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Abstract Designing gaits and corresponding control policies is a key challenge in
robot locomotion. Even with a viable controller parameterization, finding near-
optimal parameters can be daunting. Typically, this kind of parameter optimiza-
tion requires specific expert knowledge and extensive robot experiments. Auto-
matic black-box gait optimization methods greatly reduce the need for human
expertise and time-consuming design processes. Many different approaches for au-
tomatic gait optimization have been suggested to date, such as grid search and
evolutionary algorithms. In this article, we thoroughly discuss multiple of these
optimization methods in the context of automatic gait optimization. Moreover,
we extensively evaluate Bayesian optimization, a model-based approach to black-
box optimization under uncertainty, on both simulated problems and real robots.
This evaluation demonstrates that Bayesian optimization is particularly suited for
robotic applications, where it is crucial to find a good set of gait parameters in a
small number of experiments.
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1 Introduction

Fig. 1: The bio-inspired dynam-
ical bipedal walker Fox . Using
Bayesian optimization, we found
reliable and fast walking gaits
with a velocity of up to 0.45m/s.

Bipedal walking and running are versatile
and fast locomotion gaits. However, despite
its high mobility, bipedal locomotion is rarely
used in real-world robotic applications. Key
challenges in bipedal locomotion include bal-
ance control, foot placement, and gait opti-
mization. In this article, we focus on gait op-

timization, i.e., finding good parameters for
the gait controller of a robotic biped.

Due to the partially unpredictable ef-
fects of and interactions among the gait pa-
rameters, gait optimization is often an em-
pirical, time-consuming and strongly robot-
specific process. In practice, gait parameter
optimization often translates into a trial-and-
error process, which requires an educated
guess by a human expert or a systematic
but time-consuming parameter search. As a
result, gait optimization may require con-
siderable expert knowledge, engineering ef-
fort and time-consuming experiments. Ad-
ditionally, the effectiveness of the resulting
gait strongly depends on the conditions as-
sumed during the controller design process:
A change in these conditions, often requires
searching for new, more appropriate, gait parameters. Such changes include
changes in the environment (e.g., different surfaces), a variation in the hardware
response (e.g., hardware wear and tear, replacement of a motor or differences in
the calibration) or a different performance criterion (e.g., walking speed, energy
efficiency, robustness). Hence, to deploy walking robots in the real world, it is
essential to reduce the dependence on expert knowledge and automate the gait
optimization process.

The search for gait parameters can be formulated as an optimization prob-
lem. Such a problem formulation, in conjunction with an appropriate optimization
method, allows to automate the search for optimal gait parameters and reduces
the need for engineering expert knowledge. To date, automatic gait optimization
methods have been used for designing efficient gaits in locomotion [1,2,3]. Com-
monly, these methods only find locally optimal solutions and do not take sources of
uncertainty (e.g., measurement noise) into account. Moreover, many optimization
methods require a high number of function evaluations to find a good solution.
Since each function evaluation requires an experiment with the robot, standard op-
timization methods are time-consuming and will eventually cause severe wear and
tear on the robot, rendering these methods economically impractical. In practice,
it is often essential to keep the number of robot experiments small.

To overcome this practical constraint on the number of possible interactions
with the robot, we propose to use Bayesian optimization for efficient bipedal
gait optimization. Bayesian optimization is a state-of-the-art global optimization
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method [4,5,6,7] that can be applied to problems where it is vital to optimize
a performance criterion while keeping the number of evaluations of the system
small, e.g., when an evaluation requires an expensive interaction with a robot.
Bayesian optimization makes efficient use of past interactions (experiments) by
learning a probabilistic surrogate model of the function to optimize. Subsequently,
the learned surrogate model is used for finding optimal parameters without the
need to evaluate the expensive (true) function. By exploiting the learned model,
Bayesian optimization, therefore, often requires fewer interactions (i.e., evaluations
of the true objective function) than other optimization methods [5]. Bayesian op-
timization can also make good use of prior knowledge, such as expert knowledge
or data from related environments or hardware, by directly integrating it into the
prior of the learned surrogate model. Moreover, unlike most optimization methods,
it can re-use any collected interaction data set, e.g., whenever we want to change
the performance criterion. Bayesian optimization has been successfully applied to
sensor-set selection [8], gait optimization for quadrupeds [9] and snake robots [10]
and automatic algorithm configuration [11,12].

This paper builds upon and extends our previous work on Bayesian optimiza-
tion for robotics [13,14]. In [13], Bayesian optimization was applied to gait opti-
mization of a bipedal robot. Three acquisition functions and the effect of fixed ver-
sus automatic hyperparameter selection were analyzed. Our extensive evaluation
with more than 1,800 experiments with the robot shown in Fig. 1 highlights the
practicality and exposes strengths and weaknesses of commonly used acquisition
functions. In [14], we considered a more challenging set-up with a higher number
of parameters. We successfully applied Bayesian optimization for automatic gait
optimization of up to eight parameters on a bipedal robotic walker.

In this article, we additionally formalize the problem of automatic gait op-
timization and discuss the practicality of commonly used optimization methods.
Furthermore, we analyze a posteriori the quality of the models learned. The results
of this analysis motivate the need for an efficient global optimization algorithm
and give insights into the effects and interaction between the parameters.

2 Parameter Optimization under Uncertainty in Robotics

In this section, we formalize automatic parameter optimization under uncertainty
in the context of robotics. Moreover, we discuss classical optimization methods
and related work in the context of gait optimization.

2.1 Parameter Optimization in Robotics

The search for good controller parameters θ∗ can be formulated as an optimization
problem, such as the maximization

θ
∗ ∈ arg max

θ∈Rd

f (θ) , (1)

of an objective function f (·) with respect to controller parameters θ ∈ Rd.
In robotics, the objective function f often encodes a single performance crite-

rion, such as precision, speed, energy efficiency, robustness or a mixture of them.
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Method
Order

optimizer
Stochasticity
assumption

Global
optimizer

Re-usability
evaluations

Grid Search Zero-order No* Global Limited
Pure Random Search Zero-order No* Global Yes
Gradient-descent family First-order No* Local No
Bayesian Optimization Zero-order Yes Global Yes
Evolutionary Algorithms Zero-order No* Global No
Particle Swarm Zero-order No* Global No

Table 1: Optimization methods in robotics: Properties of various optimization
methods commonly used for optimization in robotics. As discussed in Section 2.1,
the ideal optimizer for robotic applications should be global, zero-order, and as-
suming stochasticity.
(*) Extensions exist for the stochastic case, but they increase the number of ex-
periments required.

In gait optimization, the relevant criteria is typically walking speed or possibly a
mixture together with energy efficiency and robustness, while θ are the parameters
of an existing gait. Optimizing analytically the objective function f is typically
unfeasible since the relation between the controller parameters and the objective
function is unknown. Hence, we need to use numerical black-box optimization
where evaluating the objective function f for a given set of parameters requires a
physical interaction with the robot.

The general parameter optimization problem in robotics (as well as our con-
sidered gait optimization task) possesses the following properties:

– Zero-order objective function. Each evaluation of the objective function f

returns the value of the function f (θ), but no information about the gradient
∇θf = df (θ) /dθ with respect to the parameters θ.

– Stochastic objective function. The evaluation of the objective function is
inherently stochastic due to noisy measurements, variable initial conditions and
system uncertainties (e.g., slack). Therefore, any suitable optimization method
needs to account for the fact that two evaluations of the same parameters can
yield two different values.

– Global optimization. No assumption can be made about the number of local
maxima or the convexity of the objective function f . However, ideally we seek
the global maximum of the objective function.

These characteristics render this family of problems a challenging optimization
task. Additionally, in the context of robotics the number of experiments that can
be performed on a real system is small. Each experiment can be costly, require a
long time, and it inevitably contributes to the wear and tear of the robot’s hard-
ware. Therefore, the optimizer must be as experimentally-efficient as possible. As
result, the capability of re-using past experiments (e.g., experiments with random
parameters) is a desirable property to keep the number of experiments small.

2.2 Optimization Methods in Robotics

Commonly used algorithms in robotics include grid search, gradient descent, evo-
lutionary algorithms and others. In the following, we present some of the most
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common optimization methods and we discuss the main limitations that make
these algorithms unsuitable for robotic applications. Table 1 shows a summary of
the methods discussed.

Due to its ease of use, the most common optimization method in robotics is
grid search. Its main limitation is that it is an exhaustive search method and,
thus, requires many experiments. In fact, the number n of experiments grows
exponentially with the number of parameters d as n = pd where p is the number of
experiments along each parameter dimension. An alternative to grid search is pure
random search [15], which possesses statistical guarantees of convergence and often
outperforms grid search, e.g., in high-dimensional problems where many irrelevant
dimensions exist [16]. Nonetheless, even pure random search requires a number of
experiments that is impractical in many robotic applications.

Another family of optimization methods commonly used in robotics are first-
order methods, such as gradient descent. The use of first-order optimization meth-
ods, which make use of gradient information, is generally desirable in optimization
as they lead to faster convergence than zero-order methods. Thus, it is common in
the case of zero-order objective functions to approximate the gradient using finite
differences. However, finite differences requires evaluating the objective function f

multiple times. Since each evaluation requires interactions with the robot, the
number of robot experiments quickly becomes excessive, rendering also first-order
methods (e.g., the whole family of gradient descent) unsuitable for our task.

Particle swarm and evolutionary algorithms are two common global optimiza-
tion methods, which make use of populations of particles (or individuals), which
explore the parameter space. However, both methods typically need thousands or
tens of thousands of experiments to find good solutions. Hence, they are not easily
applicable to real robots.

2.3 Related Work in Robot Locomotion

Method Locomotion

Grid Search [2,17]
Pure Random Search -
Gradient-descent family [18,3]
Bayesian Optimization [9,10,13]
Evolutionary Algorithms [1,19]
Particle Swarm [20]

Fig. 2: Related work in robot locomo-
tion: Various optimization methods and
the corresponding work in robot loco-
motion where they are applied.

To date, various automatic gait op-
timization methods have been used
in locomotion to design gaits, includ-
ing gradient descent methods [18,3],
evolutionary algorithms [1,19], parti-
cle swarm optimization [20] and many
others [21,22,2,17].

We now discuss the approaches
that use surrogate models to optimize
robot locomotion. In [21], a surrogate
model optimization is performed on a
bipedal robot using a non probabilis-
tic model. Their approach is in the spirit of Bayesian optimization. However, since
the acquisition function can only use a deterministic prediction from the model
there is no exploration-exploitation trade-off and the next point to evaluate is se-
lected to greedily exploit the model. Performing pure exploitation typically leads
to find only local and suboptimal solutions. In robot locomotion, Bayesian opti-
mization has been applied to quadrupedal robot [9], snake robots [10] and bipedal
walkers [13]. In [9], two gait optimization criteria are considered for a Sony AIBO
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Fig. 3: Example of the Bayesian optimization process during the maximization
of an unknown 1-D objective function f (red curve). The 95% confidence of the
model prediction is represented by the blue area. The model is initialized with
5 previously evaluated parameters θ and the corresponding function values f(θ).
The location of the next parameter to be evaluated is represented by the vertical
green dashed line. At each iteration, the model is updated using all the previously
evaluated parameters (red dots). Bayesian optimization quickly found the global
maximum of the unknown objective function, after a few iterations.

ERS-7 quadrupedal robot: once with respect to the maximum walking speed and
once for the maximum gait smoothness. As acquisition function the authors used
Probability of improvement (which we discuss in Section 3.2), and as a model a
standard Gaussian process. The hyperparameters of the GP were manually se-
lected by a human expert at the beginning of the optimization. Correctly fixing
the hyperparameters generally simplifies the optimization process and, therefore,
speeds up the optimization [23]. Nonetheless, it requires a deep knowledge of the
optimization task, which is typically an unrealistic assumption. In [10], Bayesian
optimization is used to optimize the gait of a snake robot. The authors used ex-
pected improvement as acquisition function, which we discuss in Section 3.2.

3 Introduction to Bayesian Optimization

Bayesian optimization (BO) is a global optimization method [4,6,7] based on re-
sponse surface (i.e., surrogate model). Bayesian optimization has been re-discovered
multiple times by different communities and is also referred to as efficient global
optimization (EGO) [24] and sequential kriging optimization (SKO) [25].

Response surface-based optimization methods iteratively create a data set
D = {θ, f (θ)} of parameters θ and the corresponding function evaluations f (θ) [5].
This data set is used to build a model f̂ (·) : θ 7→ f(θ), the response surface, that
maps parameters θ to corresponding function evaluations f (θ). The response sur-
face is subsequently used to replace the optimization of Eq. (1) with a “virtual”
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Algorithm 1: Bayesian optimization

1 D ←− if available: {θ, f (θ)}
2 Prior ←− if available: Prior of the response surface
3 while optimize do
4 Train a response surface from D

5 Find θ
∗ that maximizes the acquisition surface α (θ)

6 Evaluate f (θ∗) on the real system
7 Add {θ∗, f (θ∗)} to D

optimization process

θ
∗ ∈ arg max

θ∈Rd

f̂ (θ) . (2)

In this context, “virtual” indicates that optimizing the response surface f̂ (·) with
respect to the parameters θ only requires to evaluate the learned model, but not the
true objective function f . Only when a new set of parameters θ∗ is determined by
means of the virtual optimization process of the response surface f̂ , it is eventually
evaluated on the real objective function f .

A variety of different models, such as linear functions or splines [5], have been
used in the past to create the response surface that models f . In Bayesian opti-
mization, probabilistic models are used. The use of a probabilistic model allows us
to model noisy observations and to explicitly take the uncertainty about the model
itself into account, which makes the probabilistic model more robust to the effect
of model errors. A probabilistic framework also allows to use priors that encode
available expert knowledge or information from related systems in a principled
way. In the context of a walking robot, this knowledge could be a prior on the
optimal parameters after a motor was replaced or the walking surface changed.
The most common probabilistic model used in Bayesian optimization, and the one
that we consider in this article, is a Gaussian process (GP) [26]. Nonetheless, other
probabilistic models are possible, such as random forests [11].

When using a probabilistic model, the response surface f̂ (·) in Eq. (2) is a
probability distribution. Therefore, the optimization of the response surface f̂

would result in a multi-objective optimization problem. Hence, an acquisition

function α (·) is used for the virtual optimization of the probabilistic model. The
purpose of the acquisition function is two-fold: First, it scalarizes the response
surface (which is a probability distribution) onto a single function, the acquisi-
tion surface α (θ), such that it can be optimized1. Thereby, the maximization of
the response surface from Eq. (2) can be rephrased as the maximization of the
acquisition surface

θ
∗ ∈ arg max

θ∈Rd

α (θ) . (3)

Second, the GP expresses model uncertainty, which is used to trade off exploration
and exploitation in the optimization. This trade off between exploration and ex-
ploitation, and therefore the model uncertainty, is extremely important for the
optimization process when we have only few function evaluations. For an example
of the optimization process of Bayesian optimization see Fig. 3.

1 The correct notation would be α
(

f̂ (θ)
)

, but we use α (θ) for notational convenience.



8 Roberto Calandra et al.

Algorithm 1 summarizes the main steps of Bayesian optimization: A GP model
for the (unknown) objective function f : θ 7→ f (θ) is learned from the data set
D = {θ, f (θ)} composed of the parameters θ and the corresponding measure-
ments f (θ) of the true objective function (Line 4 of Algorithm 1). This model
is used to predict the response surface f̂ and the corresponding acquisition sur-
face α (θ). Using a global optimizer the maximum θ∗ of the acquisition surface α (θ)
is determined (Line 5 of Algorithm 1) without any evaluation of the true objective
function, e.g., no robot interaction is required, see Eq. (3). The parameters θ∗ are
evaluated on the robot (Line 6 of Algorithm 1) and, together with the resulting
measurement f (θ∗), added to the data set D (Line 7 of Algorithm 1). Note that
the optimizer can be initialized by past evaluations for the data set D (Line 1 of
Algorithm 1), as well as by a prior of the GP model (Line 2 of Algorithm 1).

3.1 Gaussian Process Model for the Unknown Objective Function

To create the response surface model that maps θ 7→ f(θ), we make use of
Bayesian non-parametric GP regression [26]. A GP is a distribution over functions
f ∼ GP(mf , kf ), fully defined by a prior mean mf and a covariance function kf .
We assume a model where we observe noisy function values y = f(θ) + ǫ, where
ǫ ∼ N (0, σ2

ǫ ) is Gaussian noise. Both the prior mean mf and the covariance func-
tion kf are usually selected based on expert knowledge. Commonly used covariance
functions include the squared exponential and Matérn covariance functions. In our
experiments, we choose as prior mean mf ≡ 02, while the chosen covariance func-
tion kf is the squared exponential with automatic relevance determination and
Gaussian noise

kf (θp,θq) = σ2
f exp

(

−1
2 (θp−θq)

T
Λ

−1(θp−θq)
)

+ σ2
ǫ δpq (4)

with Λ = diag([l21, ..., l
2
D]). Here, li are the characteristic length-scales, σ2

f is the

variance of the latent function f(·) and σ2
ǫ the noise variance. The explicit consid-

eration of the measurement noise is important in robotic applications, although
common optimization algorithms consider the measurements noise free.

Given n training inputs X = [θ1, ...,θn] and corresponding training targets
y = [y1, . . . , yn], we define the training data set D = {X,y}. Hence, the GP
predictive distribution is

p(f(θ)|D,θ) = N
(

µ(θ), σ2(θ)
)

, (5)

where the mean µ(θ) and the variance σ(θ) are

µ(θ) = k
T
∗ K

−1
y , σ2(θ) = k∗∗ − k

T
∗ K

−1
k∗ , (6)

respectively, where K is the matrix with Kij = k(θi,θj), k∗∗ = k(θ,θ) and
k∗ = k(X,θ).

A practical issue in Bayesian optimization and GP modeling is the selection of
the hyperparameters of the GP model. The hyperparameters of a GP model are the
parameters of the covariance function, i.e., the characteristic length-scales li, the

2 A more informative prior can be used if expert knowledge is available.
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variance of the latent function σ2
f and the noise variance σ2

ǫ . In gait optimization,
these hyperparameters are often fixed a priori [9]. In [23], it is suggested that fixing
the hyperparameters can considerably speed up the convergence of BO. However,
manually tuning the hyperparameters requires extensive expert knowledge about
the system that we want to optimize, which is often not available. Therefore, in this
article we automatically select the hyperparameters by optimizing the marginal
likelihood [26].

3.2 Acquisition Function

A number of acquisition functions α (·) have been proposed, such as probability of
improvement [4], expected improvement [27], upper confidence bound [28] and the
recent entropy-based improvements [29]. All acquisition functions incorporate both
the mean µ and the variance σ2 of the GP prediction and result in different trade-
offs between exploration and exploitation. Experimental results [29] suggest that
expected improvement on specific families of artificial functions performs better on
average than probability of improvement and upper confidence bound. However,
these experiments required a good prior knowledge of the objective functions (e.g.,
the correct covariance function to use). This assumption does not necessarily hold
for real-world problems, such as gait optimization. Probability of improvement [9],
expected improvement [10] and upper confidence bound [13] have all been previ-
ously employed in gait optimization. However, only one experimental comparison
has been carried out in gait optimization [14], and it is still unclear whether one
of them should be preferred.

Probability of Improvement (PI). Introduced by Kushner [4], the acquisition func-
tion PI is defined as

α (θ) = Φ
(

µ(θ)−T
σ(θ)

)

, (7)

where Φ(·) is the normal cumulative distribution function and T the target value.
The target value T is often the maximum of all explored data plus, optionally,
a positive constant (for a study of its effects, see [23]). PI is a function bounded
by the interval [0, 1]. Hence, since the normal cumulative distribution function is
monotonically increasing, to maximize PI it is sufficient to maximize

α (θ) =
(

µ(θ)− T
)

/σ(θ) . (8)

Intuitively, PI computes the probability (cumulative distribution) of the response
surface in θ to be better than the target value T .

Expected Improvement (EI). Mockus [27] introduced EI, which can be considered
an extension of probability of improvement. The EI acquisition function is

α (θ) = σ(θ)[uΦ (u) + φ (u)]; u =
(

µ(θ)− T
)

/σ(θ) , (9)

where φ(·) is the standard normal probability density function.
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Upper Confidence Bound (UCB). UCB [28] is defined as

α (θ) = µ(θ) + κσ(θ). (10)

The choice of the free parameter κ is crucial as it determines the trade-off rate
between exploration and exploitation. A special case of UCB is GP-UCB [30] where
κ is automatically computed according to

κ =

√

2 log
(

nd/2+2π2

3δ

)

, (11)

where n is the number of past evaluations of the objective function f , δ ∈ (0, 1) is a
parameters and d the dimensionality of the parameters θ. Automatically selecting κ

using GP-UCB allows to estimate regret bounds [30].

3.3 Optimizing the Acquisition Surface

Once the acquisition surface α (θ) is computed, it is necessary to find its maximum

θ
∗ ∈ arg max

θ∈Rd

α (θ) . (12)

This is still a global optimization problem, but considerably easier compared to
the original global optimization problem defined in Eq. (1):

– The measurements in Eq. (12) are noise free since the objective function in
Eq. (10) is an analytical model. This allows to use also global optimization
algorithms, which do not consider stochasticity.

– There is no experimental restriction on how often we evaluate α: Evaluating
the acquisition surface only requires interactions with the model, but not with
a physical system, such as a robot. Thus, evaluating α only requires compu-
tations. Hence, optimization methods that require thousands or millions of
evaluations can be employed to find the global maximum of α.

– We can compute the gradients of α of any order, either with finite differences
or analytically and, therefore, use first or second-order optimization methods.

Therefore, virtually any global optimizer can be used to find the maximum θ∗

of α. Common choices are DIRECT [31] to find an approximate global maximum
followed by L-BFGS [32] or CMA-ES [33] to refine it. In our experiments, we use
DIRECT and L-BFGS.

4 Evaluation and Comparisons

We experimentally compare Bayesian optimization with different acquisition func-
tions and other baseline optimization methods. First, we perform a feasibility
study on a simulated stochastic linear-quadratic regulator. We compare the so-
lution found by Bayesian optimization with the optimal solution of this classical
stochastic optimal control problem. Second, we perform an experimental compar-
ison on a real bipedal robot where we find gait parameters that maximize the
walking speed in real and noisy conditions.
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Table 2: Performance of Bayesian optimization compared to the exact solution for
the stochastic LQR problem.

Utility incurred by the analytical solution 5.57 ± 0.01
Utility incurred by Bayesian optimization 5.54 ± 0.01

4.1 Stochastic Linear-Quadratic Regulator

The linear-quadratic regulator is a classical stochastic optimal control problem.
The discrete-time stochastic LQR problem consists of a linear dynamical system

xt+1 = Atxt +Btut +wt, t = 0, 1, ..., N − 1 , (13)

and a quadratic cost

J = x
T
NQNxN +

∑N−1

t=0

(

x
T
t Qtxt + u

T
t Rtut

)

, (14)

where wt ∼ N (0,Σ) is Gaussian system noise and the matrices Rt > 0, Qt ≥ 0,
At, Bt are given and assumed to be time invariant. The objective is to find the
control sequence u0, . . . ,uN−1 that minimizes Eq. (14). The control signal ut is a
linear function of the state xt, computed for each time step as

ut = Ltxt ,

where Lt is a gain matrix. Using the algebraic Riccati equation, the optimal gain
matrix Lt can be computed such that the quadratic cost J for the stochastic
linear-quadratic regulator is minimized [34].

To assess the performance of Bayesian optimization, we consider a stochastic
LQR system with x ∈ R2, u ∈ R4. The stationary gain matrix L ∈ R4×2 defines a
set of 8 free parameters to be determined by Bayesian optimization. We compare
our solution with the corresponding analytical solution for the stationary gain
matrix L. For Bayesian optimization, we define the objective function as the utility

f(θ) = − log(J/N) , (15)

where the parameters θ to optimize are the stationary gain matrix L ∈ R4×2.
We initialized Bayesian optimization with 15 uniformly randomly sampled gain
matrices L. The initial state x0 was sampled from a standard normal N (0, I).

We performed 50 independent experiments: For each experiment, we selected
the best parameters found after 200 steps of Bayesian optimization. These pa-
rameters were then evaluated on the stochastic LQR system 100 times. Table 2
shows the mean value for the objective function and its standard deviation for
both the analytical solutions and the ones obtained through Bayesian optimiza-
tion. The table shows that BO finds near-optimal solutions for the stochastic
LQR problem. Additionally, as shown in Fig. 4, the average over the 50 ex-
periments of the best parameters found so far in the optimization process sug-
gests that Bayesian optimization reliably quickly finds a near-optimal solution.
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Fig. 5: Example of Bayesian optimization of a
stochastic LQR. The objective value function (red
curve) and the 95% confidence of the model pre-
diction (blue area) are shown during the opti-
mization process; the analytical solution (green
dashed line) is shown as a reference.

Fig. 5 shows an example
of the maximization pro-
cess of BO for the stochas-
tic LQR problem. The ob-
jective function is displayed
as a function of the number
of evaluations. Each evalu-
ation requires to compute
the objective function f in
Eq. (15) for the current pa-
rameters θ = L. The an-
alytical maximum is shown
by the green dashed line,
the shaded area shows the
95% confidence bound of the
predicted objective function
p(f (θ)) for the parameters
selected in the ith evalu-
ation. The red line shows
the actual measured func-
tion value f (θ). Initially,
the model was relatively un-
certain. With an increasing
number of experiments the
model became more confi-
dent, and the optimization
process converged to the op-
timal solution.

We conclude that BO
can efficiently find gain ma-
trices L that solve the
stochastic LQR problem. Additionally, with Bayesian optimization it is possible to
find stationary solutions for cases with a short time horizon N where no analytical
optimal solution is available: The algebraic Riccati equation does not yield the op-
timal solution for finite-horizon problems, and the discrete-time Riccati equation,
does not yield stationary solutions.

4.2 Gait Optimization of a Bio-Inspired Biped

To validate our Bayesian gait optimization approach, we used the dynamic bipedal
walker Fox , shown in Fig. 1. The walker is mounted on a boom that enforces planar,
circular motion. This robot consists of a trunk, two legs made of rigid segments
connected by knee joints to telescopic leg springs, and two spheric feet with touch
sensors [35]. Fox is equipped with low-cost metal-gear DC motors at both hip
and knee joints. Together they drive four actuated degrees of freedom. Moreover,
there are six sensors on the robot: two on the hip joints, two on the knee joints,
and one under each foot. The sensors on the hip and knee joints return voltage
measurements corresponding to angular positions of the leg segments, as shown
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Contact with Left Foot Contact with Right Foot

LH=Flex
LK=Ext
RH=Ext
RK=Hold

LH=Flex
LK=Flex
RH=Ext
RK=Hold

LH=Ext
LK=Hold
RH=Flex
RK=Flex

LH=Ext
LK=Hold
RH=Flex
RK=Ext

Fig. 6: The Fox controller is a finite state
machine with four states. Each of the four
joints, left hip (LH), left knee (LK), right
hip (RH) and right knee (RK), can perform
one of three actions: flexion (Flex), extension
(Ext) or holding (Hold). When a joint reaches
the maximum extension or flexion, its state
is changed to holding. The transition between
the states and the control signals applied dur-
ing flexion and extension are determined by
the controller parameters θ.

Forward

90°

90° 270°

270°

135° 205°

60°

185°

Fig. 7: Hip and knee angle refer-
ence frames (red dashed) and ro-
tation bounds (blue solid). The
hip joint angles’ range lies be-
tween 135◦ forward and 205◦

backward. The knee angles range
from 185◦ when fully extended to
60◦ when flexed backward.

in Fig. 7. The touch sensors return binary ground contact signals. An additional
sensor in the boom measures the angular position of the walker, i.e., the position
of the walker on the circle.

The controller of the walker is a finite state machine (FSM), shown in Fig. 6,
with four states: two for the swing phases of each leg [36]. These states control the
actions performed by each of the four actuators, which were extension, flexion or
holding of the joint. The transitions between the states are regulated by thresholds
based on the angles of the joints. For the optimization process, we identified eight
parameters of the controller that are crucial for the resulting gait. These gait
parameters consist of four threshold values of the FSM (two for each leg) and the
four control signals applied during extension and flexion (separately for knees and
hips). It is important to notice that a set of parameters that proved to be efficient
with a set of motors could be ineffective with a different set of motors (e.g., if
one motor is replaced), due to slightly different mechanical properties. Therefore,
automatic and fast gait optimization techniques are essential for this robot.

4.2.1 Gait Optimization Comparison

In the first experiment we compare the performances of Uniform Random Search,
Grid Search and Bayesian optimization with the three different acquisition func-
tions introduced in Section 3.2. For BO, we also consider the two separate cases
when the hyperparameters are automatically optimized, and when they are manu-
ally set by an expert. In this experiment, we optimize the four threshold parameters
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Fig. 8: The maximum walking speed of Fox evaluated during the gait optimization
process. (a) BO performed better than both grid and random search. BO with the
GP-UCB acquisition function performed best, achieving a fast and robust gait
in less than 30 experiments. (b) BO of various acquisition functions for fixed
hyperparameters. Manually fixed hyperparameters led to sub-optimal solutions
for all the acquisition functions.

of the controller θ with respect to the objective function

f (θ) =
1

N

∑N

i=1
Vi(θ) , (16)

i.e., the average walking velocities Vi in the given time horizon over N = 3 ex-
periments. This criterion does not only guarantee a fast walking gait but also
reliability, since the gait must be robust to noise and initial configurations across
multiple experiments. Based on preliminary experiments we knew that the vari-
ance of the walking velocities across multiple experiments was not constant for all
parameters (i.e., homoscedastic), but heteroscedastic. This was particularly pro-
nounced for parameters that lead to unstable, but occasionally very fast gaits.
Since standard GP models assume homoscedastic noise, averaging over N exper-
iments proved helpful to reduce (but not eliminate) the heteroscedasticity of the
objective function, such that we could still use a homoscedastic model. Each ex-
periment was initialized from similar initial configurations and lasted 12 seconds,
starting from the moment when the foot of the robot initially touched the ground.
To initialize BO, three uniformly randomly sampled parameter sets were used.

The maximum walking speed of Fox evaluated during the gait optimization
process for the different methods is shown in Fig. 8a. The optimization process of
GP-UCB is limited to 57 evaluations due to a mechanical failure that forcefully
interrupted the experiment. Values of the objective function below 0.1 m/s indi-
cate that the robot fell down immediately. Values between 0.1 m/s and 0.15 m/s
indicate that the robot could walk for multiple steps but showed systematic falls
thereafter. Between 0.15 m/s and 0.25 m/s only occasional falls occurred. Above
0.25 m/s the achieved gait was robust and did not cause a fall. From the results
we see that both grid search and random search performed poorly, finding a maxi-
mum, such that the robot could only limp. We noticed that Bayesian optimization
performed considerably better with all acquisition functions. BO using PI and
GP-UCB achieved robust gaits with a similar walking speed, while GP-UCB was
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Method
Maximum during

optimization
Grid search 0.148
Pure random search 0.142
BO: PI 0.328
BO: EI 0.232
BO: GP-UCB 0.337
BO: PI (fixed Hyp) 0.254
BO: EI (fixed Hyp) 0.266
BO: GP-UCB (fixed Hyp) 0.255

Fig. 9: Maximum average walking speeds
[m/s] found by the different optimization
methods. BO using GP-UCB with auto-
matic hyperparameter selection found the
best maximum of all methods. The maxi-
mum obtained by PI is qualitatively similar.
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Fig. 10: Two-dimensional slice of
the mean of the response surface
computed using all the experiments
performed. Avoiding the local max-
ima requires global optimization.

slightly faster in finding the best gait parameter settings. On the other hand, using
EI did not lead to robust gaits. The reason of this result were the inaccuracies of
the model of the underlying objective function: The automatically selected hy-
perparameters had overly long length-scales (see Eq. (4)), which resulted in an
inappropriate model and, thus, evaluating parameters of little interest.

This result is unexpected as EI is considered a versatile acquisition function,
and there are experimental results [29], which suggest that EI on specific families
of synthetic functions performs better than GP-UCB and PI. We speculate that
these results do not necessarily apply to complex real-world objective functions,
such as the one we optimized. In particular, during the empirical evaluation, we
observed that EI explored the parameter space insufficiently well. In turn, this
insufficient exploration resulted in overly long length-scales and an inappropriate
GP model. Therefore, we hypothesize that EI suffers more from inaccurate models
than PI and UCB, which tend to explore more aggressively.

As a second comparison, we studied the effects of manually fixing the GP hy-
perparameters to reasonable values, based on our expert knowledge. Fig. 8b shows
the performance of BO with the different acquisition functions with fixed hyperpa-
rameters. All acquisition functions found similar sub-optimal solutions with fixed
hyperparameters since one parameter reached only a sub-optimal value. This ob-
servation suggests that, at least for that one parameter, the wrong length-scales
prevented the creation of an accurate model and, thus, the optimization process
was hindered. To confirm this hypothesis, using all the evaluations performed,
we trained a GP model and optimized the hyperparameters using the marginal
likelihood. Some of the resulting values of the hyperparameters were half of the
manually selected values, which suggests that the chosen length-scales were a rough
approximation of the real ones.

Both GP-UCB and PI using fixed hyperparameters performed worse than
the respective cases with automatic hyperparameter selection because the longer
length-scales limited the exploration of these acquisition functions. In contrast,
for EI the use of fixed hyperparameters was beneficial since the fixed length-scales
were smaller than the automatically selected ones and, therefore, more explo-
ration was performed. The hyperparameters of the GP model directly influence
the amount of exploration performed by the acquisition functions. Hence, fixing
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Fig. 11: Slices of the response surface along each parameter dimension. The re-
sponse surface was trained with the data collected across all the experiments. Only
a small zone of each slice leads to a walking gait. The symmetry between param-
eters of the left and right leg is clear, see (a)/(c) and (b)/(d). The visible shift of
about 5 degrees in the optimal parameters is due to the constrained circular walk.

the hyperparameters using expert knowledge can be an attractive choice, since
forcing the right amount of exploration can speed up the optimization process.
However, the presented experimental results also show that a poor choice of hy-
perparameters can harm the optimization process by limiting the exploration and
leading to sub-optimal solutions.

Parameters corresponding to the best function value observed do not always
correspond to the real optimum, due to the presence of (measurement) noise. On
the other hand using the best parameters obtained from the model should take into
consideration the noise, and, therefore, achieve better results on average. However,
using the parameters obtained from the model assumes sufficient correctness of
the model, which might not always be the case. When possible, at the end of each
trial, we additionally evaluated both the parameters with the best function value
observed so far, and the best parameters obtained from the model. The results
consistently showed that these two sets of parameters were almost identical and
led to a similar performance, therefore, validating the goodness of the model.
Table 9 compares the optimum found by all evaluated methods.

During the experiments, we observed and empirically estimated that varia-
tions of up to 0.04 m/s can depend on the presence of noise in the experiments.
Additionally, it should be noted that the real noise of the objective function is
neither Gaussian nor homoscedastic. Configurations of the parameters that pro-
duce periodic falls after a single step or stable gaits, typically behave consistently
across various experiments and result in a smaller noise (0.01 m/s). On the other
hand for parameters that produce unstable gaits with occasional falls the noise
can be larger, typically up to 0.04 m/s. A two-dimensional slice of the response
surface computed using the data collected from all the over 1800 evaluations is
shown in Fig. 10. This optimization surface is complex and non-convex, and, there-
fore, unsuitable for local optimization methods (e.g., gradient-based methods). In
Fig. 11, similar results are shown by taking slices of the parameter space. Notably,
a symmetry between the parameters of the two legs is visible, except for a shift
of about 5 degrees. This asymmetry can be explained by the smaller radius of the
walking circle for the inner leg. This slight asymmetry also reflected in the best
parameters found during the optimization.

Running a single trial for each experiment limits the reliability of our results.
However, based on our experience with the system we believe that these results
indicate a trend. In particular, the results obtained highlight the important issue
that on a real system the performance of the different acquisition functions might
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Fig. 12: Average walking speed during the gait optimization process of Fox us-
ing Bayesian optimization. For each evaluation the measurement of the objective
function f (θ∗) (red curve) and the corresponding 95% confidence of the model pre-
diction f̂ (θ∗) (blue area) are shown. Three evaluations are used to initialize BO
(not shown in the plot). After 80 evaluations, BO finds an optimum corresponding
to a stable walking gait with an average speed of 0.45m/s.

differ compared to the typical analytical benchmarks. The main reason is that
we can perfectly model the objective functions in these benchmarks, which is not
the case for real-world systems that can violate typical assumptions of GP models
(e.g., smoothness, homoscedasticity), such as on the Fox robot. In this context,
our results suggest that GP-UCB is more robust to model inaccuracies.

The GP modeling capabilities are often overlooked when evaluating the per-
formance of different acquisition functions in Bayesian optimization. Based on the
results of our experimental evaluation, we speculate that there exists a fairly un-
explored connection between the exploration properties of the acquisition function
and the capabilities of GP modeling, i.e., the GP prior. The performance of an ac-
quisition function depends on the quality of the GP model, and vice versa proper
modeling takes place only when the acquisition function explores a sufficiently rich
parameter set.

4.2.2 Including Control Signals in Gait Optimization

We further evaluated the performance of BO with GP-UCB (the best performing
acquisition function in the previous experiment) by increasing the dimensionality
of the optimization problem. To the four threshold parameters, we add other four
parameters corresponding to the voltage provided to the motors, for a total of eight
parameters. As objective function we again use the velocity defined in Eq. (16).

In Fig. 12, the Bayesian optimization process for gait learning is shown. Ini-
tially, the learned GP model could not adequately capture the underlying objective
function. Average velocities below 0.1m/s typically indicate a fall of the robot af-
ter the first step. Large parts of the first 60 experiments were spent on learning
that the control signals applied at the hips had to be sufficiently high in order to
swing the leg forward (i.e., against gravity and friction). Once this knowledge was
acquired, the produced gaits typically led to walking but were rather unstable, and
the robot fell after few steps. After 80 experiments, the model became more accu-
rate (the function evaluations shown in red were within the 95% confidence bound
of the prediction), and Bayesian optimization found a stable walking gait. The
resulting gait3 was evaluated for a longer period of time, and it proved sufficiently

3 Videos are available at http://www.ias.tu-darmstadt.de/Research/Fox.

http://www.ias.tu-darmstadt.de/Research/Fox
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robust to walk continuously for 2 minutes without falling, while achieving an av-
erage velocity of 0.45m/s. This average velocity was higher than the performance
obtained by optimizing only four parameters and was close to the maximum ve-
locity this hardware set-up can achieve [35]. The best parameters obtained trough
Bayesian optimization were slightly asymmetrical for the two legs.

From our experience with the biped Fox , hand-tuning the gait parameters can
be a very time-consuming process of many days. Only around 1% of the considered
parameter space leads to walking gaits, and the influence and the interaction of
the parameters is not trivial. Moreover, expert manual parameter search yielded
inferior gaits compared to the ones obtained by Bayesian optimization, in both
walking velocity and robustness. Automatic gait parameter selection by means of
Bayesian optimization sped up the parameter search from days to hours.

5 Conclusion

Automatic gait optimization is a key challenge that needs to be addressed to de-
ploy bipedal walkers in real-world applications. The principal limitation of most
common optimization methods is the need to be experimentally-efficient while ac-
counting for various sources of uncertainty in each experiment, including measure-
ment noise, model uncertainty and stochasticity of the robot and environment. In
this article, we evaluated Bayesian optimization on a bio-inspired bipedal walker.
Due to a probabilistic surrogate model, BO is an efficient solution to real-world gait
optimization. Performing over 1800 experiments, we compared different variants
of BO and observed that the GP-UCB acquisition function performed best.

References

1. Chernova, S., Veloso, M.: An evolutionary approach to gait learning for four-legged robots.
In: Intelligent Robots and Systems (IROS). Volume 3., IEEE (2004) 2562–2567

2. Gibbons, P., Mason, M., Vicente, A., Bugmann, G., Culverhouse, P.: Optimisation of
dynamic gait for small bipedal robots. In: Proc. 4th Workshop on Humanoid Soccer
Robots (Humanoids 2009). (2009) 9–14

3. Kulk, J., Welsh, J.: Evaluation of walk optimisation techniques for the NAO robot. In:
Humanoids 2011. (2011) 306–311

4. Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise. Journal of Basic Engineering 86 (1964) 97

5. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces.
Journal of Global Optimization 21 (2001) 345–383

6. Osborne, M.A., Garnett, R., Roberts, S.J.: Gaussian processes for global optimization.
In: Learning and Intelligent Optimization (LION). (2009) 1–15

7. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement
learning. arXiv preprint arXiv:1012.2599 (2010)

8. Garnett, R., Osborne, M.A., Roberts, S.J.: Bayesian optimization for sensor set selection.
In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing
in Sensor Networks. IPSN ’10, New York, NY, USA, ACM (2010) 209–219

9. Lizotte, D.J., Wang, T., Bowling, M., Schuurmans, D.: Automatic gait optimization with
Gaussian process regression. In: International Joint Conference on Artificial Intelligence
(IJCAI). (2007) 944–949

10. Tesch, M., Schneider, J., Choset, H.: Using response surfaces and expected improvement to
optimize snake robot gait parameters. In: International Conference on Intelligent Robots
and Systems (IROS), IEEE (2011) 1069–1074



Bayesian Optimization for Learning Gaits under Uncertainty 19

11. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for gen-
eral algorithm configuration. In: Learning and Intelligent Optimization (LION). Springer
(2011) 507–523

12. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning
algorithms. In: Advances in Neural Information Processing Systems (NIPS). (2012)

13. Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.P.: An experimental comparison of
Bayesian optimization for bipedal locomotion. In: International Conference on Robotics
and Automation (ICRA). (2014)

14. Calandra, R., Gopalan, N., Seyfarth, A., Peters, J., Deisenroth, M.P.: Bayesian gait opti-
mization for bipedal locomotion. In: Learning and Intelligent Optimization (LION). (2014)
274–290

15. Brooks, S.H.: A discussion of random methods for seeking maxima. Operations Research
6 (1958) 244–251

16. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of
Machine Learning Research (JMLR) 13 (2012) 281–305

17. Yamane, K.: Geometry and biomechanics for locomotion synthesis and control. In: Mod-
eling, Simulation and Optimization of Bipedal Walking. Volume 18 of Cognitive Systems
Monographs. Springer (2013) 273–287

18. Tedrake, R., Zhang, T., Seung, H.: Stochastic policy gradient reinforcement learning on a
simple 3D biped. In: International Conference on Intelligent Robots and Systems (IROS).
(2004) 2849–2854

19. Tang, Z., Zhou, C., Sun, Z.: Humanoid walking gait optimization using ga-based neu-
ral network. In: Advances in Natural Computation. Volume 3611 of Lecture Notes in
Computer Science. Springer (2005) 252–261
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