
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Bayesian Optimization for Categorical and Category-Specific Continuous Inputs

Dang Nguyen, Sunil Gupta, Santu Rana, Alistair Shilton, Svetha Venkatesh
Applied Artificial Intelligence Institute (A2I2), Deakin University, Geelong, Australia
{d.nguyen, sunil.gupta, santu.rana, alistair.shilton, svetha.venkatesh}@deakin.edu.au

Abstract

Many real-world functions are defined over both categorical
and category-specific continuous variables and thus cannot be
optimized by traditional Bayesian optimization (BO) meth-
ods. To optimize such functions, we propose a new method
that formulates the problem as a multi-armed bandit problem,
wherein each category corresponds to an arm with its reward
distribution centered around the optimum of the objective
function in continuous variables. Our goal is to identify the
best arm and the maximizer of the corresponding continuous
function simultaneously. Our algorithm uses a Thompson sam-
pling scheme that helps connecting both multi-arm bandit and
BO in a unified framework. We extend our method to batch
BO to allow parallel optimization when multiple resources
are available. We theoretically analyze our method for con-
vergence and prove sub-linear regret bounds. We perform a
variety of experiments: optimization of several benchmark
functions, hyper-parameter tuning of a neural network, and
automatic selection of the best machine learning model along
with its optimal hyper-parameters (a.k.a automated machine
learning). Comparisons with other methods demonstrate the
effectiveness of our proposed method.

Introduction

Bayesian optimization (BO) (Shahriari et al. 2016) provides
a powerful and efficient framework for global optimization
of expensive black-box functions. Typically, at each iteration
a BO method first models the black-box function via a sta-
tistical model (e.g. a Gaussian process (GP)) and then seeks
out the next function evaluation points by maximizing an
easy to optimize function (a.k.a. acquisition function) that
balances the two conflicting requirements: exploitation of
current function knowledge and exploration to gain more
function knowledge. A notable strength of BO is that its
convergence is well studied (Bull 2011).

Most BO methods assume that the function inputs are
continuous variables. In reality, however, a function may be
defined over diverse input types – for example, categorical,
integer or continuous. Categorical type variables are partic-
ularly challenging since they do not have a natural ordering
as in integer and continuous variables. Limited work has ad-
dressed incorporation of categorical input types. In a recent

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

work, (Golovin et al. 2017) used one-hot encoding for cate-
gorical variables, increasing the input dimension by one extra
variable per category. Since the categories are mutually ex-
clusive, all the extra variables are set to zero except the active
variable (corresponding to the required category) which is set
to one. After converting the categorical variables to one-hot
encoding, this approach treats extra variables as continuous
in [0, 1] and uses a typical BO algorithm to optimize them.
Unfortunately, this type of encoding imposes equal measure
of covariance between all category pairs, totally ignoring the
fact that they may have different or no correlations at all.
Further, the recommendations can get repeated as they are
generated via rounding-off at the end. To address the latter
problem, (Garrido-Merchán and Hernández-Lobato 2018) as-
sumed that the objective function does not change its values
except at the designated points of 0 and 1. This is achieved
by using a kernel function that computes covariances after
the input is rounded off. However, this makes the resulting
acquisition function step-wise, which is hard to optimize.

In many optimization problems, an additional challenge
arises – each category is coupled with a different continuous
search space. For example, consider the problem of auto-
mated machine learning (Feurer et al. 2019) where we need
to automatically select the best performing machine learning
model along with its optimal hyper-parameters. Each ma-
chine learning model can be viewed as a distinct value (or
choice) of a categorical variable while the hyper-parameters
of the model can be viewed as category-specific continuous
variables. None of the current GP-based BO methods can be
applied to such complex search spaces.

To incorporate categorical inputs and deal with category-
specific continuous search spaces, tree-based methods have
been proposed. For example, SMAC tackles this problem
by using random forest in place of GP (Hutter, Hoos, and
Leyton-Brown 2011). However, random forest has a well-
known limitation in performing extrapolation and thus is not a
good choice for BO (Lakshminarayanan, Roy, and Teh 2016).
Yet another method, tree-structured parzen window based
approach (TPE) (Bergstra et al. 2011) can naturally cope
with both categorical and continuous variables. In contrast to
GP based approaches, TPE models two likelihood functions
to assess if the function value at any point would be in the
range of top few observations or not. The disadvantage is that
this approach requires higher number of initial data points

5256

to model the likelihood functions effectively. Moreover, the
overarching problem with all the above-mentioned methods is
that none of them offered an avenue for convergence analysis
and thus remained ad-hoc in nature.

In this work, we develop a BO algorithm that can handle
both categorical and continuous variables even if each cat-
egory involves a different set of continuous variables. The
algorithm is amenable to convergence analysis. We extend
this algorithm to develop a batch BO algorithm for the same
complex search space scenario. We use a mix of multi-armed
bandit (MAB) and BO formulations in our approach. Each
categorical value corresponds to an arm with its reward distri-
bution centered around the optimum of the objective function
in continuous variables. Thompson sampling (TS) (Russo
and Roy 2014) is used for both selecting the best arm and sug-
gesting the next continuous point to evaluate. Among various
possibilities of MAB and BO algorithms, our choice of TS is
guided by the need for an unified framework to join both the
MAB and BO seamlessly into a single entity for convergence
analysis. Empirically also TS is known to be a competitive al-
gorithm for both MAB and BO problems due to using a range
of exploitation/exploration trade-offs (Russo and Roy 2014;
Kandasamy et al. 2018). We derive the theoretical regret
bounds for both the sequential and batch algorithms, and
show that the growth of cumulative regret is at most sub-
linear. We perform a variety of experiments: optimization of
several benchmark functions, hyper-parameter tuning of a
neural network, and automated machine learning. The em-
pirical results demonstrate the effectiveness of our method.

Compared with other methods, our method offers three
key advantages:

• Optimizing black-box functions with continuous and cate-
gorical inputs in both sequential and batch settings;

• Handling the problems where each category is coupled
with a different set of continuous variables; and

• Deriving the regret bounds for both sequential and batch
settings.

Related Background

Bayesian Optimization

Bayesian optimization (BO) is a method to find the global
optimum of an expensive, black-box function f(x) as x∗ =
argmaxx∈X f(x), where X is a bounded domain in R

d. It
assumes that f(x) can only be noisily evaluated through
queries to the black-box. BO operates sequentially, and the
next function evaluation is guided by the previous observa-
tions. Let us assume that the observations up to iteration t
are denoted as Dt = {xi, yi}ti=1, where yi = f(xi) + ǫi
and ǫi ∼ N (0, σ2

ǫ). Typically, f(x) is assumed to be a
smooth function and modeled using a Gaussian process
(GP), i.e. f(x) ∼ GP(m(x), k(x, x′)), where m(x) is a
mean function that can be assumed to be a zero function,
and k(x, x′) is a covariance function modeling the covari-
ance between any two function values f(x) and f(x′). A
common covariance function is the squared exponential ker-
nel, defined as k(x, x′) = σ2 exp(− 1

2l2 ||x − x′||22), where

σ2 is a parameter dictating the uncertainty in f(x), l is a

length scale parameter. The predictive distribution for f(x)
at any point x is also a Gaussian distribution with its mean

and variance given by µt(x) = k
T[K + σ2

ǫ I]
−1y1:t and

σ2
t (x) = k(x, x) − k

T[K + σ2
ǫ I]

−1
k, where K is a matrix

of size t× t with (i, j)-th element defined as k(xi, xj) and
k is a vector with i-th element defined as k(xi, x).

BO uses a surrogate function called acquisition function to
find the next point to evaluate. The acquisition function uses
the predictive distribution to balance two contrasting goals:
sampling where the function is expected to take a high value
vs. sampling where the uncertainty about the function value
is high. Some well-known acquisition functions are probabil-
ity of improvement (Kushner 1964), expected improvement
(Jones, Schonlau, and Welch 1998), GP-upper confidence
bound (Srinivas et al. 2012), and predictive entropy search
(Hernández-Lobato, Hoffman, and Ghahramani 2014).

Batch Bayesian Optimization

In its standard form, BO works in a sequential setting where
it suggests one point at each iteration. However, when parallel
resources are available at each iteration, BO is extended to
a batch setting where it suggests multiple points at each
iteration. Several batch BO methods have been developed
(see (González et al. 2016) for a review). Recently, Thompson
sampling has become an efficient technique for batch BO
(Hernández-Lobato et al. 2017; Kandasamy et al. 2018); the
idea is to select a batch element by maximizing a randomly
drawn function from the posterior GP. However, to the best of
our knowledge, batch BO for both categorical and continuous
variables has not yet been studied.

The Proposed Method

Problem Definition

We present a method for BO to jointly handle both categorical
and category-specific continuous input variables. Formally,
given an input [c, xc] and a black-box function f([c, xc]),
where c ∈ {1, ..., C} is a category among C categories and
xc ∈ Xc ⊂ R

d are continuous variables corresponding to the
category c, our goal is to find:

[c∗, x∗] = argmax
c∈{1,...,C},xc∈Xc

f([c, xc]) (1)

A naı̈ve approach to solve Eq. (1) is to consider f([c, xc])
as a collection of black-box functions {fc(xc)}Cc=1 defined
on continuous domain Xc and then find the optimum x∗

c =
argmaxxc∈Xc

fc(x) for each function and finally get [c∗, x∗]
as c∗ = argmaxc∈{1,...,C}fc(x

∗
c) and x∗ = x∗

c∗ . However,

this approach is inefficient as it needs to find x∗
c for all c. Since

the function evaluations in BO are expensive, an efficient
approach is needed.

Before proceeding further, we simplify our notation. In-
stead of using [c, xc], we simply write [c, x]. The notation
x ∈ Xc is sufficient to resolve any ambiguity.

Sequential Setting

To efficiently solve the optimization problem in Eq. (1), we
propose a novel method that combines multi-armed bandit

5257

(MAB) and BO. The main idea is that instead of optimiz-
ing f([c, x]) exhaustively for each value of c, we attempt
to identify (in parallel) the best value of c (denoted as c∗),
which results in the optimal function value and optimize
x∗ = argmaxx∈Xc∗

f([c∗, x]).
We formulate the problem of selecting the best value c∗ as

a MAB problem (Bubeck, Cesa-Bianchi, and others 2012),
where each value c ∈ {1, ..., C} is considered as an arm.
In the usual parlance of MAB, the arm c has a reward dis-
tribution (due to noisy function evaluations) around a mean

parameter f∗
c � maxx∈Xc

fc(x). We note that f∗
c is unknown

due to fc(x) being a black-box. For BO of fc(x), we model
it using a GP, which induces a distribution on f∗

c . As we
increasingly get observations of fc(x), the uncertainty in f∗

c

reduces. From the MAB side, this means that each time an
arm c is played, we get an additional observation of fc(x),
which improves the estimate of the mean parameter f∗

c . MAB
algorithm allows us to play the arms optimally guided by the
uncertainties in f∗

c . An illustration is shown in Figure 1.

Input: C: # of arms, B: batch size
begin

for t = 1, 2, ... do
foreach c ∈ {1, ..., C} do

fit GPc (i.e. p(fc(x) | Dc
t)) using Dc

t ;
end
for b = 1 to B do

foreach c ∈ {1, ..., C} do

draw f̃c(x) ∼ p(fc(x) | Dc
t);

obtain x̃∗
c = argmaxx∈Xc

f̃c(x);

set f̃∗
c = f̃c(x̃

∗
c);

end

choose an arm ct+b = argmaxc f̃
∗
c ;

suggest a point xt+b = x̃∗
ct+b

;

evaluate yt+b = fct+b
(xt+b) + ǫt+b;

end

Dt+B = Dt ∪ {ct+b, xt+b, yt+b}Bb=1;

end

end
Algorithm 1: The proposed Bandit-BO algorithm.

We have several choices for MAB algorithms such as
UCB1, Exp3, ǫ-greedy, and Thompson sampling (Auer, Cesa-
Bianchi, and Fischer 2002; Russo and Roy 2014) and simi-
larly multiple choices for BO algorithms differing mainly in
acquisition functions e.g. EI, GP-UCB, TS, entropy search
etc (Hernández-Lobato, Hoffman, and Ghahramani 2014).
We prefer to use GP-UCB1 or TS for BO as these algorithms
can be analyzed to provide theoretical upper bounds on regret.
For MAB algorithm, we have decided to use TS for multiple
reasons: (1) the GP directly offers a posterior distribution
on the arm means f∗

c and therefore using TS is feasible; (2)
TS is flexible to modifications and amenable to theoretical

1Although we focused only on TS for BO, but GP-UCB is also
feasible both practically and theoretically. The key difference is that
we get probabilistic regret bounds holding with high probability.

(a) Iteration t = 4.

(b) Iteration t = 15.

Figure 1: An illustration of our method using C = 2: (a) the
results at t = 4, (b) the results at t = 15. In both (a) and
(b), the first column shows the posterior GPs for category-0
and category-1 along with the true functions (shown in green
color). The second column shows the estimated distributions
of f∗

0 and f∗
1 with their true values (shown as green dots).

analyses; and (3) TS is shown to achieve competitive perfor-
mance in practice due to using a complete distribution for
exploration/exploitation trade-off (Kandasamy et al. 2018).

Using TS for both BO and MAB, our method works as fol-
lows. At each iteration t, for each arm c we first model fc(x)
via a GP using existing observations Dc

t = {ci, xi, yi =
fci(xi) + ǫi | ci = c}ti=1. Collectively, we denote Dt =
∪C
c=1Dc

t . We then randomly draw a function from the poste-

rior GP distribution of each arm as f̃c(x) ∼ p(fc(x) | Dc
t).

Next we select an arm as ct+1 = argmax
c∈{1,...,C}

maxx∈Xc
f̃c(x).

Given the selected arm ct+1 (or category), we need to rec-
ommend a value for xt+1. Usually in BO, xt+1 is rec-
ommended via an acquisition function. Since we are us-
ing TS as the acquisition function in BO, we recommend

xt+1 = argmaxx∈Xct+1

f̃ct+1
(x). Finally, we observe the

function value as yt+1 = fct+1
(xt+1) + ǫt+1 and update the

observation set as Dct+1

t+1 = Dct+1

t ∪ {ct+1, xt+1, yt+1}. We
call our method Bandit-BO.

5258

Batch Setting

We extend our sequential method to batch setting to rec-
ommend a set of B samples at each round. We note that
the number of total function evaluations T = the number of
rounds N × the batch size B. Our batch algorithm is similar
to the sequential one except that at each round, we recom-
mend B samples of c and x, each sample obtained using
an independent Thompson sample from p(fc(x) | Dc

t). Us-
ing these recommendations {(ct+b, xt+b)}Bb=1, we evaluate
the functions as yt+b = fct+b

(xt+b) + ǫt+b and update the

observation set as Dt+B = Dt ∪ {ct+b, xt+b, yt+b}Bb=1.
Our Bandit-BO in both sequential and batch settings is

summarized in Algorithm 1.

Convergence Analysis

We first present the convergence analysis for the sequential
setting and then extend it to the batch setting. Our analysis is
developed on the previous theoretical results of (Russo and
Roy 2014; Desautels, Krause, and Burdick 2014; Kandasamy
et al. 2018).

Sequential Setting TS has been analyzed earlier mostly in
the context of MAB with finite arms. An exception is (Russo
and Roy 2014), which extended the analysis to GP bandits
to infinitely many dependent arms. BO using GP models is a
related problem where one has to decide the best point among
an uncountably infinite set of points specified by Xc. In our
analysis, we extend the results of (Russo and Roy 2014) to
advance the BO in a joint space of categorical and continuous
variables. Our analysis provides the convergence guarantee
using Bayesian regret, which has been used as regret measure
by several earlier works (Agrawal and Goyal 2013; Bubeck
and Liu 2013).

Following (Russo and Roy 2014), the Bayesian regret of
our proposed Bandit-BO after T iterations is

BayesRegret(T) = E

T
∑

t=1

[fc∗(x
∗)− fct(xt)], (2)

where the expectation is w.r.t. a distribution over all possible
functions fc in our hypothesis space and any randomness
in the algorithm, particularly the random sampling of TS.
Inserting and deleting fct(x

∗
ct
) in the above expression we

can write the BayesRegret(T) as

BayesRegret(T) = E

T
∑

t=1

[fc∗(x
∗)− fct(x

∗
ct
)]+ (3)

E

T
∑

t=1

[fct(x
∗
ct
)− fct(xt)] = RMAB

T +RBO
T

where we have defined RMAB
T � E

∑T

t=1[fc∗(x
∗)−fct(x

∗
ct
)]

and RBO
T � E

∑T

t=1[fct(x
∗
ct
)−fct(xt)]. The reason for using

the terminology of RMAB
T and RBO

T is as follows: since fc(x
∗
c)

is the mean of arm c rewards, fc∗(x
∗) − fct(x

∗
ct
) denotes

the regret due to choosing a sub-optimal arm at iteration t;
and similarly, given the choice of ct at iteration t, fct(x

∗
ct
)−

fct(xt) denotes the regret of BO choosing a sub-optimal
continuous point.

To provide an upper bound on BayesRegret(T) in Eq. (3),
we prove Lemma 1 and 2, which provide upper bounds on
RMAB

T and RBO
T respectively. Before we proceed, we need to

state the following two assumptions. The first assumption
is required to prove regret bounds for BO in a continuous
search domain (Srinivas et al. 2012; Kandasamy et al. 2018).
The second assumption is required to prove Lemma 1 and 2.

Assumption 1. Let {fc(x)}Cc=1 be a set of functions such
that x ∈ Xc ⊂ R

d. Further, for all c, let fc(x) ∼ GPc(0, kc)
with a covariance function kc such that for any sample path
of GPc, there exist constants r and s such that its partial
derivatives satisfy the following condition

∀L > 0, ∀i ∈ {1, . . . , d} P(|∂f/∂xi| < L) ≥ 1− dre−L2/s2

Assumption 2. ∀c ∈ {1, ..., C}, let fc(x) ∼ GPc(0, kc) with
a covariance function kc such that the maximum information
gain γTc

about fc due to any Tc noisy observations is strictly
sub-linear in Tc. Therefore, there exists an α such that γTc

∼
O(Tα

c) where 0 ≤ α < 1.

As stated in (Srinivas et al. 2012), Assumption 1 satisfies
for any covariance function that is four times differentiable.
Assumption 2 satisfies for common covariance functions e.g.
squared-exponential, Matérn etc.

Lemma 1 (Upper bound on RMAB
T). Let fc(x) ∼

GPc(0, kc), c = 1, ..., C and Dt = {(ci, xi, yi)}i≤t be the
noisy function observation set suggested by our method in
the sequential setting under the observation model yi =
fci(xi) + ǫi, where ǫi ∼ N (0, σ2

ǫ), then under Assumptions

1 and 2, we have RMAB
T ≤ O

(

√

CTα+1 log T
)

.

Proof. The proof is provided in supplementary material.

Lemma 2 (Upper bound on RBO
T). Let fc(x) ∼

GPc(0, kc), c = 1, ..., C and Dt = {(ci, xi, yi)}i≤t be the
noisy function observation set suggested by our method in
the sequential setting under the observation model yi =
fci(xi) + ǫi, where ǫi ∼ N (0, σ2

ǫ), then under Assumptions

1 and 2, we have RBO
T ≤ O

(

√

CTα+1 log T
)

.

Proof. The proof is provided in supplementary material.

Finally, the overall Bayesian regret for our Bandit-BO is
stated in Theorem 3.

Theorem 3 (BayesRegret(T) for Sequential Setting). Under
Assumptions 1 and 2, the Bayesian regret for our method after
T iterations in the sequential setting is bounded as

BayesRegret (T) ≤ O
(

√

CTα+1logT
)

(4)

Proof. The proof follows by combining the results of Lemma
1 and 2 with Eq. (3). We note that the regret grows only sub-
linearly in both T and C.

5259

Efficiency of using MAB: The Bayesian regret of our pro-
posed Bandit-BO algorithm is only sub-linear in T as seen
in Eq. (4). We compare it with two extreme settings: the first
extreme where the optimal arm (or category) is known, and
the second extreme where each arm gets equal allocation
e.g. visiting each arm in a round-robin fashion or sampling
an arm uniformly randomly. For the first extreme, an ora-
cle who knows the optimal arm c∗ will allocate all T itera-
tions to the arm c∗ and therefore will have RMAB

T = 0 and

RBO
T ≤ O(

√

Tα+1logT). On the other hand, the second
extreme being a naı̈ve algorithm allocating equal budget to
each arm will incur RMAB

T =
∑

c �=c∗ ∆c
T
C

= O(T) (where

∆c = f∗
c∗ − f∗

c denoting the sub-optimality of each arm)

and RBO
T ≤ O(

√

Tα+1logT). This results in a total regret
that grows linearly in T . Thus, our method with regret upper

bound
(

√

CTα+1logT
)

is a significantly better algorithm

than equal-budget allocation algorithms and comparable to

the Oracle with just an extra sub-linear factor
√
C.

Batch Setting The main difference between the analysis of
a sequential and batch algorithm arises from the way function
values are observed. Unlike a sequential setting where we
observe the function value immediately after recommending
a sample, a batch setting with batch size B gets to observe
the functions values only after recommending B samples.
Due to the late feedback on the function knowledge, σc

tc
(x),

the predictive variance of fc(x) in the batch setting, is higher
than that in the sequential setting at any iteration tc prior to
which there was a recommendation without function value
observation. Desautels et al. (Desautels, Krause, and Burdick
2014) showed that this gap in the function knowledge (or
increased uncertainty) due to the batch setting can be bounded
for any x ∈ X as

(

σc
tc
(x)

)

batch
≤

(

σc
tc
(x)

)

seq
ψB , (5)

where ψB is a sub-linear term in B related to the maximum
information gain potentially brought by any B samples. Eq.

(5) gives us
∑Tc

tc=1

(

σc
tc
(x)

)2

batch
≤ ψ2

B

∑Tc

tc=1

(

σc
tc
(x)

)2

seq
.

Since
∑Tc

tc=1

(

σc
tc
(x)

)2

seq
≤ γTC

(Srinivas et al. 2012), we

have
∑Tc

tc=1 (σ
tc
c (x))

2
batch ≤ ψ2

BγTC
. For deriving regret

bounds for the batch setting, to bound
∑Tc

tc=1 (σ
tc
c (x))

2
batch,

we can use ψ2
BγTC

instead of (γTc
)batch. Since ψB is inde-

pendent of Tc, we can extend Theorem 3 of sequential setting
to the batch setting as stated in the following Theorem.

Theorem 4 (BayesRegret(T) for Batch Setting). Under As-
sumptions 1 and 2, the Bayesian regret for our method after
T iterations in the batch setting is given as

BayesRegret (T) ≤ O
(

ψB

√

CTα+1logT
)

Proof. The proof is provided in supplementary material.

Discussion

Our algorithm is capable of handling cases where the search
space for continuous variables for each category is either
identical (category-independent continuous search spaces) or

different (category-specific continuous search spaces). We
used an independent GP to model the continuous function
fc(x) for each category c. When the search spaces for con-
tinuous variables are identical for all categories, it may be
useful to incorporate any correlations across categories. In
our algorithm, it is possible to incorporate such correlations
through a multi-task Gaussian process (MTGP) (Bonilla,
Chai, and Williams 2008). MTGP allows to use a covariance
function of the form k(c, x, c′, x′), which can be factorized
as k(c, c′) × k(x, x′), and through k(c, c′) we can incorpo-
rate the correlation across the categories. A possible example
of k(c, c′) is Hamming kernel that was used by (Wang et al.
2016). However, in this paper, since our focus is to provide a
general algorithm that is applicable to both category-specific
and category-independent continuous search spaces, we have
ignored the correlation aspect. This is because correlation
across any two categories having different continuous search
spaces does not make sense.

Experiments

We conduct experiments to show the performance of our
proposed Bandit-BO for both synthetic and real-world appli-
cations in sequential and batch settings.

We compare our method with four state-of-the-art base-
lines that use different ways to deal with categorical variables:
One-hot-Encoding (Golovin et al. 2017), Merchan-Lobato
(Garrido-Merchán and Hernández-Lobato 2018), SMAC
(Hutter, Hoos, and Leyton-Brown 2011), and TPE (Bergstra
et al. 2011). For One-hot-Encoding and Merchan-Lobato
methods, batch recommendation is made using Thompson
sampling. For SMAC, we form the batch using “halluci-
nated” observations similar to (Desautels, Krause, and Bur-
dick 2014). For TPE, we form the batch using the likelihood
based sampling as described in (Bergstra et al. 2011). In our
experiments, we randomly initialize two points for GP fitting
for each category, resulting in 2C initial points in total. The
initialization points are kept identical across all methods for a
fair comparison. We repeat each method 10 times and report
the average result along with the standard error.

Synthetic Applications

The first experiment illustrates how our algorithm performs
with different batch sizes and numbers of categories.

Synthetic function Our synthetic function is created by
modifying Ackley-5d function in 5 continuous variables by an
extra categorical variable. We shift the function for each cate-

gory by a value c as f([c, x]) = −20 exp(−0.2

√

√

√

√
1
5

5
∑

i=1

z2i)−

exp(15

5
∑

i=1

cos(2πzi)) + 20 + exp(1)+c, where zi = xi+c.

In the supplementary material, we provide additional experi-
ments for two more synthetic functions.

Study of varying batch sizes Figure 2(a) shows the opti-
mization results for different batch sizes while fixing the num-
ber of categories to 6. Our method Bandit-BO is significantly

5260

(a) (b)

Figure 2: Optimization results for the modified Ackley-5d
function (a) for different batch sizes: B = 1 (sequential),
B = 5, and B = 10 (the number of categories is fixed to 6)
and (b) for different numbers of categories: C = 25, C = 50,
and C = 100 (the batch size is fixed to 5).

better compared to the other methods. It shows consistent
improvements over T = 120 iterations. One-hot-Encoding,
Merchan-Lobato, and SMAC methods do not perform well.
TPE is the second-best method; however its best found func-
tion value is significantly lower than that of Bandit-BO.

Study of varying numbers of categories In Figure 2(b),
we show the optimization results for different large numbers
of categories while fixing the batch size to 5. We can see that
Bandit-BO clearly outperforms the other methods even with
a very large number of categories (e.g. C = 100). TPE is still
a second-best method. The performance of Merchan-Lobato
becomes worse as C is increased. Interestingly, One-hot-
Encoding shows an improvement as C is increased up to 100,
where it is better than SMAC.

Real-world Applications

The second experiment shows the efficiency of our method
in two real-world machine learning (ML) applications.

Hyper-parameter tuning for a feed-forward neural net-
work on a regression task Our goal is to find the optimal
set of hyper-parameters for a feed-forward neural network
on the protein structure dataset2, which has 27,438 training
points, 9,146 testing points, and nine features. We define the

2https://archive.ics.uci.edu/ml/datasets/Physicochemical+
Properties+of+Protein+Tertiary+Structure

Table 1: Hyper-parameters for the neural network.

Type Hyper-parameter Values

Categorical

Activation/Layer 1 {tanh, relu}
Activation/Layer 2 {tanh, relu}
Layer 1 Size 2{4,6,9}

Layer 2 Size 2{4,6,9}

Continuous

Initial Learning Rate 10[−4,−1]

Batch Size 2[3,6]

Dropout/Layer 1 [0.0, 0.6]
Dropout/Layer 2 [0.0, 0.6]

black-box function as a mapping between the model hyper-
parameters and the mean squared error (MSE) on a held-out
testing set. We build the network with two hidden layers and
train it using Adam (Kingma and Ba 2015) for 100 epochs.
We optimize eight hyper-parameters as shown in Table 1. We
report the average MSE with standard errors for each method
as shown in Figure 3. We note that to create arms from four
categorical variables, we use the cross product of their values,
resulting in 36 arms (choices) in total.

From the results in Figure 3, we can see that our method
Bandit-BO performs the best in both sequential and batch
settings. Similar to the results on the synthetic function, TPE
is the second-best method. When the batch size is increased
up to 5, TPE is slightly comparable to our method. Merchan-
Lobato performs well with all batch sizes, where it is much
better than One-hot-Encoding and SMAC. One-hot-Encoding
is slightly comparable to SMAC as the batch size is increased
up to 5 (Figure 3(b)).

Automated Machine Learning: Automatic selection of the
best ML model along with its optimal hyper-parameters
Given a dataset and several candidate ML models, e.g. deci-
sion tree, random forest, logistic regression, support vector
machine, etc, our goal is to determine which model along
with its optimized hyper-parameters produces the highest
accuracy on the dataset. We formulate this task as a black-
box function f([c, xc]) optimization, where c indexes a “ML
model” and xc is a set of hyper-parameters specified for that
model (the detail of ML models and their hyper-parameters
are provided in the supplementary material). We emphasize
that xc is different for different models e.g. xc can be the
“penalty parameter” when c is a “linear support vector ma-
chine” while xc can be the “initial learning rate” and the
“regularization parameter” when c is a “logistic regression”.
Under such complex search space, single GP-based BO meth-
ods such as One-hot-Encoding and Merchan-Lobato cannot
work. In contrast, as discussed earlier our method straight-
forwardly works with this setting thanks to fitting different
GPs for different values c. We optimize the black-box func-
tion on 30 benchmark datasets3, compared with three well-
known state-of-the-art automated machine learning pack-
ages, namely Hyperopt-sklearn4 (using TPE for optimiza-

3Download from https://www.openml.org. Each dataset is ran-
domly split into 80% for training and 20% for testing.

4https://github.com/hyperopt/hyperopt-sklearn

5261

(a) (b) (c)

Figure 3: Results of the hyper-parameter tuning for the neural network – best value (negative MSE) vs. iteration for batch sizes:
(a) B = 1 (sequential), (b) B = 5, and (c) B = 10.

Table 2: Characteristics (|D|: the number of samples, |F |: the number of features, and |L|: the number of labels) of the first 16
benchmark datasets along with classification accuracy (standard error) of our method Bandit-BO and other methods. Bold font
marks the best performance in a row. The results for full 30 datasets are reported in the supplementary material.

Dataset Format |D| |F | |L| Bandit-BO Hyperopt-
sklearn

Auto-
sklearn

TPOT

wine tabular 178 13 3 98.33 (0.00) 97.78 (0.01) 97.50 (0.01) 96.67 (0.01)

breast cancer tabular 569 30 2 97.02 (0.01) 95.44 (0.00) 96.40 (0.00) 96.84 (0.00)

analcatdata authorship text 841 70 4 99.76 (0.00) 99.47 (0.00) 99.41 (0.00) 99.53 (0.00)

diabetes tabular 768 8 2 77.40 (0.01) 73.70 (0.02) 76.95 (0.01) 77.01 (0.01)

electricity tabular 45,312 8 2 92.29 (0.00) 92.21 (0.00) 90.89 (0.00) 90.94 (0.00)

wall robot navigation trajectory 5,456 24 4 99.73 (0.00) 99.73 (0.00) 99.43 (0.00) 99.46 (0.00)

vehicle tabular 846 18 4 81.71 (0.01) 78.71 (0.01) 80.24 (0.01) 78.12 (0.01)

cardiotocography tabular 2,126 35 10 100.0 (0.00) 100.0 (0.00) 99.98 (0.00) 100.0 (0.00)

artificial characters text 10,218 7 10 90.47 (0.01) 90.94 (0.00) 82.49 (0.00) 87.75 (0.01)

monks1 tabular 556 6 2 100.0 (0.00) 99.82 (0.00) 99.73 (0.00) 100.0 (0.00)

monks2 tabular 601 6 2 98.26 (0.01) 97.69 (0.01) 97.36 (0.01) 99.92 (0.00)

steel plates fault tabular 1,941 33 2 100.0 (0.00) 100.0 (0.00) 100.0 (0.00) 100.0 (0.00)

phoneme tabular 5,404 5 2 90.23 (0.00) 90.21 (0.00) 89.25 (0.00) 89.58 (0.00)

waveform tabular 5,000 40 3 86.45 (0.00) 86.42 (0.00) 86.19 (0.00) 86.28 (0.00)

balance scale tabular 625 4 3 98.48 (0.01) 97.20 (0.01) 89.04 (0.01) 92.32 (0.01)

digits image 1,797 64 10 98.25 (0.00) 98.67 (0.00) 98.08 (0.00) 97.86 (0.00)

tion) (Komer, Bergstra, and Eliasmith 2019), Auto-sklearn5

(using SMAC for optimization) (Feurer et al. 2019), and
Tree-Based Pipeline Optimization Tool (TPOT6) (Olson and
Moore 2019). All methods are applied to the same training
and test sets and repeated 10 times.

Table 2 shows the classification results on 16 datasets (the
results for 30 datasets are reported in the supplementary mate-
rial), where Bandit-BO clearly results in better classification
compared with other methods. More specifically, Bandit-BO
achieves up to 4%, 9%, and 6% improvements over Hyperopt-
sklearn, Auto-sklearn, and TPOT respectively. On four large
datasets (electricity, wall robot navigation, phoneme, and
waveform), our method is better than three baselines. The
improvements are more significant on five small datasets
(wine, breast cancer, diabetes, vehicle, and balance scale).
The classification performances of Hyperopt-sklearn, Auto-
sklearn, and TPOT are comparable. In the supplementary ma-
terial, we report the overall accuracy of each method across

5https://github.com/automl/auto-sklearn
6https://github.com/EpistasisLab/tpot

30 datasets, where Bandit-BO is the best method (92.25% ac-
curacy). The overall classification results of Hyperopt-sklearn
(91.48% accuracy), Auto-sklearn (91.82% accuracy), and
TPOT (91.77% accuracy) are quite similar.

Conclusion

We have introduced a novel BO method to globally optimize
expensive black-box functions involving both categorical and
continuous variables. We formulated the problem as a MAB
problem, where each category corresponds to an arm with
its reward distribution centered around the optimum of the
objective function in continuous variables. Our solution uses
Thompson sampling, which connects both MAB and BO in
a unified framework. Our method is capable of handling op-
timization problems where each category is associated with
a different continuous search space. We also extended our
method for batch optimization. We rigorously analyzed the
convergence providing sub-linear regret bounds. Our exper-
iments using several synthetic and real-world applications
demonstrate the usefulness of our proposed method.

5262

Acknowledgment

This research was partially funded by the Australian Govern-
ment through the Australian Research Council (ARC). Prof
Venkatesh is the recipient of an ARC Australian Laureate
Fellowship (FL170100006).

References

Agrawal, S., and Goyal, N. 2013. Further optimal regret
bounds for thompson sampling. In AISTATS, 99–107.

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2-3):235–256.

Bergstra, J.; Bardenet, R.; Bengio, Y.; and Kégl, B. 2011.
Algorithms for hyper-parameter optimization. In NIPS, 2546–
2554.

Bonilla, E. V.; Chai, K. M.; and Williams, C. 2008. Multi-
task gaussian process prediction. In Advances in neural
information processing systems, 153–160.

Bubeck, S., and Liu, C.-Y. 2013. Prior-free and prior-
dependent regret bounds for thompson sampling. In NIPS,
638–646.

Bubeck, S.; Cesa-Bianchi, N.; et al. 2012. Regret analysis
of stochastic and nonstochastic multi-armed bandit problems.
Foundations and Trends R© in Machine Learning 5(1):1–122.

Bull, A. 2011. Convergence rates of efficient global opti-
mization algorithms. Journal of Machine Learning Research
12:2879–2904.

Desautels, T.; Krause, A.; and Burdick, J. 2014. Parallelizing
exploration-exploitation tradeoffs in gaussian process bandit
optimization. The Journal of Machine Learning Research
15(1):3873–3923.

Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.;
Blum, M.; and Hutter, F. 2019. Auto-sklearn: Efficient and
Robust Automated Machine Learning. Springer International
Publishing. 113–134.

Garrido-Merchán, E., and Hernández-Lobato, D. 2018.
Dealing with categorical and integer-valued variables in
bayesian optimization with gaussian processes. arXiv
preprint arXiv:1805.03463.

Golovin, D.; Solnik, B.; Moitra, S.; Kochanski, G.; Karro, J.;
and Sculley, D. 2017. Google vizier: A service for black-box
optimization. In KDD, 1487–1495. ACM.

González, J.; Dai, Z.; Hennig, P.; and Lawrence, N. 2016.
Batch bayesian optimization via local penalization. In AIS-
TATS, 648–657.

Hernández-Lobato, M.; Requeima, J.; Pyzer-Knapp, E.; and
Aspuru-Guzik, A. 2017. Parallel and distributed thompson
sampling for large-scale accelerated exploration of chemical
space. In ICML, 1470–1479.

Hernández-Lobato, M.; Hoffman, M.; and Ghahramani, Z.
2014. Predictive entropy search for efficient global optimiza-
tion of black-box functions. In NIPS, 918–926.

Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2011. Sequential
model-based optimization for general algorithm configura-

tion. In International Conference on Learning and Intelligent
Optimization, 507–523. Springer.

Jones, D.; Schonlau, M.; and Welch, W. 1998. Efficient
global optimization of expensive black-box functions. Jour-
nal of Global optimization 13(4):455–492.

Kandasamy, K.; Krishnamurthy, A.; Schneider, J.; and
Póczos, B. 2018. Parallelised bayesian optimisation via
thompson sampling. In AISTATS, 133–142.

Kingma, D., and Ba, J. 2015. Adam: A method for stochastic
optimization. In ICLR.

Komer, B.; Bergstra, J.; and Eliasmith, C. 2019. Hyperopt-
Sklearn. Springer International Publishing. 7–111.

Kushner, H. 1964. A new method of locating the maximum
point of an arbitrary multipeak curve in the presence of noise.
Journal of Basic Engineering 86(1):97–106.

Lakshminarayanan, B.; Roy, D. M.; and Teh, Y. W. 2016.
Mondrian forests for large-scale regression when uncertainty
matters. In Artificial Intelligence and Statistics, 1478–1487.

Olson, R., and Moore, J. 2019. TPOT: A Tree-Based
Pipeline Optimization Tool for Automating Machine Learn-
ing. Springer International Publishing. 151–160.

Russo, D., and Roy, B. 2014. Learning to optimize via
posterior sampling. Mathematics of Operations Research
39(4):1221–1243.

Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.; and Freitas,
N. 2016. Taking the human out of the loop: A review of
bayesian optimization. Proceedings of the IEEE 104(1):148–
175.

Srinivas, N.; Krause, A.; Kakade, S.; and Seeger, M. 2012.
Information-theoretic regret bounds for gaussian process op-
timization in the bandit setting. IEEE Transactions on Infor-
mation Theory 58(5):3250–3265.

Wang, Z.; Hutter, F.; Zoghi, M.; Matheson, D.; and de Feitas,
N. 2016. Bayesian optimization in a billion dimensions
via random embeddings. Journal of Artificial Intelligence
Research 55:361–387.

5263

