to consider
new statistical paradigms that perform well in characterizing complex data from a broad
variety of study designs. In complex settings, it is seldom if ever the case that one has a
defensible parametric model at their disposal, and it can be very challenging to check mod-
eling assumptions in high-dimensions. Hence, non- or semiparametric models seem required.
However, classical nonparametric methods often perform poorly in complex settings due to
the curse of dimensionality and to difficulties in accommodating complicating features of
the data, such as censoring and missing data. Nonparametric Bayes methods provide a
widely useful paradigm that gains some key advantages of a fully model-based probabilistic
framework, while being highly flexible and adaptable. In addition, a key to the success of
nonparametric Bayes methods in applications is the incorporation of a sparseness-favoring
structure, which combats the curse of dimensionality. This is accomplished automatically
through the Bayesian penalty for model complexity (Jeffreys and Berger, 1992) and is aided
through centering on a base parametric model.

The goal of this chapter is to provide a brief review and motivation for the use of non-
parametric Bayes methods in biostatistical applications. Clearly, the nonparametric Bayes
biostatistical literature is increasingly vast, and it is not possible to properly present or even
mention most of the approaches that have been proposed. Instead, the focus here is entirely
on methods utilizing random probability measures, with the emphasis on a few approaches
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that seem particularly useful in addressing the considerable challenges faced in modern bio-
statistical research. In addition, the emphasis will be entirely on practical applications-
motivated considerations, with the goal of moving the reader towards implementing related
approaches for their own data. Readers interested in the theoretical motivation, which is
certainly a fascinating area in itself, are referred to the cited papers and to the later chapters
in the book.

Section 2 describes the use of Dirichlet process (DP) priors in formulating semi-parametric
Bayes hierarchical models. Section 3 considers methods for functional data analysis using
DP-based methods, while also considering extensions for joint modeling with functional
predictors. Section 4 describes approaches for local shrinkage and clustering. Section 5
considers methods for hierarchical borrowing of information across studies, centers or ex-
changeable groups of data. Section 6 overviews the recent work on flexible modeling of
conditional distributions using priors for collections of random probability measures that
evolve with predictors, time and spatial location. Section 7 highlights some recent appli-
cations in bioinformatics. Section 8 outlines methods for nonparametric Bayes hypothesis
testing, and Section 9 contains a brief discussion.

2. Hierarchical Modeling with Dirichlet Process Priors
2.1 Illustration for simple repeated measurement models
Hierarchical modeling has become the standard tool for accommodating dependence in lon-
gitudinal and nested data structures and for combining information from different studies or
data sources. One of the simplest hierarchical models has the form:

yij = µi + εij, εij ∼ N(0, σ2),

µi ∼ P, (1)

where yij is the jth observation within subject (or blocking factor) i, µi is a subject-specific
mean, εij is an observation-specific residual, σ2 is the within-subject variance, and P is the
distribution of the subject-specific means, with j = 1, . . . , ni and i = 1, . . . , n. The typical
parametric specification of (1) lets µi = µ + bi, with µ an overall mean, bi a deviation or
random effect for subject i, and bi ∼ N(0, ψ) to characterize heterogeneity among subjects.
In this case, P is chosen to correspond to the N(µ, ψ) distribution.

Although (1) is very appealing in allowing random variability among subjects while
borrowing information, one may question the appropriateness of the normality assumption
on P . It is well known that borrowing of information across subjects is quite sensitive to
departures from this assumption. In particular, the normal distribution has light tails and
does not allow some subjects to be very different from other subjects or to have groups
of subjects that cluster close together. Hence, outlying subjects tend to have their means
over-shrunk towards the population mean, and the data from such subjects may be overly-
influential in estimation of µ.

Although one could potentially choose a heavier-tailed alternative to the normal random
effects distribution, such as a t distribution, it is appealing to instead use a more flexible
form that allows for the possibility of skewness and multimodality. Even a heavy-tailed
distribution, such as the t, has a very restrictive unimodal and symmetric shape, and in
most applications there is no reason a priori to believe that such a shape is required. Refer
to Lee and Thompson (2007) for a recent Bayesian approach for flexible parametric modeling
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of random effects distributions. Parametric models, such as extensions of the t distribution
that allow skewness, are still restrictive, and do not allow multi-modality, which may arise
due to latent sub-populations.

Bayesian nonparametric models incorporate infinitely-many parameters in order to more
flexibly represent uncertainty in P . Hence, the term “nonparametric” is something of a
misnomer in that Bayesian nonparametric models are massively parametric. However, by
including infinitely-many parameters within a prior that is centered on a base parametric
model, one can allow a great deal of flexibility, while regularizing through favoring shrinkage
towards a simpler parametric form. For example, in the absence of other knowledge, it
may be reasonable to guess that the random effects distribution resembles a Gaussian, while
allowing substantial uncertainty in this guess. From a Bayesian perspective, in the absence
of parametric knowledge of P , one should choose a prior for P with support on the set of
distributions on the real line, with this prior effectively corresponding to a distribution over
distributions.

Bush and MacEachern (1996) proposed to address this problem by choosing a Dirichlet
process (DP) prior for P (Ferguson, 1973, 1974). Readers are referred to the chapter by
Ghosal for detailed background on properties of the DP. In order to allow P to be an
unknown distribution on the real line, let P ∼ DP (αP0), with α > 0 a concentration
parameter characterizing prior precision and clustering and P0 a base distribution on <.
More formally, P would correspond to a random probability measure, and P0 to a fixed
baseline probability measure. However, to make the presentation more generally accessible,
I follow the common convention of using P to refer to both the random probability measure
and the corresponding distribution function.

By choosing a DP prior for P , one allows P to be an unknown distribution, with P0

corresponding to one’s best guess for P a priori and α expressing confidence in this guess. In
particular, P0 is often chosen to correspond to the normal distribution, N(µ0, ψ0), often with
a normal-inverse gamma hyperprior then chosen for (µ0, ψ0) to allow the base distribution to
have unknown mean and variance. In addition, α is commonly assigned a gamma hyperprior
to allow the data to inform more strongly about clustering in the data and the extent to
which P is similar to P0, with gamma(1,1) providing a commonly used choice.

An applied statistician may like to know what choosing a DP(αP0) prior for P implies
about their prior beliefs regarding P . For this reason, the constructive stick-breaking rep-
resentation of Sethuraman (1994) is extremely helpful. The stick-breaking representation
implies that P ∼ DP (αP0) is equivalent to letting

P =
∞∑
h=1

πhδθh
, θh

iid∼ P0, (2)

where πh = Vh
∏

l<h(1− Vl) is a probability weight that is formulated from a stick-breaking

process, with Vh
iid∼ beta(1, α), for h = 1, . . . ,∞, and δθ is a point mass at θ. Note that the

“stick-breaking” terminology arises, because starting with a unit probability stick, V1 is the
proportion of the stick broken off and assigned to θ1, V2 is the proportion of the remaining
1− V1 length stick allocated to θ2, and so on.

Using the stick-breaking formulation, Figure 1 plots realizations from the DP(αP0) prior
for P for a range of different values of α. For values of α close to zero, V1 ≈ 1 and essentially
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Figure 1. Realizations from the DP(αP0) prior for P0 corresponding to the standard normal
and for a range of values of α.

all the probability weight will be assigned to a single atom. For small values of α, such as
α = 1, most of the probability is allocated to the first few atoms, while for large α, each of the
atoms is assigned vanishingly-small weight, so that P resembles P0. Because the probability
weights assigned to the atoms decrease stochastically as the index h grows, we were able to
accurately represent realizations from P in Figure 1 with only the first 1,000 atoms. In fact,
even for α = 10, approximately 99% of the probability was allocated to the first 50 atoms,
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{θ1, . . . , θ50}. As a default choice that is widely-used in applications and favors a sparse
representation having a few dominating atoms, it is quite common to let α = 1. For more
details on the stick-breaking representation of the DP and broader classes of stick-breaking
priors, refer to the later chapters in the book.

Returning to the discussion of expression (1), an important implication of (2) is the
discrete nature of P . This creates ties among µi, i = 1, . . . , n, with the configuration of ties
defining clusters, with subjects in a cluster having the same random effect value. Letting
Si = j denote that subject i belongs to cluster j, we have µSi

= θ∗Si
, for i = 1, . . . , n, where θ∗j

denotes the value of the random effect for all subjects in cluster j. Note that the ∗ superscript
is included to distinguish θ∗h, the hth of the clusters represented in the sample of n subjects,
from θh, the hth of the infinitely-many atoms in the stick-breaking representation. Choosing
a DP prior for the random effects distribution P has two important consequences: (1)
allowing the random effects distribution to be unknown, avoiding a parametric specification;
(2) clustering the n individuals in a sample into k ≤ n clusters defined by the subjects
random effects values. For a comparison of the DP approach with Bayesian models of finite
mixture models with an unknown number of components, refer to Richardson and Green
(2001).

The clustering property of the DP has been widely exploited in recent years, since it
has some appealing practical properties relative to alternative clustering procedures. In
particular, it avoids assuming that all individuals can be clustered into a fixed number of
groups, k. Instead, as is again clear from the stick-breaking form in (2), the DP assumes that
there are infinitely many clusters represented in the overall population, with an unknown
number observed in a finite sample of n subjects. When an (n+ 1)st subject is added, there
is a positive probability, α/(α + n), that the subject is assigned to a new cluster not yet
represented in the sample (Blackwell and MacQueen, 1973).

In clustering there must be some implicit or explicit penalty for model complexity to
avoid assigning everyone in the sample to their own cluster to obtain a higher likelihood.
Hence, it is important not to view the DP model as a magic clustering approach, which
avoids assuming a fixed number of clusters and specification of an arbitrary penalty. In-
stead, one must carefully consider how the penalty for model complexity or overfitting arises
in the DP implementation, while also assessing the role of the hyperparameters, α and pa-
rameters characterizing P0. Under prior (2), the prior expectation for the number of clusters
is proportional to α log n, so that the number of clusters tends to increase slowly with the
sample size at a rate determined by α. However, in addition to α and n, there are other
more subtle factors that play a large role in determining the posterior distribution on the
number of clusters and the penality for over-fitting.

To build an intuition, it is useful to consider two extreme clustering cases: a partition
with all singletons versus a single cluster. In the first case, each subject is allocated to
their own cluster, so that Si = i, for i = 1, . . . , n. This clearly implies that µi ∼ P0, for
i = 1, . . . , n, which is equivalent to assuming that the random effects distribution is P0.
Interestingly, in this case in which all the subjects are assigned to their own clusters and we
may be very concerned about over-fitting, we are effectively fitting a parametric base model
(e.g., a normal hierarchical model). Hence, by assuming that each of the cluster-specific
parameters is drawn from the common distribution P0, we have avoided the over-fitting
problem characteristic of assigning subjects to many small clusters. At the other extreme,
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consider Si = 1, for i = 1, . . . , n, so that all the subjects are assigned to the same cluster
and we have µi = µ, for i = 1, . . . , n. In this case, we are effectively fitting a normal model
that assumes no heterogeneity among subjects (i.e., the random effects distribution has zero
variance). If P 6≈ P0 and P 6= δµ, then to appropriately characterize P , we must allocate
individuals to few clusters.

The question is then what determines the posterior distribution of k, the number of
clusters. As mentioned previously, the DP induces a prior on k, which is stochastically
increasing in n and α, so that α plays a key role. However, it tends to be the case that
the data inform strongly about α, so that one can obtain robust results by simply choosing
a hyperprior for α. A bigger problem, which is not as widely known, is sensitivity of the
posterior distribution of k to the choice of P0. The importance of this choice was noted in
detail by Steve MacEachern in his lecture at the 2007 Nonparametric Bayes Workshop at
the Isaac Newton Institute.

Assuming for sake of discussion that P0 corresponds to a N(µ0, σ
2
0) distribution, a poor

choice of µ0, σ
2
0 will tend to lead to fewer clusters being chosen. This is clear in examining

the conditional posterior probability that subject i is allocated to a new cluster not occupied
by subjects (−i) = {1, . . . , n} \ i,

c

(
α

α + n− 1

)∫ ni∏
j=1

N(yij;µi, σ
2)dP0(µi), (3)

where c is a normalizing constant, while the probability of allocating subject i to the hth of
the k(−i) existing clusters is

c

(
n

(−i)
h

α + n− 1

) ni∏
j=1

N(yij; θ
∗(−i)
h , σ2), (4)

where n
(−i)
h is the number of subjects l ∈ (−i) having µl = θ

∗(−i)
h , for h = 1, . . . , k(−i), with

k(−i) the number of unique values of {µl}l∈(−i). Note that (3) is proportional to the marginal
likelihood of the data for subject i integrating over P0.

Clearly, the probability of allocating subject i to a new cluster is strongly dependent on
P0. For example, suppose that subject i’s data provide compelling evidence that subject i
is an outlier, with the observations systematically higher than those for the other subjects.
However, if P0 is chosen so that µ0 < θ

∗(−i)
h , for all h = 1, . . . , k(−i), and σ2

0 < σ2, then the
probability of allocating subject i to a new cluster may be quite small. Choosing σ2

0 to be
high, so that P0 is supposedly “non-informative” does not solve this problem, because then
the probability of allocating subject i to a new cluster is critically dependent on exactly how
large σ2

0 is. If σ2
0 is extremely large, then the tendency is to allocate all the subjects to the

same cluster, since in that case, we assign very low probability to the introduction of new
clusters. This behavior is not surprising, as clustering is a type of model selection, and it is
well known that a very high variance prior for coefficients that are not shared across models
tends to favor smaller models.

Given these issues, it is clearly important to choose P0 with careful thought. A partial
solution is to specify a hyperprior for parameters, µ0, σ

2
0, characterizing P0. However, one

then faces the same issues discussed above in choosing the hyperparameters in this hyper-
prior. For example, if one chooses a normal inverse-gamma hyperprior for (µ0, σ

2
0), then one
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could view the hyperparameters in the normal inverse-gamma as fixed parameters character-
izing a heavier-tailed P0. Hence, the clustering will be still be sensitive to hyperparameter
choice. There are two reasonable solutions for addressing this issue. The first is to think
carefully about plausible values for µ0, σ

2
0 in the application being considered and to choose

an informative prior. This is an appealing choice, and it tends to be the case that one is
locally robust to the chosen informative prior. The second option, which has been widely
used, is to standardize the data prior to analysis, and then use a prior with location zero
and scale one. For example, one can normalize the yij’s by subtracting the overall mean and
dividing by the overall variance. Although this is unappealing in lacking a fully Bayesian
justification, it can be viewed as an empirical Bayes approach that tends to have good prac-
tical performance. For an article on nonparametric empirical Bayes estimation of the base
measure, P0, refer to McAuliffe, Blei and Jordan (2006).

2.2 Posterior Computation
After specifying prior distributions, it is necessary to consider how to update these prior dis-
tributions with information in the data to obtain posterior distributions. In this Section, we
consider posterior computation for hierarchical model (1) in the case in which P ∼ DP (αP0),
with P0 = N(µ0, σ

2
0) and (µ0, σ

2
0) assigned a normal inverse-gamma hyperprior. Even in this

simple hierarchical model, the posterior distribution is not analytically tractable and we
must rely on approximations. Markov chain Monte Carlo (MCMC) algorithms are the stan-
dard approach, though a wide variety of alternatives have been proposed, including partial
predictive recursion (Newton and Zhang, 1999), sequential importance sampling (MacEach-
ern, Clyde and Liu, 1999), weighted Chinese restaurant sampling (Ishwaran and Takahara,
2002), and variational Bayes approximations (Blei and Jordan, 2006; Kurihara, Welling and
Vlassis, 2006; Kurihara, Welling and Teh, 2007).

There are three main types of MCMC algorithms that have been proposed for poste-
rior computation in DPMs, including the collapsed Gibbs sampler (MacEachern, 1994), the
blocked Gibbs sampler (Ishwaran and James, 2001), and reversible jump-type approaches
(Jain and Neal, 2004; Dahl, 2007). The collapsed, or Polya urn, Gibbs sampling algorithm
avoids updating the infinitely many parameters characterizing P (refer to expression 2) by
marginalizing out P and relying on the Polya urn scheme of Blackwell and MacQueen (1973).
In particular, if we let µi ∼ P , with P ∼ DP (αP0), then the joint distribution of µ1, . . . , µn
marginalizing out P can be expressed as

p(S1, . . . , Sn, θ
∗
1, . . . , θ

∗
k) =

αkΓ(α)

Γ(α + n)

k∏
j=1

p0(θ∗j ) Γ(nj), (5)

where (θ∗1, . . . , θ
∗
k)
′ are the unique values of (µ1, . . . , µn)′, Si = j denotes that µi = θ∗j ,

nj =
∑n

i=1 1(Si = j) is the number of subjects having value θ∗j , and P0 is assumed to
have density p0 with respect to Lesbesgue measure (refer to Petrone and Raftery, 1997,
for a derivation of (5)). Then, instead of updating P in the MCMC algorithm, we update
S = (S1, . . . , Sn)′ and θ∗ = (θ∗1, . . . , θ

∗
k)
′ using a simple Gibbs sampling algorithm proposed

by Bush and MacEachern (1996). Refer to West et al., 1994 for a simple description of this
type of approach.

A useful alternative to the collapsed Gibbs sampler is the blocked Gibbs sampler of
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Ishwaran and James (2001). The blocked Gibbs sampler relies on approximating P through
truncation of the stick-breaking representation in (2). In particular, noting that the proba-
bility weights assigned to the atoms tend to decrease rapidly as the index h increases, it is
reasonable to replace the infinite sum with a sum across the first N terms, which can be ac-
complished by simply letting VN = 1. Truncations of stick-breaking representations to DPs
were originally proposed by Muliere and Tardella (1998). Conveniently, if the base measure
P0 is conditionally conjugate, as is true in the case we consider above, the full conditional
distributions needed for Gibbs sampling have simple conjugate forms. In particular, the
blocked Gibbs sampler cycles through steps for (1) allocating each individual to one of the
components by sampling the index Si from a closed form multinomial conditional posterior,
with probabilities:

Pr(Si = h | −) =

{
Vh
∏

l<h(1− Vl)
}∏ni

j=1 N(yij; θh, σ
2)∑N

r=1

{
Vr
∏

s<r(1− Vs)
}∏ni

j=1 N(yij; θr, σ2)
, h = 1, . . . , N.

(2) updating the stick-breaking weights from conditionally conjugate beta posterior distri-
butions:

(Vh | −)
ind∼ beta

(
1 +

n∑
i=1

1(Si = h), α +
n∑
i=1

1(Si > h)

)
, h = 1, . . . , N − 1,

with VN = 1. (3) updating the atoms (random effects specific to each cluster) by independent
sampling from normal posteriors:

(θh | −)
ind∼ N

(
σ−2

0 µ0 + σ−2
∑

i:Si=h

∑ni

j=1 yij

σ−2
0 + σ−2

∑
i:Si=h

ni
,

1

σ−2
0 + σ−2

∑
i:Si=h

ni

)
, h = 1, . . . , N,

(4) updating the hyperparameters (µ0, σ
−2
0 ) by sampling from the conditionally-conjugate

normal-gamma posterior:

(µ0, σ
−2
0 | −) ∼ N(µ0; µ̂0, τ̂σ

2
0)G(σ−2

0 ; â0, b̂0),

with N(µ0;µ00, τσ
2
0)G(σ−2

0 ; a0, b0) the prior, τ̂ = 1/(τ−1 + N), µ̂0 = τ̂(τ−1µ00 +
∑N

h=1 θh),

â0 = a0 +N/2, and b̂0 = b0 + 1/2(τ−1µ2
00 +

∑N
h=1 θ

2
h − τ̂−1µ̂2

0), and (5) updating the within-
subject precision σ−2 from its conditionally-conjugate gamma posterior:

(σ−2 | −) ∼ G

(
a1 +

1

2

n∑
i=1

ni, b1 +
1

2

n∑
i=1

ni∑
j=1

(yij − θSi
)2

)
,

where G(a1, b1) is the prior for σ−2, with G(a, b) corresponding to the gamma distribution
parameterized to have mean a/b and variance a/b2.

Each of these steps is quite easy to implement, so MCMC computation in the analysis of
variance model with a Dirichlet process prior on the random effects distribution is essentially
no more difficult than posterior computation in the parametric case in which a normal
distribution is assumed for the random effects. One potential issue with the specification in
which we let P ∼ DP (αP0) is that it assumes a discrete distribution for the random effects,
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so that different subjects have exactly the same random effects value. This may be a useful
approximation, but it may be more realistic to suppose that each subject has their own
unique random effect value. Hence, we may instead want to characterize the random effects
distribution using an unknown continuous density. This can be easily accomplished using
a minor modification to the above specification to let µi ∼ N(µ0i, σ

2
0i), with (µ0i, σ

2
0i) ∼ Q,

and Q ∼ DP (αQ0). In this case, the random effect distribution, P , is characterized as a DP
mixture (DPM) of normals (Lo, 1984; Escobar and West, 1995).

The DPM of normals for the random effects distribution can be used for clustering of
subjects into groups having similar, but not identical, random effects. The blocked Gibbs
sampler is easily modified to accommodate this case. One common concern with the blocked
Gibbs sampler, and other approaches that rely on truncation of the stick-breaking representa-
tion to a finite number of terms, is that in bypassing the infinite-dimensional representation,
we are effectively fitting a finite (and hence parametric) mixture model. For example, if we
let N = 25 as a truncation level, a natural question is how this is better or intrinsically
different than fitting a finite mixture model with 25 components. One answer is that N is
not the number of components occupied by the subjects in your sample, but is instead an
upper bound on the number of subjects. In most cases, taking a conservative upper bound,
such as N = 25 or N = 50, should be sufficient, since mixture models are most useful
when there are relatively few components. In addition, because the weights in the infinite
stick-breaking representation (2) decrease rapidly for typical choices of α, we also obtain an
accurate approximation to the DP for modest N .

However, there have been some recent approaches that avoid the need for truncation.
Walker (2007) proposed a slice sampling approach. Papaspiliopoulos and Roberts (2007)
proposed an alternative retrospective MCMC algorithm, which is an easy to implement
modification to the blocked Gibbs sampler that allows one to adaptively add, but not delete.
components as needed as the MCMC algorithm progresses. This can actually result in
substantially improved efficiency in some cases. To clarify, note that one would typically
choose a conservative truncation level in implementing the blocked Gibbs sampler, which
would then require updating of the stick-breaking weights and atoms for many components
that are not needed in that they are assigned very low probabilities and are not occupied
by any subjects in the sample. The retrospective sampling approach instead allows one
to conduct computation for the number of components that are needed, though to take
advantage of this efficiency gain it is typically necessary to run a short preliminary chain
of 10-100 iterations to choose good starting values. Otherwise, the retrospective MCMC
approach may add a large number of components in the first few sampling steps, and then one
is unable to delete these components later in the sampling, resulting in a large computational
burden.

2.3 General Random Effects Models
Until this point, I have focused for illustration on the simple variance component model in
(1). However, it is straightforward to extend the ideas to much richer classes of random effects
models. For example, Kleinman and Ibrahim (1998a) placed a DP prior on the distribution
of the random effects in a linear mixed effects model, while Kleinman and Ibrahim (1998b)
extended this approach to the broader class of generalized linear mixed models. Mukhopad-
hyay and Gelfand (1997) propose a wide class of DP mixtures of GLMs. Müller and Rosner

9



(1997) used a DPM to obtain a flexible non-linear hierarchical model for blood count data,
while in more recent work, Müller, Quintana and Rosner (2007) proposed a semiparametric
model for multilevel repeated measurement data. Walker and Mallick (1997) used Polya tree
(PT) priors for nonparametric modeling of random effect and frailty distributions. The PT
prior is another popular and computationally attractive nonparametric Bayes prior. From a
data analysis perspective, it could be used as an alternative to a DP prior on P in (2). For
a recent article on mixtures of PT priors, refer to Hanson (2006).

The linear mixed effects model (Laird and Ware, 1982) is used routinely for the analysis
of data from longitudinal studies and studies having multilevel designs (e.g., patients nested
within study centers). Focusing on the longitudinal data case, let yi = (yi1, . . . , yi,ni

)′ denote
the response data for subject i, with yij the observation at time tij, for j = 1, . . . , ni. Then,
the linear mixed effects model has the form:

yij = x′ijβ + z′ijbi + εij, εij ∼ N(0, σ2),

bi ∼ P, (6)

where xij = (xij1, . . . , xijp)
′ are fixed effect predictors, β = (β1, . . . , βp)

′, zij = (zij1, . . . , zijq)
′

are random effect predictors, and P is a random effect distribution on <q.
It is straightforward to allow P to be unknown through the use of a DP prior to induce

a discrete random effects distribution, or a DP mixture of Gaussians to induce an unknown
continuous random effects density. In fact, such models have been increasingly used in ap-
plications. For example, van der Merwe and Pretorius (2003) applied a linear mixed effects
model with a DP prior for the random effects distribution in an animal breeding application.
Ohlssen, Sharples and Spiegelhalter (2007) provide a recent overview of the literature on
Bayesian semiparametric random effects models, and provide a tutorial on routine imple-
mentation in WinBUGS. In addition, there is an R package, DPpackage, which provides R
functions for efficiently fitting a broad variety of semiparametric Bayes hierarchical models,
including not only DPMs but only Polya tree models (Jara, 2007).

However, there are some subtle issues that arise in semiparametric modeling of random
effects distributions, which should be carefully considered in fitting such models. In partic-
ular, in expression (6), the posterior distribution of the random moments of P may impact
inferences on β. In parametric models, it is standard practice to use a multivariate normal
distribution with mean zero for P , so that the coefficients β are then interpretable as fixed
effects. In particular, we require that E(yij |xij, zij) = x′ijβ, which is not true if the posterior
expectation of the mean of P is non-zero. Constraining the base measure P0 to have zero
mean is not sufficient to ensure that P is centered on zero a posteriori.

One way to get around this problem is to use a centered parameterization. For example,
one can let yij = x′ijβi + εij, with βi ∼ P . In this case, the fixed effect regression coefficients
correspond to the mean of the distribution P . One limitation of this is that one needs to
assume that xij = zij, though the extension to allow zij to correspond to a subset of the
predictors in xij is straightforward. Another limitation of using a centered parameterization
is that the fixed effect coefficients β corresponding to the mean of P , which may not be
directly available if one implements a computation approach, such as the collapsed Gibbs
sampler, that marginalizes out P .

Two recent alternatives were proposed by Li, Lin and Müller (2007) and Dunson, Yang
and Baird (2007). The Li et al. (2007) approach uses post-processing to adjust for bias in
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using a DP prior for the random effects distribution. The Dunson, Yang and Baird (2007)
approach instead induces a centered DP or centered DP mixture prior by considering the
DP or DPM prior for the random effects distribution as a parameter-expanded version of a
centered process with mean and/or variance constraints. The centered DPM is an alternative
to previously proposed approaches, which constrain a random effects distribution to have
median 0 (e.g., Burr and Doss, 2005).

2.4 Latent Factor Regression Models
Linear mixed effects models and generalized linear mixed effects models are appropriate when
the same type of response is measured repeatedly over time but not when data on a subject
consist of a multivariate vector of different types of responses. In many biomedical studies,
one may measure multiple surrogates of a latent predictor or health response of interest. For
example, single cell gel electrophoresis measures the frequency of DNA strand breaks on the
individual cell level through different surrogates for the amount of DNA in the tail of an
image that resembles a comet. As these different surrogates are on different scales, one can
consider a latent factor regression model, such as

yij = µj + λjηi + εij, εij ∼ N(0, σ2
j ),

ηi = x′iβ + δi, δi ∼ P, (7)

where yi = (yi1, . . . , yip)
′ are p different measures of the frequency of strand breaks in cell

i, µ = (µ1, . . . , µp)
′ are intercept parameters for the different surrogates, λ = (λ1, . . . , λp)

′

are factor loadings, with λj > 0 for j = 1, . . . , p, ηi is a continuous frequency of DNA
strand breaks latent variable, ε = (εi1, . . . , εip)

′ are idiosyncratic measurement errors, Σ =
diag(σ1, . . . , σp) is a diagonal covariance matrix, xi = (xi1, . . . , xip)

′ are predictors of fre-
quency of strand breaks (e.g., dose of a possible genotoxic agent), and P is an unknown
latent variable residual distribution.

The distribution of the frequency of strand breaks tends to be right skewed, often with
a secondary mode in the right tail. Hence, in order to limit parametric assumptions, one
can use a DPM of normals for the latent variable residual distribution, P . However, latent
factor regression models require some restrictions for identifiability. In the parametric case
of expression (7), one would typically let P correspond to the standard normal distribution,
which is automatically restricted to have mean 0 and variance 1. Then, the coefficient βj
would have a simple interpretation as the number of standard deviations the latent trait
is shifted for each unit change in the jth predictor. To induce mean 0 and variance 1
constraints on the latent variable distribution in the semiparametric case, one can use a
centered DPM prior for P , as in Dunson, Yang and Baird (2007). Such an approach is very
easy to implement, since a blocked Gibbs sampler can be implemented as if a DPM of normals
were used for P , followed by a simple post-processing step. One can also apply related
approaches in a much broader class of latent variable models that allow mixed categorical
and continuous measurements and multiple latent variables.

3. Nonparametric Bayes Functional Data Analysis
3.1 Background
In many applications, interest focuses on studying variability in random functions. Some
examples of random functions include hormone trajectories over time and brain images
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collected using MRI technology. Functional data analysis (FDA) methods are used when
data consist of error-prone observations on random functions that may differ for the different
subjects under study (Ramsay and Silverman, 1997). In order to study heterogeneity among
subjects and to borrow strength across the different subjects in estimating their functions,
one may consider hierarchical models of the form:

yi(t) = ηi(t) + εi(t), εi(t) ∼ N(0, σ2)

ηi ∼ P, (8)

where yi(t) is an error-prone observation of the function ηi for subject i at time t, i = 1, . . . , n,
εi(t) is a measurement error, and P is a distribution on Ω, the space of T → < functions. In
practice, it is not possible to observe ηi directly at any time, and we only have measurements
of yi(t) for t ∈ ti = (ti1, . . . , ti,ni

)′.
In this section, we consider a variety of semiparametric Bayes approaches for functional

data analysis. Section 3.2 describes methods based on basis function expansions of ηi. Sec-
tion 3.3 reviews methods that avoid explicit basis function representations using functional
Dirichlet processes. Section 3.4 provides an overview of recent kernel-based approaches,
and Section 3.5 considers methods for joint modeling of related functions and of functional
predictors with response variables.

3.2 Basis Functions and Clustering
In nonlinear regression and functional data analysis, it is common to simplify modeling by
assuming that the unknown functions fall in the linear span of some pre-specified set of basis
functions. For example, focusing on hierarchical model (8), suppose that

ηi(t) =

p∑
h=1

βihbh(t), ∀t ∈ T , (9)

where βi = (βi1, . . . , βip)
′ are basis coefficients specific to subject i, and b = {bh}th=1 is a set

of basis functions. For example, if ηi could be assumed to be a smooth function, cubic spline
basis functions of the following form may be reasonable:

b(t) = {1, t, t2, t3, (t− ξ1)3
+, (t− ξ2)3

+, . . . , (t− ξq)3
+},

where ξ = (ξ1, . . . , ξq)
′ are knot locations, and x+ returns 0 for negative x and x for positive

x.
Assuming the basis functions are pre-specified (e.g., by choosing a grid of a modest

number of equally-spaced knots), models (8) and (9) imply that

yij = x′ijβi + εij, εij ∼ N(0, σ2), (10)

where yij = yi(tij), xij = [b1(tij), b2(tij), . . . , bp(tij)]
′, and εij = εi(tij), for i = 1, . . . , n, j =

1, . . . , ni.Hence, letting βi ∼ Q, one can simply use a linear mixed effects model for functional
data analysis. As a flexible semiparametric approach, one can place a DP prior on Q. As
noted by Ray and Mallick (2006) in the setting of a wavelet model, such an approach induces
functional clustering.
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To clarify, note that the DP prior for Q implies that each subject is allocated into one
of k ≤ n clusters, with subjects in a cluster having identical values for the basis coefficients.
In particular, letting Si = h denote that subject i is allocated to cluster h, we would have
βi = θ∗h for all subjects having Si = h. Hence, all the subjects in a cluster would also have
identical functional trajectories, with subjects in cluster h having ηi(t) = b(t)θ∗h, for all
t ∈ T . Note that this provides a semiparametric Bayes alternative to frequentist latent class
trajectory models (Muthén and Shedden, 1999) and growth mixture models (Jones, Nagin
and Roeder, 2001). Such approaches rely on finite mixture models, with the EM algorithm
typically used to obtain maximum likelihood estimates.

Assuming a DP prior for Q implies that individuals in a functional cluster have exactly
the same value of the measurement error-corrected function, ηi. This assumption may be
overly-restrictive and may result in estimation of a large number of functional clusters in
some cases. Hence, it may be more realistic to suppose that every individual has a unique
function, ηi, but that the functions for individuals in a cluster are similar to each other. This
can be accomplished by using a DP mixture of multivariate Gaussians as the prior for Q.

Model (8) can be easily modified to include fixed and random effect covariates. Posterior
computation is straightforward using a very similar approach to that described in Section
2.2 for the simple variance component model (1). However, some complications can arise in
interpretation of the MCMC output. In particular, the Bayesian semiparametric approach
has the appealing property of allowing uncertainty in the number of clusters and the allo-
cation of subjects to these clusters. This has the side effect that the number of clusters and
the meaning of the clusters will change across the MCMC iterations. Hence, it can be quite
challenging to obtain meaningful posterior summaries of cluster-specific parameters. This
problem is not unique to the functional clustering application, and is typically referred to in
the literature as the label switching problem (Stephens, 2000; Jasra, Holmes and Stephens,
2005).

Frequentist analyses of mixture models that are fitted with the EM algorithm do not face
this issue, because the EM algorithm converges to a point estimate corresponding to a local
mode. This point estimate includes the cluster probabilities and each of the cluster-specific
parameters (e.g., basis coefficients). In performing inferences on the cluster-specific param-
eters, one ignores the numeric labels for each of the clusters. However, EM algorithm-based
analyses of mixture models also face problems in locating a global mode even when multiple
starting points are used. In addition, such methods rely on pre-specification or selection of a
fixed number of clusters, while the Bayesian semiparametric approach automatically allows
uncertainty in the number of clusters.

Fortunately label-switching is only a problem if one is interested in performing cluster-
specific inferences instead of simply accounting for uncertainty in clustering when conducting
predictions or performing inferences on global features. I use the term “global features” to
denote any functional of interest that is not cluster-specific. For example, global features
may include fixed effect regression coefficients and values of ηi(t), for specific subjects or
averaged across subjects. Such features can be estimated easily from the MCMC output
without worrying about the fact that there are latent cluster indices that are changing in
meaning and dimension over the MCMC iterates. For example, one can obtain a posterior
mean and 95% credible interval by collecting ηi(t) for each of a large number of MCMC
iterates, and then averaging the samples and calculating the 2.5th and 97.5th percentiles.
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The real problem occurs when one want to estimate the functional trajectories specific
to each cluster, and a variety of strategies have been proposed. One technique is to attempt
to relabel the clusters at each MCMC iteration using a post-processing algorithm. For
examples of post-processing approaches, refer to Stephens (2000) and Jasra, Holmes and
Stephens (2005). Such approaches tend to be time-consuming to implement and do not
seem to fully address the problem. For example, in running an MCMC algorithm under
models (8) and (9) with a DP prior on the distribution of the basis coefficients, the number
of clusters may vary substantially over the MCMC iterations. However, in re-labeling to
line up the clusters from the different iterations, one needs to assume that there is some
coherence in the clusters after re-labeling. Typically, this would at least require fixing of the
number of clusters.

Given the very high dimensional set of possible partitions of subjects into clusters, it is
not at all unlikely that one may visit dramatically different configurations over the MCMC
iterations, particularly if an efficient MCMC is used. Hence, instead of attempting to align
clusters that are in some sense unalignable, it is useful to view the partition of subjects as a
model selection problem, with the MCMC approaches outlined in Section 2.2 providing an
approach for model averaging. As is well known in the literature on Bayesian model selection,
model averaging is most useful for prediction, and one may commonly encounter difficulties in
interpretation when averaging over models in which the parameters have different meanings.
In such settings, it is necessary to perform model selection to maintain interpretability.

Carrying over this idea to the setting of DP mixture models, one could attempt to
identify an optimal partition of subjects into clusters, with this optimal clustering then used
to obtain some insight into how the clusters differ. Before reviewing some of the approaches
available to identify an optimal clustering in this setting, it is important to note that one
should be very careful to avoid over-interpretation of the estimated partition. Even if one is
able to identify the optimal partition from among the very high dimensional set of possible
partitions, this partition may have extremely low posterior probability, and there may be
a very large number of partitions having very similar posterior probability to the optimal
partition. This is essentially the same problem that is faced in model selection in high-
dimensional settings. That said, it is sometimes impossible to bypass the need for selection
given the scientific interests in a study. In such settings, the approaches of Medvedovic and
Sivaganesan (2002), Dahl (2006) and Lau and Green (2007) are quite useful.

3.3 Functional Dirichlet Process
The basis function expansion shown in (9) clearly requires an explicit choice of a set of
basis functions. For well behaved, smooth functions of time or a single predictor, it may
be sufficient to choose splines, with knots specified at a modest-dimensional grid of equally
spaced locations. However, when T is multi-dimensional (e.g., corresponding to a subset
of <2 in image or spatial applications or to <r in multivariate regression applications), it
can be difficult to pre-specify an appropriate basis. Bigelow and Dunson (2005) proposed
a modification, which allows unknown numbers and locations of knots, while placing a DP
prior on the distribution of the basis coefficients. An alternative is to avoid using an explicit
basis function representation entirely by instead relying on a functional Dirichlet process
(FDP).

The FDP provides a direct approach to specify a prior for P in (8) by letting P ∼
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DP (αP0), where P0 corresponds to a Gaussian process (GP). Hence, using the stick-breaking
representation, we have

ηi ∼ P =
∞∑
h=1

πhδθh
, θh ∼ GP (µ, C), (11)

where {πh}∞h=1 are defined as in (2) and θ = {θ}∞h=1 are functional atoms sampled inde-
pendently from a Gaussian process with mean function µ and covariance function C, for
h = 1, . . . ,∞. The FDP has the same mathematical structure as the dependent DP pro-
posed by MacEachern (1999), which will be discussed in Section 6.2. Gelfand et al. (2005)
used the FDP for modeling of spatial data.

Under the FDP in (11) subjects will be allocated to functional clusters. Letting Si = h
denote that subject i is allocated to the hth of the k ≤ n clusters represented in the data
set, we have ηi = θ∗Si

, for i = 1, . . . , n. In this case, instead of using a finite vector of
basis coefficients to characterize the functions specific to each cluster, we take independent
draws from a Gaussian process. This avoids the need to explicitly specify a set of basis
functions. However, it is necessary to choose mean and covariance functions in the GP, and
the number of functional clusters and the cluster-specific estimates can be quite sensitive to
the particular choice made. For a recent book on Gaussian processes, including a discussion
of the role of the covariance function, refer to Rasmussen and Williams (2006).

In implementing posterior computation, it is clearly not possible to estimate the functions
across the infinitely-many locations in T . Hence, in practice one performs computation for
finitely-many points, typically corresponding to locations at which data are collected along
with a tightly-spaced grid of additional locations. The GP base measure then implies a
multivariate normal base measure across this finite grid, and posterior computation can pro-
ceed as for DP mixtures of Gaussians. However, instead of updating the finite-dimensional
mean and covariance in the base multivariate normal distribution, one estimates parame-
ters characterizing the mean and covariance functions. For the covariance function, this
would typically involve Metropolis-Hastings steps, after assuming a particular form, such as
exponential, Gaussian or Matérn.

3.4 Kernel-Based Approaches
As there is often concern in practice about the impact of basis and covariance function
specification on inferences, estimation and prediction, it is appealing to consider alternatives.
In the frequentist literature on function estimation, it is common to consider kernel-based
approaches. In particular, focusing initially on the mean regression function estimation
problem in which E(Y |X = x) = η(x), there is a rich literature on estimation of η subject
to the constraint that η ∈ HK , where HK is a reproducing kernel Hilbert space (RKHS)
defined by the uniformly bounded Mercer kernel K.

In their representer theorem, Kimeldorf and Wahba (1971) show that the solution to a
least squares minimization problem subject to an RKHS norm penalty lies in a subspace of
HK represented as follows:

η(x) =
n∑
i=1

wiK(x, xi), (12)
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where w = (w1, . . . , wn)′ are unknown coefficients. Tipping (2001), Sollich (2002) and
Chakraborty et al. (2005) consider Bayesian kernel-based methods based on choosing a
prior for w. Such approaches implicitly assume that the support of the prior lies in a sub-
space of HK represented as in (12), which is somewhat unnatural in that (12) was derived
in solving an optimization problem.

Pillai et al. (2007) and Liang et al. (2006) noted that a fully Bayesian solution would
instead place a prior for η with large support in HK . Pillai et al. (2007) accomplished this
through the integral representation:

η(x) =

∫
T
K(x, u)dγ(u),∀x ∈ T , (13)

where γ ∈ Γ and η ∈ G. When Γ corresponds to the space of all signed Borel measures, then
G = HK . Pillai considered a variety of specific possibilities for γ, focusing on Lévy process
priors, while Liang et al. (2006) instead used a decomposition that expressed γ as a product
of a GP and a DP. In the Liang et al. (2006) specification, the DP component essentially
places a random probability measure on the locations of the kernels, while the GP places a
prior on the coefficients at the resulting countably infinite collection of locations.

MacLehose and Dunson (2008) generalized the Liang et al. (2006) formulation to the
functional data analysis setting by letting ηi(x) =

∫
K(x, u)dγi(u), and then choosing a

nonparametric Bayes hierarchical prior for γ = {γ1, . . . , γn}. In particular, their specification
relied on functional DP and hierarchical DP (HDP) (Tomlinson, 1998; Teh et al., 2006)
components. The HDP is a prior for modeling of related distributions through incorporating
dependence by assuming a common base measure in DPs for each of the distributions, with
this base measure allowed to be unknown through use of a DP prior. For further details on
the HDP, refer to the chapter by Teh and Jordan.

An appealing feature of the MacLehose and Dunson (2008) approach relative to the ap-
proaches described in Sections 3.2 and 3.3 is the allowance for local borrowing of information
through local selection of kernels and locally-dependent weights. To illustrate this, consider
an application to progesterone trajectory data previously analyzed in Brumback and Rice
(1998). Data were available for 51 women who provided samples over 91 cycles, of which
22 were conception cycles. Taking results from MacLehose and Dunson (2008), Figure 2
shows the raw data and estimated posterior mean progesterone curves for 3 women ran-
domly selected from the non-conception group. This figure demonstrates the borrowing of
information. In particular, during the baseline phase prior to ovulation (day 0 in the figure),
the progesterone values are quite similar, so there is strong borrowing of information and
the estimates are essentially equivalent. However, following ovulation the curves smoothly
deviate, with the approach favoring similar shapes across the curves. Note that the methods
of Section 3.2 - 3.3 instead borrow information only through global clustering and through
the parametric base model. Alternative methods for local borrowing of information will be
discussed in detail in Section 4.

3.5 Joint Modeling
In biomedical studies, there is very commonly interest in studying the relationship between
functional predictors and response variables. For example, the functional predictor may
correspond to the longitudinal trajectory in the level of an environmental exposure, such as
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Figure 2. Posterior mean progesterone curves (solid lines) and observed progesterone levels
for 3 selected non-conceptive cycles. Estimated progesterone curves and observed data are
linked by color.

air pollution, or to a diagnostic image, while the response corresponds to an indicator of
an adverse health condition. In such cases, there is substantial interest in building flexible
joint models for relating a subject’s functional predictor to their health status, adjusting for
possible confounding factors, such as age and demographic variables.

To focus on a motivating application, we consider an epidemiologic study of early preg-
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nancy loss (EPL) in which daily urine samples were collected in order to measure levels of
hormone metabolites over time prior to conception and through early pregnancy (Wilcox
et al., 1988). Our interest is in studying how progesterone trajectories following ovulation
predict EPL. EPLs are identified when hCG rises soon after implantation but then declines
back to baseline levels instead of continuing to rise. Progesterone plays a critical role in
maintaining the pregnancy, so some clinicians have even suggested treatment with exoge-
nous progesterone as a possible intervention to reduce risk of EPL. There are affordable
home devices available for measuring progesterone metabolites in urine, so an algorithm
could potentially be programmed into such a device to alert the woman when she is at risk
of impending loss.

Motivated by this application, Bigelow and Dunson (2007) develop a Bayesian nonpara-
metric approach for joint modeling of functional predictors with a response variable. Their
proposed approach relies on a simple extension of the method proposed in Section 3.2. In
order to facilitate applications to other settings, I will initially present the approach in more
generality than considered in Bigelow and Dunson (2007). In particular, suppose for subject
i, we have data yi = (y′i1, . . . ,y

′
ip)
′, where yij = (yij1, . . . , yij,nij

)′ is a vector of observations
of type j, for j = 1, . . . , p. For example, yi1 may consist of error-prone measurements of a
functional predictor, while yi2 is 0/1 indicator of a health response. More generally, the yij’s
may correspond to several different types of information collected on a subject.

We define separate models for each of the components of the data vector as follows:

yij ∼ fj(βij; φj), j = 1, . . . , p,

βi = (β′i1, . . . ,β
′
ip)
′ ∼ P, (14)

where fj(βij; φj) is the likelihood for component j, defined in terms of the subject-specific
parameters βij = (βij1, . . . , βij,pj

) and population parameters φj, and the different compo-
nent models are linked through P , the joint distribution for βi. In parametric joint modeling
of multivariate data having a variety of measurement scales, it is common to use latent fac-
tor and structural equation models that incorporate shared latent variables in the different
component models. By allowing P to be unknown through a nonparametric Bayes approach,
we obtain a more flexible class of joint models.

Bigelow and Dunson (2007) propose to use a DP prior for P with the following structure:

P =
∞∑
h=1

πhδΘh
, Θh ∼ P0 = ⊗pj=1P0j, (15)

where π = {πh}∞h=1 are as defined in (2), Θh = {Θhj}pj=1 is a collection of atoms corresponding
to the parameters in each of the p different components, and the base measure P0 used in
generating these atoms is characterized as a product measure of probability measures for
each component. For example, in joint modeling of a longitudinal trajectory with a 0/1
response, P01 may correspond to a Gaussian process and P02 to a beta distribution, so that
each DP cluster then contains a random function along with a corresponding probability of
an adverse response. In this manner, a semiparametric joint model is defined for data having
different scales, with dependence in the different types of data collected for a subject induced
through allocating individuals to clusters having different parameters for each component
model.
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Figure 3. Progesterone data beginning at the estimated day of ovulation for three early
losses and three clinical pregnancies.

Instead of using a GP for the functional predictor component, Bigelow and Dunson
(2007) use multivariate adaptive splines with unknown numbers and locations of knots.
They applied this approach to progesterone metabolite and EPL data from Wilcox et al.
(1988). Figure 3 shows the progesterone data for three randomly selected early losses and
three clinical pregnancies. Figure 4 shows the progesterone data for each of the 16 identified
clusters containing more than one subject, along with the number of pregnancies in the
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Figure 4. Progesterone data for pregnancies in each of the 16 clusters identified in the
Wilcox et al. (1988) data. Only those clusters containing more than one pregnancy are
shown. Below each plot is the estimated probability of early pregnancy loss within the
cluster, along with a 95% credible interval.

cluster and the estimated probability of early pregnancy loss. Note that it is very clear
that the identified clusters match the data from these plots. In addition, the early loss
probabilities varied dramatically across the clusters. This resulted in accurate out of sample
prediction of impending losses soon after implantation (results not shown).
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4. Local Borrowing of Information and Clustering
Until this point, I have focused primarily on methods that rely on different variants of the
DP for modeling of an unknown random effects distribution in a hierarchical model. As
discussed above, such methods have the side effect of inducing clustering of subjects into
groups, with groups defined in terms of unique random effects values or unique parameters in
a parametric model. One characteristic of this type of specification is that clustering occurs
globally, in that two individuals are clustered together for all their random effects or none.

For example, focus on the joint model specification in (15) and suppose βi ∼ P , for
i = 1, . . . , n. Then, it is clear that either βi = βi′ , with prior probability 1/(1 + α), or
βi and βi′ correspond to two independent draws from P0, so that none of the elements of
βi can cluster together with the corresponding elements of βi′ (assuming non-atomic P0).
Such global clustering is quite restrictive in that two different subjects may be quite similar
or even identical for most of their random effects, while having important deviations in
certain components. An alternative, which allows local clustering, is to let βij ∼ Pj, with
Pj ∼ DP (αjP0j), independently for j = 1, . . . , p. However, this approach does not allow for
accrual of information about similarities between subjects. In particular, if βij = βi′j then
the probability should intuitively be increased that βij′ = βi′j′ compared with the case in
which βij 6= βi′j.

Motivated by this problem, Dunson, Xue and Carin (2007) proposed a matrix stick-
breaking process (MSBP), which generalizes the DP stick-breaking structure to allow row
and column stick-breaking random variables to induce dependent local clustering. Posterior
computation for the MSBP can proceed using a simple modification to the blocked Gibbs
sampler of Ishwaran and James (2001). The MSBP has particular practical advantages
over joint DP and independent DP priors in high-dimensional settings in which subjects
can be very similar for most of their coefficients, while having distinct local deviations.
This occurs, for example, when modeling of multiple, related functions or images using a
basis representation. Often, most of the function or image is quite similar across subjects,
suggesting that most of the basis coefficients are effectively identical. However, it is those
local regions of heterogeneity that are most scientific interest.

Motivated by the problem of local clustering in functional data analysis, Petrone, Guin-
dani and Gelfand (2007) proposed a hybrid functional Dirichlet process prior. The hybrid
DP is based on the clever idea of introducing a collection of global species, with each indi-
vidual function formulated from a patchwork of these global species. In particular, a latent
Gaussian process is introduced, with the level of this latent process controlling local allo-
cation to the global species. This results in local clustering of the functions for different
individuals, with discontinuities occurring in the functions at changepoints in which the la-
tent process crosses thresholds so that allocation switches to a different species. Petrone et
al. (2007) applied this approach to an interesting brain image application. Rodriguez, Dun-
son and Gelfand (2007) proposed an alternative latent stick-breaking process (LaSBP). The
LaSBP is defined by introducing a fixed unknown marginal distribution, which is assigned a
stick-breaking prior, and then using a latent Gaussian process copula model to control local
allocation to the atoms. The LaSBP avoids problems faced by the hybrid DP in performing
spatial interpolations by introducing an order constraint on the atoms. This constraint also
induces skewness, which is appealing in many applications.

Friedman and Meulman (2004) defined a concept of clustering on subsets of attributes
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(COSA) in which two subjects can be partially clustered by having identical values for a
subset of a vector of parameters. Hoff (2006) proposed a simple but clever Bayesian non-
parametric version of COSA relying on a DP. In particular, if βi = (βi1, . . . , βip)

′ represents
a vector of subject-specific parameters in a hierarchical model, then Hoff (2006) first lets
βi = β + ri× δi, with ri ∈ {0, 1}m, δi ∈ <p and × denoting the elementwise product. Then,
letting (ri, δi) ∼ P , with P ∼ DP (αP0), results in clustering of the n subjects into k ≤ n
groups. Note that subjects in a group will deviate from the baseline in only those attributes
having rij = 1. In this manner, subjects in different DP clusters can be identical for a subset
of their random effects, effectively accommodating a type of local clustering.

5. Borrowing Information Across Studies and Centers
In biomedical studies, there is very commonly interest in combining information across data
from different sources. Classical examples include multi-center studies, in which data are
collected for individuals in different study centers, and meta-analysis, in which interest fo-
cuses on combining results for studies with similar study designs, endpoints and predictors.
In recent years, there has also been increasing interest in attempting to borrow strength
across data from disparate sources. For example, one may want to combine results from cell
assay, animal and epidemiologic studies in drawing conclusions about the health effects of
an environmental exposure.

In such settings, hierarchical models provide a standard tool for borrowing of information,
but flexible approaches are needed to avoid inappropriate borrowing. In this section, I
provide an overview of several hierarchical extensions of the DP that have been proposed
for borrowing of information across data from different sources, including mixtures of DPs,
dependent DPs, hierarchical DPs and nested DPs.

To provide motivation, I will focus on a multi-center study application. In particular,
the National Collaborative Perinatal Project (NCPP) was a large prospective epidemiologic
study conducted from 1959-1974. Pregnant women were enrolled through different study
centers and were followed over time, with the children given examinations at birth, 4, 8 and
12 months, and 3, 4, 7 and 8 years. Although a variety of data were collected, I will focus
here on gestational age at delivery (gad) and birth weight (bw), with yij = (yij1, yij2)′ for
the jth woman in study center i, where yij1 =gad and yij2 =bw.

The joint distribution of gad and bw is distinctly non-Gaussian and is not well charac-
terized by a parametric model. Hence, one can consider the follow Gaussian mixture model:

yij ∼ N2(µij,Σij)

(µij,Σij) ∼ Pi, (16)

where Pi is an unknown mixture distribution. This specification results in a joint distribution
for gestational age at delivery and birth weight, which is specific to study center. Certainly it
is well known in the reproductive epidemiology literature that pregnancy outcomes can vary
substantially for women of different ethnicities and from different socio-economic groups.
Hence, it is appealing to allow differences between study centers, since different centers may
serve different types of women. However, it is also likely the case that the joint distribution
of gad and bw is similar for different centers, so the question is how to borrow information
in specifying a prior for P = {P1, . . . , Pn}.
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Müller, Quintana and Rosner (2004) proposed an approach for inducing dependence in
the Pi’s through a mixture of independent DPs. In particular, under their specification,

Pi = πP ∗0 + (1− π)P ∗i , P ∗h
iid∼ DP (αP0), h = 0, 1, . . . , n, (17)

where P ∗0 is a global component that is shared across the different centers, 0 ≤ π ≤ 1
is a probability weight on the global component, and P ∗j is a local component allowing
deviations for the jth study. If the joint distribution of gad and bw is very similar for
the different study centers, then π will be close to one. The Müller, Quintana and Rosner
(2004) approach is appealing in working well in practice and being simple to implement. In
particular, a standard MCMC algorithm for a DPM can be used after modification to update
latent indicators, Zij ∈ {0, 1, . . . , n}, with Zij = h denoting that (µij,Σij) are drawn from
P ∗h . Dunson (2006) modified (17) to define a dynamic mixture of DPs (DMDP) appropriate
for time series settings.

An alternative to (17), referred to as the hierarchical DP (HDP), was proposed by Teh
et al. (2006). The HDP is specified as follows:

Pi ∼ DP (αP0), P0 ∼ DP (γP00), (18)

so that the mixture distributions for the different study centers are assigned separate DP
priors, with sharing induced through the common base measure P0, which is also given a
DP prior. Note that this specification has the property that all the Pi’s will have the same
atoms, while having distinct but dependent weights on these atoms. The shared atoms
property differs from the specification in (17). However, because the subset of atoms in P0

that are occupied by the subjects in the sample will differ across study centers, the HDP
does effectively allow local clusters. The HDP is covered in detail in the chapter by Teh and
Jordan.

Note that the specifications (17) and (18) both allow borrowing of information across
study centers through incorporation of common atoms and dependent weights on these
atoms. However, both formulations assume that Pr(Pi = Pi′) = 0, except in limiting cases
in which hyperparameters are chosen so that the distributions are identical for all study cen-
ters. In many applications, it is of interest to allow clustering of study centers into groups,
with each group having a different nonparametric response distribution. For example, one
could then identify medical centers with the same distribution of patient outcomes, while
also identifying outlying centers.

With this goal in mind, Rodriguez, Dunson and Gelfand (2007) proposed the nested DP
(nDP), which lets

Pi ∼
∞∑
h=1

πhδP ∗h , P ∗h
iid∼ DP (γP0), (19)

where the weights π = {πh}∞h=1 are as defined in (2). Note that this specification allows Pi to
be exactly equal to Pi′ with prior probability 1/(1+α). When Pi = Pi′ , the joint distribution
of gad and bw in center i is identical to that for center i′, and these centers are clustered
together. Hence, unlike the HDP, which clusters patients within and across study centers
while assuming study centers are distinct, the nDP allows clustering of both study centers
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and patients within centers. Such clustering may be of direct interest or may be simply a
tool for flexible borrowing of information in estimating the center-specific distributions.

6. Flexible Modeling of Conditional Distributions
6.1 Motivation
In many applications, it is of interest to study changes in the distribution of a response vari-
able Y over time, for different spatial locations, or with variations in a vector of predictors,
x = (x1, . . . , xp)

′. Depending on the study design, the primary interest may be

1. Prediction of a health response Y for a new subject given demographic and clinical
predictors for that subject.

2. Inference on the impact of time, space or predictors on the conditional response dis-
tribution.

3. Inverse regression problems involving identification of predictor values associated with
an adverse health response.

4. Clustering of subjects based on their health response while utilizing predictor informa-
tion.

The methods reviewed in Section 5 can be used to address these interests when there
is a single unordered categorical predictor, such as the study center. However, alternative
methods are needed in the general case. This section reviews some approaches for model-
ing of predictor-dependent collections of distributions through the use of mixture models
incorporating priors for collections of dependent random probability measures indexed by
predictors. In particular, let

PX = {Px : x ∈ X} ∼ P , (20)

where Px denotes the random probability measure at location (predictor value) x ∈ X , X is
the sample space for the predictors, and P is the prior for the collection, PX . Here, I use
the term predictor broadly to refer also to time and spatial location.

There are a wide variety of applications in which it is useful to incorporate priors for de-
pendent collections of distributions. For example, one may be interested in modeling of condi-
tional densities, f(y |x). Revisiting the reproductive epidemiology application from Section
5, suppose that yi is the gestational age at delivery for woman i and xi = (xi1, . . . , xip)

′

is a vector of predictors, including age of the woman and blood level of DDE, a persistent
metabolite of the pesticide DDT. Then, it is of interest to assess how the risk of prema-
ture delivery, corresponding to the left tail of the distribution of gestational age at delivery,
changes with increasing DDE exposure adjusting for age. In making such assessments, it
is appealing to limit parametric assumptions, and avoid the common epidemiologic practice
of reducing information on gestational age at delivery (gad) to a 0/1 indicator of gad ≤ 37
weeks.

To solve this problem, one can consider a mixture model of the form:

f(y |x) =

∫ ∫
g(y; x,θ,φ)dPx(θ)dπ(φ), (21)

24



where g(y; x,θ,φ) is a parametric model for the conditional density of y given x, and (21)
allows deviations from this parametric model through nonparametric mixing. Expression
(21) contains both parametric and nonparametric components, with the prior distribution
for the parameters φ treated as known, while the mixture distribution for θ is nonparametric
and predictor-dependent. Some possibilities for g(y; x,θ,φ) include N(y;µ, σ2), with θ =
(µ, σ2), and N(y; x′β, σ2), with θ = (β′, σ2). The advantage of incorporating a regression
component in g(y; x,θ,φ) is that a sparse structure is then favored through centering on a
base parametric regression model. In this context, a sparser specification allows subjects to
be allocated to few mixture components, while maintaining flexibility. In addition, we allow
for interpolation across sparse data regions through the base parametric model, addressing
the curse of dimensionality.

6.2 Dependent Dirichlet Processes
One possibility for P in (20) is the dependent DP (DDP) originally proposed by MacEachern
(1999, 2001) (see also, De Iorio et al., 2004). In full generality, the DDP is specified as follows:

Px =
∞∑
h=1

πh(x)δΘh(x), Θh
iid∼ P0, ∀x ∈ X , (22)

where πh(x) = Vh(x)
∏

l<h{1 − Vl(x)}, for h = 1, . . . ,∞, with the stick-breaking weights
{Vh(x)}∞h=1, at any fixed x, consisting of independent draws from a beta(1, α) distribution.
In addition, Θh is a stochastic process over X generated from P0. For example, P0 may
correspond to a Gaussian process.

Due to complications involved in allowing the weights to depend on predictors, most
applications of the DDP have assumed fixed weights, resulting in the specification:

Px =
∞∑
h=1

πhδΘh(x), Θh
iid∼ P0, ∀x ∈ X , (23)

where π = {πh}∞h=1 are as defined in (2). De Iorio et al. (2004) applied this specification to
develop ANOVA-type models for collection of dependent distributions. Gelfand, Kottas and
MacEachern (2005) applied the DDP in spatial data analysis applications.

One can also use the fixed π DDP in (23) to develop a method for conditional density
modeling as in (21) by letting

f(y |x) =
∞∑
h=1

πhN(y;µh(x), σ2
h), (µh, σ

2
h) ∼ P0 = P01 ⊗ P02 (24)

where P01 is a Gaussian process over X and P02 is a probability measure on <+ (e.g., cor-
responding to an inverse-gamma distribution). Note that (24) characterizes the conditional
density using an infinite mixture of normals, with the component means varying differentially
and non-linearly with predictors. This specification is a generalization of typical Gaussian
process regression models, which would correspond to letting π1 = 1, so that the mean varies
flexibly while the residual density is assumed to be constant and Gaussian. In contrast, the
DDP mixture of normals in (24) allows multi-modal residual densities that vary with x.
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It is useful to consider the gestational age at delivery application. In that case, there are
likely a few dominate mixture components that are assigned most of the probability weight,
with these components corresponding to early preterm birth, preterm birth and full term
birth. Specification (24) assumes that the probability allocated to these components does
not vary with age or dde, but the locations of the component can vary. For example, the
mean of the preterm birth component can shift to earlier weeks as dde level increases to
allow an increasing proportion of babies born too soon at higher exposures.

From this example, it is clear that the fixed π DDP may be overly-restrictive in that
biologic constraints on the timing of gestation make it more realistic and interpretable to
consider models with fixed locations but weights that depend on predictors. For example,
if we have three dominate components corresponding to early preterm, preterm and full
term, then a varying weights model would allow the probability of early preterm birth to
increase as dde increases without necessarily changing the timing and hence the meaning of
the early preterm component. In addition, a varying weights model is necessary to allow the
probability that two subjects are assigned to the same cluster to depend on predictors.

Motivated by such considerations, Griffin and Steel (2006) proposed an order-based
dependent DP, referred to as the π-DDP. The π-DDP allows for predictor-dependent weights
in the DDP in a clever manner by allowing the ordering in the stick-breaking weights to
depend on predictors. In more recent work, Griffin and Steel (2007) proposed a simplification
of the π-DDP, which they used for modeling of the residual component in a flexible regression
model. The resulting approach is referred to as the Dirichlet process regression smoother
(DPRS).

An alternative approach that was developed for spatial applications in which it is ap-
pealing to allow the weights to vary spatially, was proposed by Duan, Guindani and Gelfand
(2007). This approach relies on an approach which places a stochastic process on the weights,
which is carefully specified so that the marginal distributions at any fixed spatial location
maintain the DP stick-breaking form. De la Cruz-Mesia, Quintana and Müller (2007) re-
cently proposed an alternative extension of the DDP for classification based on longitudinal
markers. Their approach incorporated dependence in the random effects distribution across
groups.

6.3 Kernel-Based Approaches
As an alternative to the DDP, Dunson et al. (2007) proposed an approach based on kernel-
weighted mixtures of independent DP basis components. This approach is conceptually
related to the kernel regression approach described in Section 3.4 and expression (12). How-
ever, instead of specifying a prior for a single function, the goal is to specify a prior for an
uncountable collection of predictor-dependent random probability measures. To motivate
the general approach, first consider the case in which there is an single continuous predictor
with support on [0,1] and interest focuses on modeling the conditional density f(y|x), for all
x ∈ [0, 1]. In this case, a simple model would let

f(y|x) =
1

K(x, 0) +K(x, 1)

{
K(x, 0)f ∗0 (y) +K(x, 1)f ∗1 (y)

}
, (25)

where K is a kernel, with K(x, x) = 1 and K(x, x′) decreasing as the distance between x and
x′ increases, f ∗0 (y) is an unknown basis density located at x = 0, and f ∗1 (y) is an unknown
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basis density located at x = 1. For example, K may correspond to a Gaussian kernel, and
f ∗0 , f

∗
1 to DP mixtures of normals.
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Figure 5. Plot illustrating the kernel mixtures approach in the simple case in which
xi ∈ {0, 1} for all subjects in the sample, and a normal kernel with standard deviation 0.3
is chosen.

Figure 5 provides an example of the behavior of (25), letting f ∗0 correspond to the
standard normal density, f ∗1 to a mixture of two normals, and K to the Gaussian kernel
with standard deviation 0.3. As should be clear, using the mixture model (25) results in a
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smoothly morphing profile of conditional densities, with the densities very close for similar
predictor values. In order to generalize the kernel mixture approach of expression (25) to
allow multiple predictors and more flexibility, one can potentially allow unknown numbers
and locations of basis densities, similarly to allowing unknown numbers and locations of
knots in a spline model.

Dunson et al. (2007) instead proposed a default approach in which DP bases were
automatically placed at the sample predictor values, with each of these bases assigned a
weight controlling it’s importance. In particular, their proposed weighted mixture of DPs
(WMDP) prior had the form:

Px =
n∑
i=1

(
γiK(x,xi)∑n
l=1 γlK(x,xl)

)
P ∗i , P ∗i

iid∼ DP (αP0), ∀x ∈ X , (26)

where i = 1, . . . , n indexes subjects in the sample, K : X ×X → 1 is a bounded kernel (e.g.,
Gaussian), γ = (γ1, . . . , γn)′ is a vector of weights, and {G∗i }ni=1 are independent DP basis
measures.

Dunson et al. (2007) applied the WMDP approach for density regression through use of
the model,

f(y |x) =

∫ ∫
N(y; x′β, σ2)dPx(β)dπ(σ2), (27)

which is a mixture of linear regression models with predictor-dependent weights. This model
is related to hierarchical mixtures-of-experts models (Jordan and Jacobs, 1994), which are
widely used in the machine learning literature, but instead of assuming a finite number of
experts (i.e., mixture components), the number of experts is infinite. In addition, instead of
a probabilistic decision tree for the weights, a kernel model is used.

From a Bayesian perspective, (26) has an unappealing sample-dependence property, so
that the approach is not fully Bayesian and lacks coherent updating and marginalization
properties. For this reason, it is useful to consider alternative priors that borrow some
of the positive characteristics of the kernel weighted specification but without the sample-
dependence. One such prior is the kernel stick-breaking process (KSBP) (Dunson and Park,
2007), which modifies the DP stick-breaking specification shown in (2) as follows:

Px =
∞∑
h=1

VhKψh
(x,Γh)

∏
l<h

{
VlKψl

(x,Γl)
}
P ∗h , P ∗h

iid∼ DP (αP0), (28)

where Vh
iid∼ beta(1, λ), Kψ denotes a kernel having bandwidth ψ, {ψh}∞h=1 is an infinite

sequence of kernel bandwidths sampled from G, and {Γh}∞h=1 is an infinite sequence of kernel
locations sampled from H.

The KSBP places random basis probability measures at an infinite sequence of random
locations, with the weights assigned to these bases in the formulation for Px decreasing
stochastically with the index h and the distance from x. In using the KSBP as a prior for
the mixture distributions in (27), one obtains a flexible, sparseness-favoring structure for
conditional distribution modeling. In particular, if the linear regression model provides a

28



good approximation, then the tendency is to assign most of the weight to few components
and effectively collapse back to the base parametric normal linear model. This is seen quite
dramatically in simulations under the normal linear model in which results obtained in the
KSBP mixture analysis and the parametric model analysis are very similar. However, the
KSBP mixture model does an excellent job at adaptively capturing dramatic deviations from
the normal linear model even when all the subjects are assigned to a modest number of basis
locations (e.g., fewer than 10).

The sparseness-favoring property is crucial in obtaining good performance, since the
curse of dimensionality makes it very difficult to reliably estimate conditional distributions
even with few predictors. One does not obtain nearly as good performance using a KSBP
mixture of Gaussians without the regression structure in the Gaussian kernel as in (27). This
is partly due to the fact that the base normal linear model allows one to interpolate across
sparse data regions much more reliably than a normal with mean that does not vary with
predictors.

From a practical perspective, the KSBP can be implemented easily in a wide variety
of settings using a simple MCMC algorithm, and produces flexible but sparse models of
conditional distributions. In addition, the KSBP results in predictor-dependent clustering
of subjects. In the conditional density estimation setting, one can also obtain estimates of
quantile regression functions directly from the MCMC output. The KSBP has been used
for classification, multitask learning and modeling of multivariate count data in unpublished
work.

6.4 Conditional Distribution Modeling Through DPMs
Prior to the work on DDPs and kernel-based approaches for modeling of dependent collections
of random probability measures, Müller, Erkanli and West (1996) proposed a simple and
clever approach for inducing a prior on E(y |x) through a joint DP mixture of Gaussians
model for z = (y,x′)′. Although they did not consider conditional density estimation, this
approach also induces a prior on f(y |x), for all y ∈ <,x ∈ <p. In recent work, Rodriguez,
Dunson and Gelfand (2007b) showed that the Müller, Erkanli and West (1996) approach
results in pointwise consistent estimates of E(y |x) under some mild conditions, and the
approach can be adapted for functional data analysis.

Given that the Müller, Erkanli and West (MEW) (1996) approach can be implemented
routinely through direct use of software for Bayesian multivariate density estimation using
DP mixtures of Gaussians, a natural question is what is gained by using the approaches
described in Sections 6.2 and 6.3 for conditional density estimation. To address this question,
I start by contrasting the two types of approaches. The methods described in Sections 6.2-
6.3 provide priors for collections of unknown distributions indexed by spatial location, time
and/or predictors. The resulting specification is defined conditionally on the predictors (or
time/space). In contrast, the MEW approach relies on joint modeling of the predictors and
response to induce a prior on the conditional distributions. Clearly, this only makes sense
if the predictors can be considered as random variables, which rules out time, space and
predictors that correspond to design points. However, for many observational studies, all
the predictors can be considered as random variables.

In such settings, the MEW approach is still conceptually quite different from the condi-
tional approaches of Section 6.2-6.3. All the approaches induce clustering of subjects, and the
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MEW approach is similar to the π-DDP, WMDP and KSBP in allowing predictor-dependent
clustering. The predictor-dependent clustering of the MEW approach arises through joint
clustering of the response and predictors. This implies that the MEW approach will intro-
duce new clusters to better fit the distribution of the predictors even if such clusters are
not necessary from the perspective of producing a good fit to the response data. For ex-
ample, in simulations from a normal linear regression model in which the predictors have
non-Gaussian continuous densities, we have observed a tendency of the MEW approach to
allocate individuals to several dominate clusters to better fit the predictor distribution. In
contrast, the KSBP will tend to collapse on a single dominate cluster containing all but a
few subjects in such cases, as a single cluster is sufficient to fit the response distribution, and
the KSBP does not model the predictor distribution.

Although the sensitivity of clustering to the predictor distribution has some unappealing
characteristics, there are some potential benefits. Firstly, the approach is useful for inverse
regression and calibration problems. Griffin and Holmes (2007) recently proposed a MEW-
type approach for Bayesian nonparametric calibration in spatial epidemiology. Also, in
providing a joint nonparametric model for predictors and response variables, the approach
can automatically accommodate predictors that are missing at random through a simple
step for imputing these predictors from their full conditional posterior distributions during
the MCMC algorithm. Finally, instead of relying entirely on information in the response
distribution, the approach tends to automatically change the slope of the regression in regions
of the predictor space at which there is a change in the predictor distribution. This may
be particularly appealing in semi-supervised learning settings in which the response (labels)
are only available for a small subset of the subjects. In order to allow categorical responses
and/or predictors, the MEW approach can be easily adapted to use an underlying normal
DPM of Gaussians.

6.5 Reproductive Epidemiology Application
As an illustration, consider an application to modeling of gestational age at delivery (gad)
data from a study of Longnecker et al. (2001) using the KSBP. In epidemiologic studies of
premature delivery, it is standard practice to dichotomize the data on gad using 37 weeks
as the cutoff for defining preterm delivery. Then, the risk of preterm birth is modeled as a
function of exposures of interest and potential confounders using a logistic regression model.
Similar analyses are common in studies that collect a continuous health response when the
interest focuses on the effect of predictors on the risk of an adverse response. For example, in
assessing factors predictive of obesity, one typically dichotomizes body mass index (bmi) to
obtain a 0/1 indicator of obesity instead of analyzing the right tail of the bmi distribution.
In such settings, adverse responses correspond to values in one or both of the tails of the
response density, and it is certainly appealing to avoid sensitivity to arbitrary cutoffs.

Typical regression models that focus on predictor effects on the mean or median or the
distribution are clearly not appropriate for characterizing changes in the tails unless the
residual distribution is truly homoscedastic. In epidemiology it is often not plausible biolog-
ically for the residual distribution to satisfy such an assumption. In particular, most health
conditions are multi-factorial, having both genetic and environmental risk factors, with many
or most of these factors unmeasured. Hence, in the presence of interactions between mea-
sured and unmeasured predictors, we would really expect the response distribution to change
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in shape as the values of the predictors vary. Biological constraints on values of the response
also play a role.

In the gestational age at delivery setting, such biological constraints make it very unlikely
that gestation continues much beyond 45 weeks, because the baby is getting so large at that
point. Hence, the risk factors for premature delivery are very unlikely to simply result in a
shift in the mean gad, but are more likely to impact the relative proportions of women having
gads in the early preterm, preterm or full term intervals. Hence, a mixture of three normals,
with the predictor-dependent weights, may be natural for modeling of the gad distribution.
However, as we are not certain a priori that three components are sufficient, it is appealing
to consider a nonparametric Bayes approach that allows infinitely-many components in the
general population, while allowing predictor-dependent weights. The KSBP mixture models
proposed by Dunson and Park (2007) provide such a framework.

Note that when the focus is on predictor effects on the tails of a distribution, one can
potentially apply quantile regression methods. However, most quantile regression methods
allow for modeling of a single arbitrarily-chosen quantile (e.g., the 10th percentile) instead or
providing a general framework for modeling of all quantiles coherently. By using a nonpara-
metric Bayes conditional distribution modeling approach, one can do inferences on shifts in
the entire tail of the distribution instead of focusing narrowly on a selected quantile.

Returning to the Longnecker et al. (2007) application, there were 2313 women in the
study, and we implemented the KSBP for model (27), with yi=gad and xi = (1, ddei, agei)

′.
For the reasons discussed in detail at the end of Section 2.1, we normalized yi, ddei, agei
prior to analysis, and then chose the base measure in the KSBP to correspond to the unit
information-type prior, N2(0, (X′X)−1/n). In addition, we fixed α = 1 and λ = 1 to favor a
few clusters, and used a Gaussian kernel, with a single kernel precision, ψh = ψ, assigned a
log-normal prior. The retrospective MCMC algorithm described in Dunson and Park (2007)
was implemented, with 22,000 iterations collected after a burn-in of 8,000 iterations.

It is worth commenting on convergence assessments for nonparametric Bayes mixture
models, with the KSBP providing one example. In particular, due to the label switching
problem, the index on the different mixture components can change meaning across the
MCMC iterates. This leads to apparently poor mixing in many cases when one examines
traces plots of cluster-specific parameters. However, in the analysis of the Longnecker et
al. (2001) pregnancy outcome data and in general applications in which the focus is on
density estimation, conditional density estimation or inferences on unknowns that are not
cluster-specific, one could compellingly argue that the label-switching problem is in fact not
a problem at all. It is very commonly the case that trace plots of unknowns that are not
cluster-specific exhibit good rates of convergence and mixing properties, while trace plots for
cluster-specific parameters show high autocorrelation and fail standard convergence tests. As
long as one is not interested in cluster-specific estimates and inferences, this is no cause for
concern, as it just represents the cluster index identifiability problem. In KSBP applications,
we monitored the value of the conditional density at different locations, and observed good
mixing and rapid apparent convergence.

FIgure 6 shows the raw data on dde and gad for the women in the Longnecker et al.
(2001) study. The solid line is the posterior mean of the expected value of gad conditionally
on dde. This illustrates that the KSBP mixture model induces a flexible non-linear mean
regression model, while also allowing the residual distribution to vary with predictors. The
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dotted lines correspond to 99% pointwise credible intervals. There is an approximately linear
decrease in the mean gad, with the credible intervals becoming considerably wider for high
dde values where data are sparse.
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Figure 6. Raw data on dde and gestational age at delivery for 2313 women in the Longnecker
et al. (2001) sub-study of the NCPP. Vertical dashed lines are quintiles of the empirical
distribution of DDE, the solid line is the posterior mean regression curve, and the dotted
lines are 99% pointwise credible intervals.

32



200 220 240 260 280 300
0

0.01

0.02

0.03

Gestational length

f(
y
|x

)
10th percentile of DDE(12.57)

200 220 240 260 280 300
0

0.01

0.02

0.03

Gestational length

f(
y
|x

)

30th percentile of DDE(18.69)

200 220 240 260 280 300
0

0.01

0.02

0.03

Gestational length

f(
y
|x

)

60th percentile of DDE(28.44)

200 220 240 260 280 300
0

0.01

0.02

0.03

Gestational length

f(
y
|x

)

90th percentile of DDE(53.72)

200 220 240 260 280 300
0

0.01

0.02

0.03

Gestational length

f(
y
|x

)

99th percentile of DDE(105.48)

Figure 7. Estimated conditional densities of gestational age at delivery in days for different
dde values. Solid lines are posterior means and dashed lines are 99% credible intervals.

Figure 7 shows the estimated conditional densities of gad in days for different dde values,
with posterior means shown in solid lines and 99% pointwise credible intervals shown with
dashed lines. These figures suggest that the left tail corresponding to premature deliveries is
increasingly fat as dde dose increases. However, it is a bit hard to gauge significance of these
results based on observing a sequence of conditional density estimates. Figure 8 provides
dose response curves for the probability gad falls below different cutoffs, including (a) 33,
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Figure 8. Estimated dose response curves for the probability gestational age at delivery is
less than (a) 33, (b) 35, (c) 37 or (d) 40 weeks. Solid lines are posterior means and dashed
lines are 99% credible intervals

(b) 35, (c) 37 or (d) 40 weeks. Again, solid lines are posterior means and dashed lines are
99% credible intervals. From these plots, it is clear that risk of premature delivery increases
with level of dde. It appears that dde increases risk of early preterm birth prior to 33 weeks,
which is an interesting finding given that such births represent a much more adverse response
in terms of short and long term morbidity compared with 37 week births.
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7. Bioinformatics
In recent years there has been a paradigm shift in biostatistics, and it is now standard to
be faced with very high-dimensional data. Hence, there is clearly a need for automated
approaches for flexible dimensionality reduction and discovery of sparse latent structure
underlying very high-dimensional data. Mixture models have proven to be an extremely
useful tool in such settings. For example, there is a vast literature on methods for high-
dimensional variable selection using mixture priors, with one component concentrated at
zero and another component being more diffuse. Nonparametric Bayes methods have proven
extremely useful in this setting in providing a highly flexible framework for limiting sensitivity
to arbitrary assumptions made in parametric modeling, such as knowledge of the number of
mixture components. In this section, we review some of this work to provide a flavor for the
possible applications.

7.1 Modeling of Differential Gene Expression
Much of the increased interested in large p, small n problems, which started approximately
a decade ago, was initiated by the development and rapidly increasing use of microarray
technology for measuring expression levels of large numbers of genes. There has been a
particular focus on methods for clustering of gene expression profiles and for identifying genes
that are differentially expressed between two groups, with these groups often representing
normal and diseased or tumor tissue.

Gene expression analyses are particularly suited for nonparametric Bayes analyses due
to the large sample size in terms of the number of genes and to lack of knowledge of good
parametric models for approximating the joint distribution of the gene expression values.
Nonparametric Bayes methods provide a flexible machinery for characterizing the complex
and high-dimensional expression values, inducing a sparse latent structure through parti-
tioning genes into clusters. However, there are some limitations relative to simpler methods
in terms of ease of interpretation and computational expense.

Medvedovic and Sivaganesan (2002) proposed a Dirichlet process mixture (DPM) model
for clustering genes with similar expression patterns, which they accomplished by calculating
the pairwise posterior probabilities that two genes are in the same cluster from the Gibbs sam-
pler output. Qin (2006) proposed a modified approach that relied on an iterative weighted
Chinese restaurant seating scheme, designed so that the optimal number of clusters can be
estimated simultaneously with assignment to clusters in an efficient manner. Medvedovic,
Yeung and Bumgarner (2004) generalize the Medvedovic and Sivaganesan (2002) approach
to data containing experimental replicates. Kim, Tadesse and Vannucci (2006) proposed
an approach that allowed for selection of the variables to cluster upon in the DPM model.
Xiang, Qin and He (2007) developed CRCView, which is a web server providing an easy to
use approach for analysis and visualization of microarray gene expression data based on a
DPM approach.

Do, Müller and Tang (2005) proposed a DPM of normals for the distribution of gene
intensities under different conditions. Their focus was on modeling of differential gene ex-
pression between two groups, a problem which has been addressed using a variety of para-
metric and nonparametric empirical Bayes approaches (Newton et al., 2004). However, Do
et al. (2005) demonstrated advantages of the fully Bayes nonparametric approach, including
allowance for estimation of posterior expected false discovery rates.
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7.2 Analyzing Polymorphisms & Haplotypes
In addition to gene expression data, there has been substantial interest in identifying geno-
types that are predictive of an increased risk of disease. Data are now routinely collected
containing the genotypes at a large number of locations (or loci) along the genome at which
there is variability among individuals in the population. Such data are commonly referred to
as single nucleotide polymorphisms (SNPs), with a single SNP consisting of a combination
of amino acids, with one on the chromosome inherited from the mother and one from the
father. Because new SNP chips allow investigators to routinely collect data from hundreds
of thousands of loci, such data present quite a challenge to the statistician.

In many cases, instead of casting the net very broadly in searching for disease genes and
genotypes, investigators narrow down their search to genes in a specific pathway hypothesized
to play a key role in disease risk. However, even in this case, there may be many SNPs
under consideration. To provide an example, Mulherin-Engel et al. (2005) related SNPs
in cytokine gene regulatory regions to risk for spontaneous preterm birth. The number of
loci per cytokine at which SNP data were collected ranged from 1-3, with 22 total across
the 12 cytokines. At each loci there are 3 possible genotypes. Hence, in seeking to identify
genotypes predictive of an increased risk of preterm birth, there is a very high-dimensional
set of models under consideration.

Motivated by this application, Dunson, Herring and Engel (2007) proposed a multi-level
DP prior that allowed for borrowing of information across functionally-related genes, while
also incorporating a variable selection component. This approach automatically grouped
genotypes into null and non-null clusters according the genotypes impact on the risk of
disease. In unpublished work, we have found that this type of approach scales nicely to
problems involving thousands of genotypes, providing clearly improved performance relative
to parametric variable selection mixture priors. One of the reasons for this success is that
most variable selection mixture priors shrink the non-null coefficients towards zero, while the
DP-based approach allows these coefficients to be shrunk towards other coefficients having
similar values.

In order to address the dimensionality problem faced in searching for disease genotypes
relying on high-dimensional SNP data, many articles have proposed haplotype-based analy-
ses. Haplotypes represent a sequence of amino acids along a chromosome inherited from one
parent. Due to linkage, it tends to be the case that the number of haplotypes observed in
the population is substantially less than the number possible. Hence, by using haplotypes as
predictors instead of the genotypes formed by a set of SNPs, one clearly obtains a reduction
in dimensionality. However, the problem is that current genotyping technology does not
allow SNP data to be converted into haplotypes, because the data are un-phased, meaning
that the amino acid pairs cannot be allocated to the chromosome for their parent of origin.

This is fundamentally a missing data problem, and a number of approaches have been
proposed for imputing the missing haplotypes given the SNP data. Xing, Jordan and Sha-
ran (2007) propose a DPM model to address this missing data problem, with the mixture
components corresponding to the pool of haplotypes in the population. Xing et al. (2006)
generalize this approach to the multiple population setting through the use of a hierarchi-
cal DP (Teh et al., 2006). Xing and Sohn (2007) proposed an alternative approach that
used a hidden Markov DP to jointly model genetic recombinations among the founders of a
population and subsequent coalescence and mutation events. The goal of this approach is
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to identify recombination hotspots and to infer ancestral genetic patterns. An alternative
approach for haplotype inference using a Bayesian hidden Markov model was independently
developed by Sun et al. (2007).

7.3 New Species Discovery
There has clearly been an explosion in the types of high-dimensional data generated, and
nonparametric Bayes methods have seen greatly increasing use as a tool for bioinformatics.
In addition to the applications presented in Section 7.1-7.2, one very interesting application is
to expressed sequence tag (EST) analysis. ESTs provide a useful tool for gene identification
in an organism. In searching for genes using this technology, a number of interesting design
questions arise. In particular, after obtaining a preliminary EST sample, scientists would
like to estimate the expected number of new genes that would be detected from a further
sample of a given size. Such information is critical in making decisions about the number of
additional samples to sequence.

Lijoi et al. (2007a) addressed this problem using a nonparametric Bayes methodology for
estimating the probability of discovery of a new species (Lijoi et al., 2007b). In particular,
Lijoi et al. (2007b) derive a closed-form expression for a nonparametric Bayes estimator for
the probability of discovery. Their approach is based on a class of priors for species sampling
problems that induce Gibbs-type random partitions.

8. Nonparametric Hypothesis Testing
Most of the nonparametric Bayes literature has focused on approaches for estimation under
a particular model, and there has been relatively limited consideration of hypothesis testing
problems. In biomedical studies, hypothesis testing is often of primary interest. For example,
in clinical trials, basic science and toxicology studies, the primary focus is typically on
testing the null hypothesis of equalities in the response distribution between treatment groups
against the alternative that there are differences. Estimation is often a secondary interest.
In this section we review some of the work on nonparametric Bayes hypothesis testing.

Motivated by the problem of testing of equalities between groups in a study with multiple
treatment groups, Gopalan and Berry (1998) proposed an approach to adjust for multiple
comparisons through use of a DP prior. In particular, letting yhi denote a continuous health
response for the ith individual in group h, for h = 1, . . . , p, let yhi ∼ N(µh, σ

2). Then, the
interest is in studying local hypotheses:

H0,hl : µh = µl versus H1,hl : µh 6= µl.

Clearly, the number of such hypotheses increases rapidly with p, so one faces a multiple com-

parisons problem. Gopalan and Berry (1998) proposed letting µh
iid∼ P , with P ∼ DP (αP0).

Then, from basic properties of the DP, Pr(H0,hl) = 1/(1 +α). Using standard algorithms for
posterior computation in DPM models, one can obtain estimates of the posterior hypothesis
probabilities.

Motivated by epidemiologic studies having many predictors that may be highly corre-
lated, MacLehose et al. (2006) proposed an alternative approach which assumed that the
regression parameters for the different predictors in a generalized linear model, β1, . . . , βp,
were sampled from the prior:

βj
iid∼ P = π0δ0 + (1− π0)P ∗, P ∗ ∼ DP (αP0), (29)
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where π0 is the prior probability that the jth predictor has a zero coefficient so can be
excluded from the model. This approach allows one to calculate posterior probabilities
of H0j : βj = 0 versus H0j : βj 6= 0, while clustering the βj’s for the non-null predictors.
MacLehose et al. (2006) demonstrated improved performance relative to parametric variable
selection priors that replace P ∗ with a normal distribution.

Note that, whenever using Bayes factors and posterior probabilities as a basis for hypoth-
esis testing, it is important to keep in mind the well-known sensitivity to the prior. This
sensitivity occurs regardless of whether one is considering a parametric or nonparametric
model. Using expression (29) as an example, note that commonly-used parametric variable
selection mixture priors would let P ∗ ≡ P0, with P0 chosen to correspond to a normal or
heavier-tailed density centered at zero. In this parametric special case of (29), choosing a
very high variance P0 will tend to lead to placing high posterior probability on small models
having the predictors excluded. In the nonparametric case, this same behavior will occur
for very high variance P0. Hence, far from being non-informative, a high variance P0 in-
stead corresponds to a very informative prior that overly-favors small models. Motivated
by applications to logistic regression selection in genetics and epidemiology, MacLehose et
al. (2006) proposed to address the problem of specification of P0 by using an informative
choice, motivated by prior knowledge of plausible ranges for predictor effects. In the absence
of such knowledge, one can potentially use default choices of P0 that are used in parametric
variable selection settings, though the theoretical implications of such choices remain to be
fully evaluated.

The MacLehose et al. (2006) approach utilizes a DP prior for dimensionality reduction
and clustering of the parameters in a parametric model, while assuming that the response
distribution belongs to a parametric family. In order to compare two different nonparametric
models, one can potentially calculate the marginal likelihoods for each model and then obtain
a Bayes factor. For example, suppose that an experiment is run having two groups, and the
focus is on testing equalities in the distributions between the two groups without assuming
a parametric model for the response distribution or for the types of changes between the
two groups. Then, one could fit a null model, which combines the two groups and uses a
DPM of Gaussians to characterize the unknown response distribution, and an alternative
model, which uses separate DPMs of Gaussians for the two groups. Using the method of
Basu and Chib (2003) for estimating marginal likelihoods for DPMs, a Bayes factor can then
be obtained.

When there are multiple treatment groups, such an approach faces practical difficulties,
since it involves running separate MCMC algorithms for each comparison of interest. In
addition, if the treatment groups correspond to increasingly doses, then it is appealing to
apply an approach that borrows information across the groups in characterizing the unknown
dose group-specific distributions. Pennell and Dunson (2007) propose such an approach based
on a dynamic mixture of DPs, which allows adjacent dose groups to be effectively identical.
Dunson and Peddada (2007) proposed an alternative approach for testing of partial stochastic
ordering among multiple groups using a restricted dependent DP.

In parametric models, Bayesian hypothesis testing and model selection makes the as-
sumption that one of the models under consideration is true. Such an assumption is often
viewed as unrealistic, since it seems unlikely that any parametric model is more than a rough
approximation of the truth. Walker and Gutiérrez-Pena (2007) proposed an approach that
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allows for coherent comparisons of parametric models, while allowing for the fact that none
of the models under consideration are true by modeling the truth using a nonparametric
Bayes approach. There has also been some focus in the literature on using a nonparametric
Bayes alternative for goodness-of-fit testing of a parametric model. To derive Bayes factors,
Carota and Parmigiani (1996) embedded the parametric model in a nonparametric alter-
native characterized as a mixture of Dirichlet processes. They obtained disturbing results
showing that results are entirely driven by the occurrence of ties. DP mixtures or Polya trees
can be used to bypass this problem, with Berger and Guglielmi (2001) providing a Polya
tree-based approach.

8. Discussion
This chapter has provided a brief overview of some recent nonparametric Bayes work that
is motivated by or relevant to biostatistical applications. The literature on the intersection
between nonparametric Bayes and biostatistics is increasingly vast, so I have focused on
only a narrow slice of this literature. In focusing on approaches that explicitly incorporate
random probability measures, such as the Dirichlet process and extensions, I have ignored a
rich literature on nonparametric Bayes methods for survival analysis. In addition, there are
certainly many extremely interesting papers that I have overlooked, have not had space to
cover, or appeared after completing this chapter.

Nonparametric Bayes is clearly a new and exciting field, with many important prob-
lems remaining to be worked out. One clear problem is computational time and complexity.
For example, noting the great potential of the Bayesian approach in pattern recognition for
bioinformatics, Corander (2006) also notes the limitation of current Bayesian computational
strategies in high-dimensional settings, calling for the evolution of Bayesian computational
strategies to meet this need. A number of fast approximations to the posterior have been
proposed for DPMs and other nonparametric Bayes models, relying on variational approxi-
mations and other strategies. However, such approximations often perform poorly, and there
is no general theory or methodology available for assessing approximation accuracy. Some
of these issues will be covered in detail in the chapter by Teh and Jordan.

Another issue is hyperparameter choice. In having infinitely-many parameters, non-
parametric Bayes methods tend to be heavily parameterized and to require specification
of a number of hyperparameters. This subjective component is somewhat counter to the
nonparametric spirit of avoiding assumptions, and the hyperparameters can have a subtle
role, making them difficult to elicit. For this reason, it is appealing to have new approaches
for subjective prior elicitation that allow for the incorporation of scientific and background
knowledge. Typically, such knowledge does not take the form of guesses at parameter values,
but instead may be represented as functional constraints or knowledge of plausible values for
functions of the parameters. It is also appealing to have default priors approaches available
for routine use.

There is also a pressing need for new methods and ways of thinking about model selection
in nonparametric Bayes. For example, for a given problem (e.g., conditional distribution
estimation), one can write down many different nonparametric Bayes models, so how does
the applied statistician go about choosing between the different possibilities? Often such a
choice may be pragmatic, motivated by the available software for implementation and the
plausibility of the results that are produced. However, it would be appealing to have formal
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methods for routinely comparing competing approaches in terms of goodness-of-fit versus
parsimony, asymptotic efficiency and other criteria. It may be that different formulations are
primarily distinguished by sparseness-favoring properties, with “spareness-favoring” in this
context meaning that the approach favors using relatively few parameters in characterizing
the distributions and functions of interest.
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