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Abstract
Detecting moving objects using stationary cameras is an im-
portant precursor to many activity recognition, object recog-
nition and tracking algorithms. In this paper, three inno-
vations are presented over existing approaches. Firstly, the
model of the intensities of image pixels as independently dis-
tributed random variables is challenged and it is asserted
that useful correlation exists in the intensities of spatially
proximal pixels. This correlation is exploited to sustain
high levels of detection accuracy in the presence of nomi-
nal camera motion and dynamic textures. By using a non-
parametric density estimation method over a joint domain-
range representation of image pixels, multi-modal spatial
uncertainties and complex dependencies between the do-
main (location) and range (color) are directly modeled. Sec-
ondly, temporal persistence is proposed as a detection cri-
teria. Unlike previous approaches to object detection which
detect objects by building adaptive models of the only back-
ground, the foreground is also modeled to augment the de-
tection of objects (without explicit tracking) since objects
detected in a preceding frame contain substantial evidence
for detection in a current frame. Third, the background and
foreground models are used competitively in a MAP-MRF
decision framework, stressing spatial context as a condition
of pixel-wise labeling and the posterior function is maxi-
mized efficiently using graph cuts. Experimental validation
of the proposed method is presented on a diverse set of dy-
namic scenes.

1 Introduction
Automated surveillance systems typically use stationary
sensors to monitor an environment of interest. The assump-
tion that the sensor remains stationary between the incidence
of each video frame allows the use of statistical background
modelling techniques for the detection of moving objects.
Since ‘interesting’ objects in a scene are usually defined
to be moving ones, such object detection provides a reli-
able foundation for other surveillance tasks like tracking
and often is also an important prerequisite for action or ob-
ject recognition. However, the assumption of a stationary
sensor does not necessarily imply a stationary background.
Examples of ‘nonstationary’ background motion abound in
the real world, including periodic motions, such as a ceiling
fans, pendulums or escalators, and dynamic textures, such

as fountains, swaying trees or ocean ripples. Furthermore,
the assumption that the sensor remains stationary is often
nominally violated by common phenomena such as wind
or ground vibrations and to a larger degree by (stationary)
hand-held cameras. If natural scenes are to be modeled it is
essential that object detection algorithms operate reliably in
such circumstances.

In the context of this work, background modeling meth-
ods can be classified into two categories: (1) Methods that
employ local (pixel-wise) models of intensity and (2) Meth-
ods that have regional models of intensity. Most background
modelling approaches tend to fall into the first category of
pixel-wise models. In their work, Wren et al [21] mod-
eled the color of each pixel, I(x, y), with a single 3 di-
mensional Gaussian, I(x, y) ∼ N(µ(x, y),Σ(x, y)). The
mean µ(x, y) and the covariance Σ(x, y), were learned from
color observations in consecutive frames. Once the pixel-
wise background model was derived, the likelihood of each
incident pixel color could be computed and labeled. Simi-
lar approaches that used Kalman Filtering for updating were
proposed in [8] and [9] and a robust detection algorithm was
also proposed in [7]. However, the single Gaussian pdf is
ill-suited to most outdoor situations, since repetitive object
motion, shadows or reflectance often caused multiple pixel
colors to belong to the background at each pixel. To ad-
dress some of these issues, Friedman and Russell, and inde-
pendently Stauffer and Grimson, [2, 18] proposed modeling
each pixel intensity as a mixture of Gaussians, instead, to ac-
count for the multi-modality of the ‘underlying’ likelihood
function of the background color. While the use of Gaussian
mixture models was tested extensively, it did not explicitly
model the spatial dependencies of neighboring pixel colors
that may be caused by a variety of real dynamic motion.
Since most of these phenomenon are ‘periodic’, the pres-
ence of multiple models describing each pixel mitigates this
effect somewhat by allowing a mode for each periodically
observed pixel intensity, however performance notably dete-
riorates since dynamic textures usually do not repeat exactly.
Another limitation of this approach is the need to specify
the number of Gaussians (models), for the E-M algorithm or
the K-means approximation. Some methods that address the
uncertainty of spatial location using local models have also
been proposed. In [1], El Gammal et al proposed nonpara-
metric estimation methods for per-pixel background model-
ing. Kernel density estimation (KDE) was used to establish
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membership, and since KDE is a data-driven process, multi-
ple modes in the intensity of the background were also han-
dled. They addressed the issue of nominally moving cam-
eras with a local search for the best match for each incident
pixel in neighboring models. Ren et al too explicitly ad-
dressed the issue of background subtraction in a dynamic
scene by introducing the concept of a spatial distribution
of Gaussians (SDG), [16]. ‘Nonstationary’ backgrounds
have most recently been addressed by Pless et al [15] and
Mittal et al [12]. Pless et al proposed several pixel-wise
models based on the distributions of the image intensities
and spatio-temporal derivatives. Mittal et al proposed an
adaptive kernel density estimation scheme with a pixel-wise
joint-model of color (for a normalized color space), and the
optical flow at each pixel. Other notable pixel-wise detec-
tion schemes include [19], where topology free HMMs are
described and several state splitting criteria are compared in
context of background modeling, and [17], where a three-
state HMM is used to model the background.

The second category of methods use region models of the
background. In [20], Toyama et al proposed a three tiered
algorithm that used region based (spatial) scene informa-
tion in addition to per-pixel background model: region and
frame level information served to verify pixel-level infer-
ences. Another global method proposed by Oliver et al [13]
used eigenspace decomposition to detect objects.The back-
ground was modeled by the eigenvectors corresponding to
the η largest eigenvalues, that encompass possible illumina-
tions in the field of view (FOV). The foreground objects are
detected by projecting the current image in the eigenspace
and finding the difference between the reconstructed and
actual images. The most recent region-based approaches
are by Monnet et al [11], Zhong et al [22]. Monnet et al
and Zhong et al simultaneously proposed models of im-
age regions as an autoregressive moving average (ARMA)
process, which is used to incrementally learn (using PCA)
and then predict motion patterns in the scene.

The proposed work has three novel contributions. Firstly,
the method proposed here provides a principled means of
modeling the spatial dependencies of observed intensities.
The model of image pixels as independent random variables,
an assumption almost ubiquitous in background subtraction
methods, is challenged and it is further asserted that there
exists useful structure in the spatial proximity of pixels. This
structure is exploited to sustain high levels of detection ac-
curacy in the presence of nominal camera motion and dy-
namic textures. By using nonparametric density estimation
methods over a joint domain-range representation, the back-
ground itself is modeled as a single distribution and multi-
modal spatial uncertainties are directly handled. Secondly,
unlike all previous approaches, the foreground is explicitly
modeled to augment the detection of objects without using
tracking information. The criterion of temporal persistence
is proposed for simultaneous use with the conventional cri-
terion of background difference, without explicitly track-
ing objects. Thirdly, instead of directly applying a thresh-
old to membership probabilities, which implicitly assumes
independence of labels, we propose a MAP-MRF frame-

work that competitively uses the foreground and background
models for object detection, while enforcing spatial context
in the process. The rest of the paper is organized as fol-
lows. A description of the proposed approach is presented
in Section 2. Within this section, a discussion on modelling
spatial uncertainty and on utilizing the foreground model for
object detection and a description of the overall MAP-MRF
framework is included. Experimental results are discussed
in Section 3, followed by conclusions in Section 4.

2 Object Detection

In this section we describe the global representation of the
background, the use of temporal persistence to formulate
object detection as a competitive binary classification prob-
lem, and the overall MAP-MRF decision framework. For
an image of size M × N , let S discretely and regularly
index the image lattice, S = {(i, j)|1 ≤ i ≤ N, 1 ≤
j ≤ M}. In context of object detection in a stationary cam-
era, the objective is to assign a binary label from the set
L = {background, foreground} to each of the sites in S.

2.1 Joint Domain-Range Background Model

If the primary source of spatial uncertainty of a pixel is im-
age misalignment, a Gaussian density would be an adequate
model since the corresponding point in the subsequent frame
is equally likely to lie in any direction. However, in the pres-
ence of dynamic textures, cyclic motion, and nonstationary
backgrounds in general, the ‘correct’ model of spatial un-
certainty would often have an arbitrary shape and may be
bi-modal or multi-modal because by definition, motion fol-
lows a certain repetitive pattern. Such arbitrarily structured
spaces can be best analyzed using nonparametric methods
since these methods make no underlying assumptions on the
shape of the density. Non-parametric estimation methods
operate on the principle that dense regions in a given fea-
ture space, populated by feature points from a class, corre-
spond to the modes of the ‘true’ pdf. In this work, analysis
is performed on a feature space where the p pixels are rep-
resented by xi ∈ R

5, i = 1, 2, . . . p. The feature vector,
x, is a joint domain-range representation, where the space
of the image lattice is the domain, (x, y) and some color
space, for instance (r, g, b), is the range. Using this repre-
sentation allows a global model of the entire background,
fR,G,B,X,Y (r, g, b, x, y), rather than a collection of pixel-
wise models. These pixel-wise models ignore the depen-
dencies between proximal pixels and it is asserted here that
these dependencies are important. The joint representation
provides a direct means to model and exploit this depen-
dency.

In order to build a background model, consider the sit-
uation at time t, before which all pixels, represented in 5-
space, form the set ψb = {y1,y2 . . .yn} of the background.
Given this sample set, at the observation of the frame at time
t, the probability of each pixel-vector belonging to the back-
ground can be computed using the kernel density estimator
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([14]). The kernel density estimator is a member of the non-
parametric class of estimators and under appropriate con-
ditions the estimate it produces is a valid probability itself.
Thus, to find the probability that a candidate point, x, be-
longs to the background, ψb, an estimate can be computed,

P (x|ψb) = n−1
n∑

i=1

ϕH

(
x − yi

)
, (1)

where H is a symmetric positive definite d × d bandwidth
matrix, and

ϕH(x) = |H|−1/2ϕ(H−1/2x), (2)

where ϕ is a d-variate kernel function usually satisfying∫
ϕ(x)dx = 1, ϕ(x) = ϕ(−x),

∫
xϕ(x)dx = 0,∫

xxT ϕ(x)dx = Id and is also usually compactly sup-
ported. The d-variate Gaussian density is a common choice
as the kernel ϕ,

ϕ
(N )
H (x) = |H|−1/2(2π)−d/2 exp

(
− 1

2
xT H−1x

)
. (3)

Within the joint domain-range representation, the kernel
density estimator explicitly models spatial dependencies,
without running into the difficulties of parametric mod-
elling. Furthermore, since it is known that the rgb axes are
correlated, it is worth noting that the kernel density estima-
tion also accounts for this correlation. Lastly, in order to en-
sure that the algorithm remains adaptive to slower changes
(such as illumination change or relocation) a sliding win-
dow of length ρb frames is maintained. This parameter cor-
responds to the learning rate of the system.

2.2 Modeling the Foreground

The intensity difference of interesting objects from the back-
ground has been, by far, the most widely used criterion for
object detection. In this paper, temporal persistence is pro-
posed as a property of real foreground objects, i.e. interest-
ing objects tend to have smooth motion and tend to maintain
consistent colors from frame to frame. The joint representa-
tion used here allows competitive classification between the
foreground and background. To that end, models for both
the background and the foreground are maintained. An ap-
pealing aspect of this representation is that the foreground
model can be constructed in a similar fashion to the back-
ground model: a joint domain-range non-parametric density
ψf = {z1, z2 . . . zm}. Just as there was a learning rate pa-
rameter ρb for the background model, a parameter ρf for the
number of foreground samples is defined.

However, unlike the background, at any time instant the
likelihood of observing a foreground pixel at any location
(i, j) of any color is uniform. Then, once a foreground re-
gion is been detected at time t, there is an increased like-
lihood of observing a foreground region at time t + 1 in
the same proximity with a similar color distribution. Thus,
foreground likelihood is expressed as a mixture of a uniform
function and the kernel density function,
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Figure 2: Improvement in discrimination using temporal per-
sistence. (a) Histogrammed log-likelihood values for back-
ground membership. (b) Histogrammed log-likelihood ratio val-
ues. Clearly the variance between clusters is decidedly enhanced.

P (x|ψf ) = αγ + (1 − α)m−1
m∑

i=1

ϕH

(
x − zi

)
, (4)

where α � 1 is a small positive constant that represents the
uniform likelihood and γ is the uniform distribution equal
to 1

R×G×B×M×N (R,G,B are the support of color values,
typically 256, and M,N are the spatial support of the im-
age). If an object is detected in the preceding frame, the
likelihood of observing the colors of that object in the same
proximity increases according to the second term in Equa-
tion 4. Therefore, as objects of interest are detected all pix-
els that are classified as ‘interesting’ are used to update the
foreground model ψf . In this way, simultaneous models
are maintained of both the background and the foreground,
which are then used competitively to estimate interesting re-
gions. Finally, to allow objects to become part of the back-
ground (e.g. a car having been parked or new construction
in an environment), all pixels are used to update ψb. Figure
1 shows plots of some marginals of the foreground model.

At this point, whether a pixel vector x is ‘interesting’
or not can be competitively estimated using a simple like-
lihood ratio classifier, [4]), − ln P (x|ψb)

P (x|ψf ) > κ, where κ is
a threshold which balances the trade-off between sensitiv-
ity to change and robustness to noise. The utility in using
the foreground model for detection can be clearly seen in
Figure 2. Evidently, the higher the likelihood of belonging
to the foreground, the lower the likelihood ratio. However,
as is described next, instead of using only likelihoods, prior
information of neighborhood spatial context is enforced in
a MAP-MRF framework. This removes the need to specify
the arbitrary parameter κ.

2.3 MAP-MRF Estimation

The inherent spatial coherency of objects in the real world is
often applied in a post processing step, in the form of mor-
phological operators like erosion and dilation, or by neglect-
ing connected components containing only a few pixels,
[18]. Furthermore, directly applying a threshold to member-
ship probabilities implies conditional independence of la-
bels, i.e. P (	i|	j) = P (	i), where i �= j. We assert that
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Figure 1: Foreground Modelling. Using kernel density estimates on a model built from recent frames, the foreground can be detected
in subsequent frames using the property of temporal persistence, (a) Current Frame (b) the X, Y -marginal, fX,Y (x, y) High membership
probabilities are seen in regions where foreground in the current frame matches the recently detected foreground. The non-parametric nature
of the model allows the arbitrary shape of the foreground to be captured accurately (c) the B, G-marginal, fB,G(b, g) (d) the B, R-marginal,
fB,R(b, r) (e) the G, R-marginal, fG,R(g, r).

such conditional independence rarely exists between prox-
imal sites. Instead of applying ad-hoc heuristics, Markov
Random Fields provide a mathematical foundation to make
a global inference using local information. The MRF prior
is precisely the constraint of spatial context we wish to im-
pose on L. The set of neighbors, N , is defined as the set of
sites within a radius r ∈ R from site i = (i, j),

Ni = {s ∈ S| distance(i, s) ≤ r, i �= s}

where distance(a,b) denotes the Euclidean distance be-
tween the pixel locations a and b. The 4-neighborhood or
8-neighborhood cliques are two commonly used neighbor-
hoods. The pixel-vectors x̂ = {x1,x2, ...xp} are condi-
tionally independent given L, with conditional density func-
tions f(xi|	i). Thus, since each xi is dependant on L only
through 	i, the likelihood function may be written as,

l(x̂|L) =
p∏

i=1

f(xi|	i) =
p∏

i=1

f(xi|ψf )�if(xi|ψb)1−�i (5)

Spatial context is enforced in the decision through a pairwise
interaction MRF prior, used for its discontinuity preserving
properties, p(L) ∝ exp

( ∑p
i=1

∑p
j=1 λ

(
	i	j +(1− 	i)(1−

	j)
))

, where λ is a constant, and i �= j are neighbors. By
Bayes Law,

p(L|x̂) =
p(x̂|L)p(L)

p(x̂)
(6)

where p(x̂|L) is as defined in Equation 5, p(L) is as de-
fined and p(x̂) = p(x̂|ψf ) + p(x̂|ψb). The log-posterior,
ln p(L|x̂), is then equivalent to (ignoring constant terms),

L(L|x̂) =
p∑

i=1

ln

(
f(xi|ψf )
f(xi|ψb)

)
	i+

p∑
i=1

p∑
j=1

λ
(
	i	j + (1 − 	i)(1 − 	j)

)
. (7)

The MAP estimate is the binary image that maximizes

arg max
L∈L

L(L|x̂) (8)

Objects Det. Mis-Det. Det. Rate Mis-Det. Rate
Seq. 1 84 84 0 100.00% 0.00%
Seq. 2 115 114 1 99.13% 0.87%
Seq. 3 161 161 0 100.00% 0.00%
Seq. 4 94 94 0 100.00% 0.00%
Seq. 5 170 169 2 99.41% 1.18%

Table 1: Object level detection rates. Object sensitivity and speci-
ficity for five sequences (each one hour long).

where L are the 2NM possible configurations of L. An ex-
haustive search of the solution space is not feasible due to its
size, but since L belongs to the F2 class of energy functions
(as defined in [10]), efficient algorithms exist for the maxi-
mization of L using graph cuts, [5, 10]. To optimize the en-
ergy function (Equation 7), we construct a graph G = 〈V, E〉
with a 4-neighborhood system N . In the graph, there are
two distinct terminals s and t, the sink and the source, and
n nodes corresponding to each image pixel location, thus
V = {v1, v2, · · · , vn, s, t}. The graph construction is as de-
scribed in [5], with a directed edge (s, i) from s to node i
with a weight τ (the log-likelihood ratio), if τ > 0, other-
wise a directed edge (i, t) is added between node i and the
sink t with a weight τ . For the second term in Equation 7,
undirected edges of weight λ are added if there correspond-
ing pixels are neighbors as defined by N . The minimum cut
can then computed through several approaches, the Ford-
Fulkerson algorithm [3], the faster version in [5] or through
the generic version of [10]. The configuration found corre-
sponds to an optimal estimate of L.

3 Results and Discussion

The algorithm was tested in the presence of nominal cam-
era motion, dynamic textures, and cyclic motion. On a 3.06
GHz Intel Pentium 4 processor with 1 GB RAM, an opti-
mized implementation can process up to 11 fps for a frame
size of 240 by 360. Comparative results for the mixture of
Gaussians method have also been shown. The first sequence
that was tested involved a camera mounted on a tall tripod.
The wind caused the tripod to sway back and forth causing
nominal motion in the scene. In Figure 4 the first row is
the current image. The second row shows the detected fore-
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Figure 3: Detection in dynamic scenes. The first column has the
original images, the second column shows the results obtained by
the Mixture of Gaussians method, [18] and the third column are the
results obtained by the proposed method. Morphological operators
were not used in the results.

ground proposed in [18], and it is evident that the motion
causes substantial degradation in performance, despite a 5-
component mixture model and a high learning rate of 0.05.
The third row shows the foreground detected using the pro-
posed approach. It is stressed that no morphological opera-
tors like erosion / dilation or median filters were used in the
presentation of these results. Figures 3 shows results on a
variety of scenes with dynamic textures, including fountains
(a), shimmering water (b) and waving trees (c) and (d).

We performed quantitative analysis at both the pixel-level
and object-level. For the first experiment, we manually seg-
mented a 300-frame sequence containing nominal motion
(as seen in Figure 4). In the sequence, two objects (a person
and then a car) move across the field of view causing the
two bumps in the number of pixels. The per-frame detec-
tion rates are shown in Figure 5 in terms of specificity and
sensitivity, where

specificity =
# of true positives detected

total # of true positives

sensitivity =
# of true negatives detected

total # of true negatives
.

Clearly, the detection accuracy both in terms of sensitiv-
ity and specificity is consistently higher than the mixture of
Gaussians approach. Next, to evaluate detection at the ob-
ject level (detecting whether an object is present or not), we
evaluated five sequences, each one hour long. Sensitivity
and specificity were measured in an identical fashion to the
pixel-level experiment, with an object as each contiguous
region of pixels. Results are shown in Table 1.

4 Conclusion

There are a number of fundamental innovations in this work.
From an intuitive point of view, using the joint representa-
tion of image pixels allows local spatial structure of a se-
quence to be represented explicitly in the modeling process.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Frames

S
en

si
tiv

ity

Proposed Method
Mixture of Gaussians

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Frames

S
pe

ci
fic

ity

Proposed Method
Mixture of Gaussians

Figure 5: Pixel-level detection sensitivity and specificity. Average
True Negatives - Proposed Method 99.65 %, Average True Nega-
tives - Mixture of Gaussians 94.22 %, Average True Positives -
Proposed Method 90.66 %, Average True Positives - Mixture of
Gaussians 75.42 %

The background is represented by a single distribution and
a kernel density estimator is to find membership probabili-
ties. Another novel proposition in this work is temporal per-
sistence as a criterion for detection without feedback from
higher-level modules. By making coherent models of both
the background and the foreground, changes the paradigm
of object detection from identifying outliers with respect to
a background model to explicitly classifying between the
foreground and background models. The likelihoods obtain
in this way are utilized in a MAP-MRF framework that al-
lows an optimal global inference of the solution based on
local information. The resulting algorithm performed suit-
ably in several challenging settings.

Since analysis is being performed in R
5, it is important

to consider how the so-called curse of dimensionality affects
performance. Typically higher dimensional feature spaces
mean large sparsely populated volumes, but at high frame
rates, the overriding advantage in the context of background
modeling and object detection is the generous availability of
data. Here, the magnitude of the sample size is seen as an
effective means of reducing the variance of the density esti-
mate, otherwise expected [4] (pg. 323). Future directions in-
clude using a fully parameterized bandwidth matrix for use
in adaptive Kernel Density Estimation. Another promising
area of future work is to fit this work in with nonparamet-
ric approaches to tracking, like mean-shift tracking. Since
both background and foreground models are continuously
maintained, the detection information can be used to weight
likelihoods apriori.
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