
5008 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 15, AUGUST 1, 2021

Bayesian Optimization for Nonlinear System

Identification and Pre-Distortion in Cognitive

Transmitters
Matheus Sena , M. Sezer Erkılınç , Thomas Dippon, Behnam Shariati, Robert Emmerich ,

Johannes Karl Fischer , and Ronald Freund

Abstract—We present a digital signal processing (DSP) scheme
that performs hyperparameter tuning (HT) via Bayesian optimiza-
tion (BO) to autonomously optimize memory tap distribution of
Volterra series and adapt parameters used in the synthetization
of a digital pre-distortion (DPD) filter for optical transmitters.
Besides providing a time-efficient technique, this work demon-
strates that the self-adaptation of DPD hyperparameters to correct
the component-induced nonlinear distortions as different driver
amplifier (DA) gains, symbol rates and modulation formats are
used, leads to an improvement in transmitter performance. The
scheme has been validated in back-to-back (b2b) experiments using
dual-polarization (DP) 64 and 256 quadrature amplitude modu-
lation (QAM) formats, and symbol rates of 64 and 80 GBd. For
DP-64QAM at 64 GBd, it is shown that the DPD scheme reduces
the required optical signal-to-noise ratio (OSNR) at a bit error
ratio of 10-2 by 0.9 dB and 0.6 dB with respect to linear DPD and
a heuristic nonlinear DPD approach, respectively. Moreover, we
show that the proposed approach also reduces filter complexity by
75% in conjunction with the use of memory polynomials (MP),
while achieving a similar performance to Volterra pre-distortion
filters.

Index Terms—Bayes methods, Gaussian processes, nonlinear
filters, optical transmitters, optimization.

I. INTRODUCTION

W
ITH the increase of demand in bandwidth flexibility [1]

in optical networks, there has been an emerging need

for efficient resource management tools in order to address

the diversity of capacity and reach demands required by users

and services. Viable solutions rely on incorporating cognitive

features into network operation, that, quoting [2], “ … perceive
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current conditions, and then plan, decide, and act.” In partic-

ular, significant progress has been recently achieved with the

implementation of autonomous transponders [3]. These devices

perform the self-adaptation of transmission parameters (e.g.,

modulation format, symbol rate, forward error correction (FEC)

coding schemes) to automatically correct variable channel con-

ditions originated from fiber and, especially, transceiver impair-

ments (e.g., in-phase and quadrature (IQ) skew, IQ imbalance

[4] and nonlinearities [5]). Alternatively, due to the advances of

modern digital signal processing (DSP) tools, another promising

solution to integrate cognition is via the self-adaptation of digital

pre-distortion (DPD) schemes for optical transmitters [6], [7].

In the most general sense, DPD consists of building a trans-

mitter nonlinear model that can be used to synthesize a DPD

filter (e.g., by using an indirect learning architecture (ILA) [8]),

in turn, employed to compensate for component-induced dis-

tortions. Conventionally, Volterra series is used as the nonlinear

model because of its ability to capture memory effects [9], which

in a DPD filter is embodied in a memory tap distribution. How-

ever, despite the effectiveness of Volterra-based DPD methods,

as transmission becomes more dynamic and demanding (symbol

rates ≥ 60 GBd coupled with advanced modulation formats),

optimizing the total number of orders and memory taps of the

Volterra filter without increasing the complexity of the model

becomes a challenging task. Common estimation approaches

use empirical tuning [7], requiring manual configuration of

the memory tap distribution, or heuristic procedures inspired

by grid-search [10], which are computationally expensive and,

hence, inappropriate for cognitive applications. Optionally, one

way to address this optimization problem is via modern Machine

Learning (ML) algorithms.

ML has been claimed as a fundamental building block for

the future of cognitive optical networks because its algorithms

can learn from data, identify patterns and make decisions with

minimal human intervention [11]. More importantly, ML-based

algorithms have shown great compatibility to solve standard

optical communication problems, while reducing complexity of

traditional approaches [12]. In this regard, we envision strong

similarities between the optimization of the orders and memory

taps of a Volterra filter for DPD of optical transmitters and a

design problem often coped within ML applications, so-called

hyperparameter tuning (HT) [13]. The HT consists of an op-

timization process to search for ideal system parameters that
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maximize the accuracy (denoted by an objective function) of

ML black-box models (e.g., artificial neural networks (ANN)).

To solve the HT problem, Bayesian optimization (BO) is a Gaus-

sian process (GP) based algorithm popularly chosen because of

its sequential design strategy that facilitates the estimation of

the global optimum in numerically expensive functions [14].

Moreover, BO offers reliable robustness and reduced conver-

gence time, thus, supporting real-time automation in cognitive

transmitters (CT).

In the framework of optical coherent systems, solving the HT

problem via BO can be actually performed in two key stages of

the DPD task, namely (1) nonlinear system identification (SI)

and (2) synthetization of the DPD filter. In (1), hereafter referred

to as Bayesian-based SI, the number of orders and memory

taps of the Volterra filter that models the optical transmitter are

optimized as means to improve the characterization accuracy. In

(2), BO supports the synthetization of the DPD filter by tuning

hyperparameters used in the ILA, in this paper referred to as

Bayesian-based ILA.

This work is an extension of our previous contribution [15], in

which we show that this approach enables autonomous identifi-

cation and mitigation of transmitter impairments, helps reduce

filter complexity and improves system level performance. This

study extends the results reported in [15] by:
� deepening the level of discussion on the technical details

of BO,
� presenting the computational gain that justifies the use of

the proposed approach,
� experimentally assessing Bayesian-based SI and Bayesian-

based ILA under different setup configurations and DPD

filter design scenarios.

The remainder of this text is structured as follows. Sec-

tion II briefly reviews other related works and clarifies this

manuscript’s position. Section III provides an introduction to

the BO algorithm. Section IV explains how we incorporate the

concept of HT to formulate the Bayesian-based SI and ILA. In

Section V, we show the computational performance of the BO

algorithm and demonstrate the benefits of using Bayesian-based

SI and Bayesian-based ILA in a back-to-back setup by varying

three configuration setups, such as DA gain, symbol rate (64

and 80 GBd) and modulation format (dual-polarization (DP)

64 and 256 quadrature amplitude modulation (QAM)). Still in

Section V, the approach is benchmarked and validated with the

use of memory polynomial (MP) DPD filters [16], in which we

show that significant filter complexity reduction can be achieved.

At last, the main conclusions and considerations are summarized

in Section VI.

Important notations and concepts. Throughout this

manuscript, vectors and matrices are written with bold

lowercase and uppercase letters, respectively. Each individual

element of a vector or matrix is denoted by [·]x,y , where the

subscripts x and y correspond to the row and column number,

respectively. The transpose of a vector is represented by (·)T ,

while the inverse of a matrix is written as (·)−1. In this work we

also use some theoretical concepts of stochastic processes, such

as GP, which is defined as a collection of random variables,

where any finite set of these variables has a joint Gaussian

distribution [17]. Furthermore, we recurrently express the

conditional probability density function of a random variable

Y given the occurrence of X as p(Y |X).

II. RELATED WORK

ML-based techniques for transmitter [18], [19], receiver [20]

or link [21] impairment compensation in communication sys-

tems date back to the 1990s. Initially designed for digital ra-

dio communication, these schemes mostly consisted of train-

ing ANNs to learn the generalization of component/medium-

induced distortions, which permitted the mitigation of impair-

ments that cannot be analytically modeled. In the field of optical

communications, the use of ML approaches has gained massive

attention over the past decade, predominantly targeting tasks,

such as fiber and transceiver nonlinearity mitigation [12], [22]–

[24], but also extensively explored in optical performance mon-

itoring techniques [25], [26] and network resource allocation

strategies [27].

In the context of optical transmitters, the use of ML methods

for impairment mitigation through DPD has been considered of

paramount importance, recently showing the potential of break-

ing records in increasing net rate for single-channel transmission

[28]. These approaches have also been regarded as an alternative

to conventional Volterra series [7], which assumes a transmitter

model, while ML techniques tend to be more model-free. In

[29], for instance, the authors propose and demonstrate with

simulations a two-step learning approach for neural network

based DPD, which is applied to a Mach-Zehnder modulator

(MZM) based coherent transmitter and presents advantages in

performance with respect to Volterra filters, especially in cases

of strong nonlinearity and noise conditions. Yet, one of the

general pitfalls of applying neural networks in such tasks is their

dependence on proper training, which includes the correct selec-

tion of datasets as well as efficient tuning of model parameters,

meaning that their use is not straightforward and several issues

can be encountered, even when the algorithm is correctly imple-

mented [30]. This directly impacts the fast adaptability of the

DPD schemes, which is a required feature in dynamic and het-

erogeneous network scenarios, where transmission parameters

(e.g., modulation format, symbol rate, forward error correction

(FEC) coding schemes) and device technologies are diverse,

thus demanding real-time reconfiguration of the compensation

scheme. With the purpose of providing more adaptability to

ML-based DPD, other works have targeted approaches that

can produce good generalization performance, while learning

in a time-efficient manner [31], [32]. In [31], for instance, the

authors introduce a low-complexity memoryless scheme based

on Extreme Learning Machine, enabling rapid compensation of

MZM transfer functions, which permits its use regardless of the

modulator technology.

A common characteristic in the above-cited works is that

the application of ML algorithms mostly concerns the better

estimation of the filter coefficients and do not deepen the analysis

on the optimization of the filter architecture. Discussions related

to this topic have already been briefly initiated for DPD in

[33] and described in more detail for post-equalizers in [24].
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In both works, the authors demonstrate the potential of using

ML optimization tools, such as BO, to automate the search

for optimal designs of neural networks that can compensate

for transceiver and fiber noise. This triggers the potential of

using BO to enhance the design of Volterra-based DPD filters,

thus tackling scalability pitfalls and alternatively replacing con-

ventional pruning/truncation techniques such as regularization

[34] or grid-based heuristic methods [10]. Therefore, this work

proposes a scheme that uses traditional Volterra series for DPD

assisted by a modern ML-based optimization tool, i.e., BO.

Unlike other previous works, the proposed approach permits to

automatically estimate the design of Volterra-based DPD filters.

By doing so, this work addresses scalability issues through the

optimizations of the model complexity, while proving to be a

time-efficient and hence a suitable method for CT.

III. HYPERPARAMETER TUNING VIA BAYESIAN OPTIMIZATION

For decades, black-box models have attracted much attention

in both academia and industry due to their efficiency on charac-

terizing complex nonlinear systems. Nevertheless, an important

challenge limiting the performance of these models is their

intrinsic dependence on the selection of hyperparameters, i.e.,

any model parameter that can be set beforehand to control

learning algorithms [35]. Hyperparameters affect the speed and

accuracy of the learning process of black-box models and, in

contrast with conventional model parameters, hyperparameters

cannot be easily estimated from the dataset. Moreover, the

lack of analytical formulas to calculate hyperparameters and

the restricted options of methods (e.g., exhaustive and random

search) have driven interest in more sophisticated optimization

techniques over the past years. One of these techniques is the

BO, which is reviewed in the following sub-section.

A. Bayesian Optimization and the Problem Statement

Given a black-box model that characterizes a system under

test (SUT), in which a given arbitrary input s yields a response

r, then the model accuracy can be evaluated through an ob-

jective function f . A hyperparameter entry, represented by a

scalar (or vector) input θ, determines this evaluation, such that

f = f(θ, s, r), which for simplicity can be written as f =
f(θ), f : Θ → R. In order to estimate the optimal model

accuracy, f must be subject to an optimization process with

respect to θ. However, in most cases, this optimization of f is

bounded by two important restrictions, they are:

1) Computational complexity – The number of evaluations

performed on f is limited, typically in the range of a few

hundreds. This condition frequently arises because each

evaluation takes a substantial amount of time.

2) Non-differentiability – First- and second-order derivatives

of f with respect to θ, i.e., f ′(θ) and f ′′(θ), are not

obtainable, thus, preventing the application of methods

like gradient descent, Newton’s method, or quasi-Newton

methods.

In summary, the maximization of f is defined as a HT problem

and can be mathematically written as:

maximize
θ ε Θ

f (θ) (1)

where Θ is known as hypothesis space (HS) and represents the

domain of hyperparameters that can be numerically evaluated in

f . In order to solve this mathematical problem, BO is a promising

solution because it suppresses the aforementioned restrictions,

i.e., it needs relatively few evaluations on f and it is a derivative-

free method.

BO logically depends on two core principles. First, it builds a

basic surrogate function f ∗ to “fit” the objective f and estimate

its response to unknown entries θ. Second, it bypasses the impos-

sibility of using gradient descent methods on f by introducing

an acquisition function, i.e., a statistical operator that orients the

optimum search.

B. Surrogate Function

One of the fundamental ideas of the BO is the capability

to iteratively create a surrogate function f ∗ = p(f |D) that

estimates the value of the objective function f for arbitrary θ,

i.e., f(θ), conditioned on a limited sub-set of n-observed data

points (D = {f(θ1), f(θ2), . . . , f(θn)}). To build f ∗, the BO

algorithm models p(f |D) as a GP, which permits to represent

the posterior distribution p(f |D) by the normal distribution

N (µ, σ2), where µ : Θ → R and σ2 : Θ → R correspond to

a mean and a variance function, respectively. The main benefit

of using GP is the possibility to apply algebraic properties that

when incorporated into Bayes’s rule enable us to analytically

write µ(θ) and σ2(θ) as [14]:

µ (θ) = k
T (θ)K−1

z, (2)

σ2 (θ) = k (θ, θ)− k
T (θ)K−1

k (θ) . (3)

Eq. 2 and 3 are fully determined by the kernel covariance

function k : Θ×Θ → R, the n-by-1 vector z and the n-by-n
Gram matrix K. The kernel covariance function k(θ, θ′) is built

by applying a covariance function between two arbitrary entries

θ, θ′ ∈ Θ, i.e., k (θ, θ′) = Cov(θ, θ′), consequently yield-

ing the 1-by-n vector k
T (θ), where [k(θ)]u,1 = Cov(θ, θu)

for u ∈ {1, . . . , n}, and the scalar k (θ, θ) = Cov(θ, θ). Fi-

nally, the vector z and the Gram matrix K are respectively

defined as [z]u,1 = f(θu) and [K]u,v = k(θu, θv), where

u, v ∈ {1, . . . , n}.

C. Acquisition Function

The acquisition function a can be evaluated for any arbitrary

input θ and quantifies how promising the next sampling decision

θn+1 is to indicate the location of the global optimum. By max-

imizing the acquisition function, i.e., θn+1 = maximize
θ ε Θ

a(θ),

to select the next numerical evaluation f(θn+1), we merely

substitute our initial optimization problem (Eq. 1) with another

optimization, but now with a cheaper function. A common

choice for the acquisition function is the expected improvement
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Fig. 1. (a) Initialization of the surrogate model with n = 5 observations D = {f(θ1), . . . , f(θ5)}. (a, c, e, g) Updated surrogate function for i = 1, 2, 3 and 4,
respectively. (b, d, f, h) Acquisition function for i = 1, 2, 3, and 4, respectively. In this example, the kernel length γ is set to 0.5.

(EI), computed as [14]:

a (θ) =
[

µ (θ)− f+
]

Φ (Z) + σ (θ)φ (Z) , (4)

where f+ = max(D) and Z = µ(θ)−f+

σ(θ) if σ(θ) > 0 or

Z = 0 if σ (θ) = 0. The functions Φ and φ
correspond to the cumulative and probability den-

sity functions of the standard normal distribution

N (0, 1), respectively. Since a(θ) can be analytically expressed

as a function of µ(θ), σ(θ) and f+, which are directly obtained

from the surrogate function f ∗, the sampling point θn+1 is

easily found by numerically evaluating a(θ) for all θ ∈ Θ. The

EI is used in all test cases along this work.

D. Choosing a Kernel Covariance Function

To build the surrogate function, the GP needs to consider

some assumptions about the shape of the function f . This shape

assumption is incorporated in the choice of the kernel covariance

function k (θ, θ′) = Cov(θ, θ′). In this work, we use a universal

kernel covariance function, the so-called Gaussian radial basis

function, which can be analytically expressed as:

Cov (θ, θ′) = exp

(

−
‖θ − θ′‖2

2γ2

)

, (5)

where ‖·‖2 represents the l-2 norm and γ the kernel length.

The kernel length γ is per se a hyperparameter of the GP and

determines the smoothness of k. A rapid and reliable estimation

approach to determine γ is by using the strategy presented

in [17]. There, the authors propose that γ should be selected

such to maximize the log marginal likelihood (LML) func-

tion (Eq. 5.8 in [17]), which can be expressed as: LML =
− 1

2 (z
T
K

−1
z)− 1

2 log |K| − n
2 log 2π. Since K is a function

of γ, i.e., K = K(γ), then LML is also a function of γ, that

is, LML = LML(γ), which permits us to perform this maxi-

mization. To find a good estimation for the γ that maximizes the

LML in the experiments carried out in this work, we executed a

coarse search by numerically evaluating the LML in the interval

{γ | 0 < γ ≤ 20}, with steps ∆γ = 1. The complexity of

computing the LML is dominated by the need to invert the

n-by-n matrix K, which scales the time by O(n3). However,

on a conventional computer with 16 GB of memory RAM for n

Algorithm 1: Pseudo-code for BO.

Input: Θ
Output: θopt
1: Initialize D = {f(θ1), f(θ2), . . . , f(θn)}
2: while i ≤ Maxit do

3: Compute f ∗

4: Maximize a
5: Sample f(θn+i)
6: Increment D = {f(θ1), . . . , f(θn+i)}
7: end while

8: θopt = argmax (D)

= 50 (maximum number of evaluations assumed in this work)

this operation is in the range of 200 ms, still proving to be

computationally fast to justify its use.

E. The Bayesian Optimization Algorithm

To summarize this brief review, the BO algorithm can be

defined by the pseudo-code in Algorithm 1. In line 1, the training

set D is initialized by sampling f at n points in Θ. It should be

noted that this sampling can be performed either randomly, when

no previous information is known about f , or deterministically,

when there is some indication about the optimum of f . Then, in

line 2, the BO is programmed to run until a maximum number

of iterations Maxit is reached. For each i-th iteration loop, the

surrogate function f ∗ is computed (line 3), i.e., µ and σ2 are

calculated, and used to maximize an acquisition function a (line

4), which, provides a new sampling decision θn+i. Finally, the

sampling decision is evaluated f(θn+i) (line 5) and incorporated

toD (line 6) before a new cycle starts. After this iterative process

ends (line 8), the hyperparameter θ that yields the maximumf(θ)
in D is selected as the optimal solution θopt.

Algorithm 1 is also illustrated with an example in Fig. 1.

Let’s suppose the maximization problem of the function f(θ) =
sin(θ) + sin(10θ/3), f : [0, 10] → R (blue curve in Fig. 1a). As

it can be inspected from Fig. 1a, an initial set of randomly evalu-

ated points D = {f(θ1), . . . , f(θ5)} (red dot markers) permits

us to construct the surrogate function f ∗, depicted by µ (red

solid line) and a confidence interval µ± σ (blue-shaded area).
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Fig. 2. (a) Bayesian-based SI for autonomous tuning of the SUT filter design (m) and (b) Bayesian-based ILA for optimization of loop parameters (λ, σ, G).
The red-colored paths and boxes represent the incorporation of the HT via BO into traditional SI and ILA approaches (black paths and boxes).

To infer the next evaluation, the acquisition function (Fig. 1b) is

maximized and θ6 is acquired (blue dot marker). In the sequence,

f(θ6) is numerically evaluated (Fig. 1) and incorporated to D.

Then, this process is repeated, i.e., the surrogate function is

updated (Fig. 1c, e, g) and followed by the maximization of

acquisition function (Fig. 1d, f, h) to provide the new sampling

decisions. Notably, very few iterations are needed to identify

the global maximum of f , as shown in Fig. 1g. This evidences

the potentiality of BO to reduce convergence time, which is a

crucial requirement in the design of CT.

After this brief review on HT via BO, we introduce how this

technique can be explored in DPD of optical transmitters.

IV. BAYESIAN OPTIMIZATION IN DIGITAL PRE-DISTORTION OF

OPTICAL TRANSMITTERS

Volterra-based DPD of optical transmitters can be defined in

two major stages [7]:

1) System Identification (SI) – A Volterra series is used to

build a model R of the SUT based on measurements of

the input waveform s and output waveform r.

2) Signal Pre-Distortion – An inverse model S of the SUT is

synthesized and operates on s to generate a pre-distorted

signal ŝ. When ŝ is applied to the SUT, the output wave-

form is s′, which in ideal conditions, s′ = s.

These two DPD stages heavily rely on hyperparameters, as

shown in the next sub-sections, and their improper tuning may

lead to suboptimal transmission performance. For that reason,

we incorporate BO into DPD.

A. Bayesian-Based SI

Conventionally, an optical transmitter consists of DACs fol-

lowed by a quad set of DAs and a DP IQ-modulator. The

transmitter output is a continuous-time waveform that when

represented in its discrete form, i.e., r[n], can be modeled with

respect to the input s[n] via a truncated, time-invariant Volterra

series, such that [7]:

r [n] = h0 +
P
∑

p = 1

mp−1
∑

c1= 0

. . .

mp−1
∑

cp= cp−1

hp [c1, . . . , cp]

×

p
∏

i = 1

s [n− ci − τp] . (6)

Since in any physically realizable system the output can only

depend on present and previous values of the input, what is

known as the causality condition, τp in Eq. 6 is an arbitrary

delay used for non-causal filtering realizations, i.e., it aligns the

higher order kernels centric to the first order kernel. The Volterra

series is most importantly determined by the kernel coefficients

hp[c1, . . . , cp] with memory lengths mp, where p ε {1, . . . , P}
represents the order of the kernel. When performing SI, hp

can be estimated via adaptive algorithms (e.g., least-squares

estimation [36]) as depicted in Fig. 2a, where blocks of samples

from s[n] and r[n] are used to obtain hp. However, in this

scheme, the accuracy of the obtained Volterra model strongly

depends on the hyperparameterm = [m1, . . . ,mp, . . . ,mP ].
To facilitate the assimilation of hp andm, we show in Fig. 3(a-c)

a visual representation of the normalized first (h1), second (h2)
and third (h3) order Volterra kernel coefficients for a synthetic

5th-order filter, where m = [39, 5, 7, 3, 1].

Briefly, in the SI process the least-squares algorithm is used

to estimate a Volterra filter that optimally fits the SUT input

signal (s[n]) to the SUT measured output (r[n]). After that, an

emulated SUT response (remul[n]) can be obtained by apply-

ing the resulting Volterra filter to s[n]. The similarity between

remul[n] and r[n] heavily relies on m (the memory vector),

which is considered a hyperparameter because it needs to be set

beforehand to model the Volterra filter in which the p-th order

kernel coefficients hp are estimated. Therefore, to incorporate

BO into SI, we restructure the conventional SI block diagram

Fig. 2a to search for the mopt that minimizes the identification

error eSI. In this work, we quantify eSI by the normalized mean

squared error (NMSE) of the emulated signal remul[n] with

respect to the measured output signal r[n] [37]:

eSI (m)
∆
=

V ar (remul − r)

V ar (r)
, (7)

whereV ar(·) denotes the variance. Since 1− eSI(m) is a proper

figure of merit (FOM) of the SUT model accuracy, we write the

HT problem, such that:

maximize
m ε M

1− eSI (m) (8)
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Fig. 3. Normalized (a) first (h1), (b) second (h2), and (c) third (h3) order Volterra kernel coefficients of a 5th-order synthetic filter for m = [39, 5, 7, 3, 1].

subject to

Mc ≥
P
∑

p = 1

(mp + p− 1)!

(mp − 1)!p!
, (8.1)

m1 > mp ∀ p ≥ 2, (8.2)

DSI = 1− eSI ([1, . . . , 0, . . . , 0])}. (8.3)

M is the HS of memory vectors and can be represented by

a P -dimensional hypercube R
P , such that each element m in

M satisfies a maximum number of computed filter coefficients

Mc (filter complexity), denoted by Eq. 8.1 [38]. To illustrate,

for m = [10, 10, 10], a direct inspection of Eq. 8.1 shows

that
∑

p
(mp+p−1)!
(mp−1)!p! = 10 + 55 + 220 = 285, where one can

clearly see that for a fixed memory length, higher orders generate

more kernel coefficients. It is also important to highlight that

despite the total number of coefficients of a Volterra series

is
∑

p mp
p, the number of coefficients that actually have to

be estimated is smaller, since the products in Eq. 6 remain

the same when two different indices are permuted (e.g., for

p = 2 h2[c1, c2] = h2[c2, c1]). Due to this symmetry, the

required number of computed coefficients can be expressed as

in Eq. 8.1. For the analysis derived in this work, we considered

P = 5, that is, M covers memory effects up to the 5th order, or

more simply, m = [m1, m2, m3, m4, m5] . Furthermore, we

defined that the 1st-order memory taps (m1) must be greater

than the nonlinear ones (mp, ∀ p ≥ 2) in order to generate

physically realistic filter designs and create a more compact M
(Eq. 8.2). At last, since we assume that no a priori information

is known about the optical transmitter, the training set DSI

is initialized with a simple single-tap 1st-order Volterra filter

(Eq. 8.3). This assumption also helps comparing the proposed

technique with an alternative benchmark later introduced in this

text. We name this optimization process Bayesian-based SI and

it is depicted by the full block diagram of Fig. 2a. The benefit of

using BO to find mopt is that at the end of each n-th iteration,

the next sampling decision mn+1 in M is obtained from the

maximization of a cheap acquisition function, as introduced in

sub-section III.C, permitting to reach the global optimum in a

gradient-free fashion.

As it can be noticed, the Bayesian-based SI tries to find the

architecture that best describes the forward path of the black

box system, i.e., from the SUT input to the SUT output, where

the mopt that yields an optimal hp is bounded to a maximum

filter complexity constraint Mc. This complexity constraint is

an important design parameter that gives flexibility to tailor

the size of the transmitter DPD filter according to the project

specifications (e.g., available on-chip memory). In Section V,

we suggest a methodology to identify an optimal value for Mc.

B. Bayesian-Based ILA

The ILA is often utilized for synthesizing the inverse Volterra

model S. A block diagram of the employed architecture is

shown in Fig. 2b (black boxes and paths). In this scheme, to

pre-compensate a SUT described by its model R, the algorithm

iteratively generates a new prototype pre-distortion filter S by

minimizing the error signal d[n]. The major benefit of the ILA

is the fact that the derived pre-distortion filter S is applicable to

arbitrary input signals other than the training signal. Moreover,

the ILA does not rely on a pre-defined architecture of the

distorting system R.

In the process of minimizing the ILA error vector d[n]
(Fig. 2b), a recursive least-squares (RLS) algorithm is used

[39]. The performance of the RLS algorithm relies on impor-

tant hyperparameters, i.e., the forgetting factor λ and the gain

factor δ, which control the accuracy and speed of the algorithm,

respectively. Finally, another critical issue in ILA is the selection

of the normalization gain G applied in the feedback path before

S (Fig. 2b). Therefore, given the ability of HT to release the

recursive process from the necessity of manually tuning these

hyperparameters, BO is also extended to ILA to optimize the

computation of the inverse filter S. In this HT problem, the goal

is to find the vector w = [λ, δ, G] that minimizes eILA(w),
which is computed by the mean squared-error (MSE):

eILA (w)
∆
=

1

L

L
∑

n = 1

(d [n])2, (9)

where L is the total number of samples in the error vector d[n].
In this work, we used L = 8192. Given that 1− eILA(w) is a

FOM for the accuracy of the filter synthetization process, we
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write this optimization problem as:

maximize
w ε W

1− eILA (w) (10)

subject to

DILA = 1− eILA ([λ1, δ1, G1])}. (10.1)

To define the boundaries of W , we use a common RLS

strategy that suggests that good values for λ are close to, but not

equal to 1, whereas δ is commonly 100-1000 times the variance

of the input sequence and G ≤ 1. Therefore, in this work we set

λ, δ and G such that {λ | 0.99 ≤ λ ≤ 0.9999999}, {δ | 100 ≤
δ ≤1500} and {G |0.5≤ δ ≤1}. The training set, i.e., DILA,

was initially built by evaluating 1− eILA ([λ1, δ1, G1]), where

w = [λ1, δ1, G1]was randomly sampled inW . This optimiza-

tion process is named Bayesian-based ILA and summarized by

the block diagram in Fig. 2b. Analogously to the Bayesian-based

SI, the next sampling decision wn+1 in W is obtained from

the maximization of the acquisition function, as introduced in

sub-section III.C, permitting to reach the global optimum wopt

without computing gradients.

It is noteworthy that, in this manuscript, we assume the filter

architecture of the model S as equal to the filter architecture of

the model R (with an exception to the results shown in section

V.F.3), since the latter captures the necessary memory effects that

optimally model the transmitter and, therefore, it is sufficient to

compensate for the SUT impairments.

V. RESULTS AND DISCUSSIONS

In this section we discuss the benefits of using the Bayesian-

based SI and Bayesian-based ILA in the context of optical

coherent systems. First, in sub-section A, we demonstrate the

computational gain associated with the use of Bayesian-based

SI in comparison to a heuristic memory tap optimization ap-

proach. Then, in sub-section B, we introduce the testbed and

procedures used in our experimental validations and propose a

methodology for the autonomous operation of the DPD scheme.

In sub-sections C-E, we test our approach for different setup

configurations. Finally, in sub-section F, we validate the optical

performance of the technique comparing it to other DPD filter

design scenarios.

A. Computational Gain

Recently, a SI approach was introduced in [10]. In this scheme,

a heuristic was proposed to optimize the number of orders and

memory taps of the Volterra series and follows the described

method. First, the heuristic initializes the SI with a single-tap

1st-order Volterra filter, i.e., the least-squares estimation to obtain

hp is carried out for a memory vector m = [1]. Then, m1

is unitarily incremented until eSI reaches an error floor. After

that, m1 is fixed and this procedure repeated for higher orders

(e.g., m2, m3, …). The algorithm stops when an optimal eSI is

found after adding new orders. Despite providing an accurate

estimation, this approximation gives rise to a difficult imple-

mentation constraint, i.e., the high number of evaluations of

eSI to find mopt, which arises from the grid-search-like nature

of the assumed strategy. Unlike the Bayesian-based SI, the

Fig. 4. Bayesian-based SI is benchmarked with the heuristic memory tap
optimization approach introduced in [10]. A 46% speed-up is achieved by using
the derived approach when both strategies are tested on a synthesized Volterra
filter represented by the memory vector m = [39, 5, 7, 3, 1].

heuristic introduced in [10] performs an uninformed search by

operating in a brute-force way and does not efficiently utilize

the information from the intermediate states tested during the

optimization process.

To benchmark Bayesian-based SI with [10], we synthesized

a 5th-order Volterra model that emulates the response of a SUT

and is depicted by Fig. 3, for which m is known and equal to

m= [39, 5, 7, 3, 1]. Then, a random eight-level pulse-amplitude

modulation (PAM-8) training sequence (s[n]) with 105 symbols

at 1 Sa/symbol is fed to the emulated SUT model to obtain the

corresponding output signal (r[n]). This pair of waveforms, i.e.,

s[n] and r[n], is hence provided to the proposed Bayesian-based

SI and to the heuristic approach. Then, both techniques are used

to blindly learn the optimal m. The SUT model was emulated

with VPItoolkitTM DSP Library. To create the HS for the BO,

i.e., M, we set a maximum filter complexity of Mc = 155,

which ensures that mopt ε M. The Wallclock time (elapsed

processing time) after each iteration loop for both techniques

was then used as FOM. According to the results shown in

Fig. 4, Bayesian-based SI is able to reach the minimum iden-

tification error eSI, 46% faster compared to the benchmarked

approach [10]. This indicates that using BO to identify the

optimal memory tap distribution of a Volterra filter brings the

advantage of reducing the convergence time, what makes it more

computationally suitable for CT. It is also important to point out

that both approaches can learn the exact m = [39, 5, 7, 3, 1], and

that the non-null error floor comes from a negligible residual

error of the least-squares estimation, which is used to obtain the

kernel coefficients in both methods.

B. Experimental Testbed and the DPD Hyperparameter

Validation

The experimental validation is composed of two parts:

(1) SI and (2) performance evaluation of the DPD. Both parts

were realized using the same experimental testbed, as shown in

Fig. 5a and detailed in [40]. The methodology utilized in this
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Fig. 5. (a) Experimental setup. (b) Block diagram for validation of the DPD hyperparameters. gDA: driver amplifier gain.

validation is also logically described in the block diagram in

Fig. 5b, which depicts how the Bayesian-based SI and ILA can

be jointly handled for tuning of the DPD hyperparameters.

In the first part (i.e., SI), a 96 GBd DP-16QAM “probe” signal

was generated using a 215 random bit sequence followed by a

root-raised cosine (RRC) pulse shaping filter with roll-off factor

0. The 96-GBd symbol rate ensures that the identification of

the SUT Volterra model covers sufficient frequency components

to guarantee that the test signals (at 64 and 80 GBd) will

not be cut off in the frequency domain when applied to the

inverse model S (Fig. 2). Additionally, the probe signal needs

to excite multiple DAC discretization levels, which in theory

can be performed with any modulation format with cardinality

higher than two (e.g., 16QAM, 64QAM, 256QAM). However,

it is also important to remind that during the SI the signal is

not yet pre-distorted, which means that it contains transmitter

IQ time-skew and amplitude imbalances. In these conditions,

especially when a high symbol rate must is applied (96 GBd),

a 16QAM signal is less susceptible to impairments when com-

pared to higher cardinalities [41], incurring in a more resilient

identification, what explains the use of this modulation format

for the probe signal. The four sample sequences for the quadra-

ture components (XI, XQ, YI and YQ) were then uploaded to

a 4-channel 120 GSa/s Keysight arbitrary waveform generator

(AWG) with 3-dB bandwidth of 45 GHz (able to generate

signals with frequency components above 45 GHz). The AWG

was used to drive a 40-GHz optical multi-format transmitter

(OMFT) from ID Photonics based on a high-bandwidth coherent

driver module (HB-CDM). Together, the OMFT and the AWG

comprise the SUT as indicated in Fig. 5a. An external cavity

laser (ECL) at fixed wavelength (1550 nm) was used for the

DP-IQ modulator and for the local oscillator (LO). Then, the

optical signal was transmitted, received and digitized using an

optical coherent receiver (70 GHz) followed by a 256 GS/s

real-time oscilloscope (RTO) with 110 GHz analog bandwidth

(Fig. 5b-I). We removed the distortions originated from IQ-skew

and the frequency response induced by the RTO by performing

an additional offline calibration at 1550 nm. Then, the derived

correction was applied to all the following measurements in

the receiver DSP. At the receiver DSP, Stokes space based

polarization demultiplexing [42], clock recovery, resampling,

frequency offset correction [43] and carrier phase recovery [44]

were performed. The received and the transmitted samples of

the probe signal quadrature components were finally provided

to the Bayesian-based SI. At this stage, the Bayesian-based SI

was processed for different filter complexities Mc (Fig. 5b-II),

at Maxit = 50 iterations, hence, generating different optimal

designs mopt and kernel coefficients hp that were stored to

be validated in the second part, i.e., performance evaluation of

the DPD. As mentioned early in this text, Mc is an intrinsic

hyperparameter of the Bayesian-based SI problem and depends

on the project specification (e.g., available on-chip memory).

However, here the reason to process Bayesian-based SI for

multiple complexities is to demonstrate that there is a mini-

mum Mc, beyond which the filter design enters the overfitting

regime, i.e., when increasing model complexity yields degrading

performance. This occurs when the BO interprets the noise in

the received quadrature components as nonlinear distortions and

tries to model them by adding unnecessary memory taps to the

extent that it negatively impacts the transmission performance.

The results for the Bayesian-based SI were obtained for a kernel

length of γ = 10.

In the second stage (performance evaluation of the DPD),

as illustrated in Fig. 5b III-VI, we used an iterative process to

select the mopt that generates the lowest BER among all design

solutions produced in Fig. 5b-II. In the first loop of this iterative
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process, the designmopt with the lowest filter complexity Mc is

selected (Fig. 5b-III) and its corresponding kernel coefficientshp

are used in the synthetization of the model S, realized through

Bayesian-based ILA (at Maxit = 50 iterations), as shown in

Fig. 5b-IV. For the design of the DPD filter, we assumed a

Volterra-based architecture. Subsequently, the obtained DPD

filter was used to pre-distort the test signal that unlike the probe

signal was generated with a RRC pulse-shape (roll-off factor

of 0.1), for which two modulation formats (DP-64QAM or

DP-256QAM) and two symbol rates (64 and 80 GBd) could

be selected. After the transmission and reception of the pre-

distorted test signal (Fig. 5b-V), the BER was measured by

counting the errors in 1 million bits per measurement point.

This measurement was realized at a fixed optical signal-to-noise

ratio (OSNR), where a noise-loading stage consisting of an

Erbium-doped fiber amplifier (EDFA) and a variable optical

attenuator (VOA) was used. In the following loop, a new mopt

with a higher filter complexity Mc is tested using this same

described procedure. This process only stops when selecting a

newmopt degrades the BER concerning the value acquired in the

previous loop (Fig. 5b-VI). This methodology is inspired by the

automatic early stopping criterion [45] and can efficiently handle

eventual filter overfitting caused by the inappropriate selection

of Mc, as shown in the next sub-sections. In the Bayesian-based

ILA, we used γ = 15.

C. Different Driver Amplifier (DA) Gains

The insertion loss of DP-IQ modulators limits the available

OSNR at the output of the transmitter. To counter-balance this

problem, increasing the drive voltage of the DP-IQ modulator

(i.e., increasing the DA gain) is a common approach to achieve

a higher OSNR. However, this provokes distortions due to DA

saturation and the nonlinear response of the DP IQ-modulator,

consequently, leading to different optimal DPD filter designs

with different optimal memory tap distribution. In order to verify

that the proposed approach is able to adapt the DPD design to the

system configuration, we tested three gain configurations (g1,

g2 and g3) of the DAs to excite different degrees of transmit-

ter nonlinearity. These gain configurations correspond to three

levels of nonlinear system excitation: weak (g1), strong (g2)

and highly nonlinear (g3), such that g1 < g2 < g3. For each DA

gain configuration, we performed the validation methodology

depicted by Fig. 5b.

As previously mentioned, during the SI, different optimal

designs mopt with different Mc were selected and stored to

be tested in the performance evaluation as means to avoid over-

fitting and identify an optimal Mc. In order to pre-select these

designs, the following policy was applied. First, the Bayesian-

based SI is performed for the interval MC ε [50, 1400] with

steps ∆MC = 50, what can be visually inspected from the

identification error curves in Fig. 6 (solid dot markers). Second,

to avoid an exhaustive testing of all these data points, only

candidate solutions between MC = 50 and MC = 1400 at the

elbows of the plateaus of the curves (indicated by the triangular

markers in Fig. 6) were sampled. These sampled points represent

Fig. 6. Identification error for different DA gains with respect to filter com-
plexity MC when Bayesian-based SI is performed. Only the designs denoted
by the triangular markers were tested in the Bayesian-based ILA.

Fig. 7. BER validation (at fixed OSNR = 44.9 dB) for different DA gains
(g1 < g2 < g3) as function of the filter complexity MC . The pre-selected
solutions (Fig. 6) are validated, where it is possible to distinguish an optimum
among underfitted and overfitted filter designs.

local solutions where diminishing eSI is no longer worth the

additional cost of increasing Mc.

The performance evaluation was carried out with a test sig-

nal configured to DP-64QAM at 64 GBd at maximum OSNR

(44.9 dB). As can be seen in Fig. 7, the filter architecture that

results in lowest BER for the gain g1 (indicated by the pink

star-like marker) is a 3rd-order Volterra filter (mopt = [76, 3,

9], MC = 50). When gain g2 is tested, not only m1 and m2

incorporate 4 and 2 more taps, respectively, but there is also

the inclusion of a 4th order (mopt = [80, 3, 11, 3], MC =
400). Finally, for the highly nonlinear regime, represented by

the gain g3, the design for lowest BER is a 5th-order filter

(mopt = [200, 11, 15, 1, 3], MC = 1000). Fig. 7 also shows

that a further increase of the filter complexity beyond the early

stopping criterion only degrades the system performance due to

model overfitting (solid dot markers).



SENA et al.: BO FOR NONLINEAR SYSTEM IDENTIFICATION AND PRE-DISTORTION IN COGNITIVE TRANSMITTERS 5017

Fig. 8. BER validation (at fixed OSNR = 44.9 dB) for different symbol rates
(64 and 80 GBd) as function of the filter complexity MC .

D. Different Symbol Rates

As previously mentioned, during the SI a probe signal at

96 GBd was used to excite the SUT. This enables to synthesize a

model R that covers sufficient frequency components to ensure

that the test signals (at 64 and 80 GBd) will not be cut off in

the frequency domain when applied to the inverse model S.

The downside of such procedure is that the 96 GBd signal also

excites transmitter nonlinearities at frequencies where the 64 or

80 GBd waveforms have no spectral support. Consequently, it

is expected that at higher symbol rates the output signal of the

SUT will manifest stronger distortions. The next logical step

is to know whether our proposed scheme can adapt the filter

design to reflect the necessity of additional or fewer memory

taps to model the distortions induced in different symbol rate

regimes. With that being said, we apply the validation process

depicted in Fig. 5b to tune the DPD hyperparameters. For this

test, the SI was performed in an similar way with respect to the

analysis presented in sub-section C, except for the fact that now

a fixed DA gain (g2) was set.

In the performance evaluation, the test signal was configured

to a fixed modulation format (DP-64QAM) while the chosen

symbol rates were either set to 64 GBd or 80 GBd. As depicted

in Fig. 8, the higher symbol rate regime (80 GBd) requires a

filter complexity (mopt = [200, 11, 15, 3], Mc = 1000) 2.5×
higher than the 64 GBd case (mopt = [80, 3, 11, 3], Mc = 400)

to achieve the lowest BER. This demonstrates that the proposed

approach can tailor specific filter designs for operation in differ-

ent symbol rates, offering more means for self-configuration of

CT.

E. Different Modulation Formats

Finally, an analysis was carried out to investigate the influence

of different modulation formats. At this stage, we repeated the

procedure presented in D but with a slightly different setup,

i.e., in the performance evaluation we fixed symbol rate at

64 GBd and used two modulation format options, DP-64QAM

and DP-256QAM. As indicated in the Fig. 9, with the same

filter architecture it is possible to reach a minimum BER for both

Fig. 9. BER validation (at fixed OSNR = 44.9 dB) for modulation formats
(DP-64QAM and DP-256QAM) as function of the filter complexity MC .

cases, suggesting that even for high cardinalities (DP-256QAM)

compact but efficient filter architectures can be beneficial in the

design of DPD schemes.

F. Performance Comparison

In this sub-section, we investigate the performance of the

results of the DPD HT that yield the lowest BER for different

symbol rate regimes, which are depicted by the star-like markers

in Fig. 8. First, we demonstrate the impact of Bayesian-based

ILA in comparison to using default hyperparameters. Second,

we experimentally benchmark the Bayesian-based approach

with linear DPD and the nonlinear DPD using the heuristic SI

approach introduced in [10]. Finally, we demonstrate the gains

in reducing filter complexity by using MP instead of Volterra

series in the design of the DPD filter. To recapitulate, in all the

three aforementioned scenarios the setup was configured to DA

gain g2 and the analysis was carried out at a fixed modulation

format at DP-64QAM, while varying the symbol rates to either

64 or 80 GBd. It is also important to remind to the reader that

the pre-distortion experiments performed in this sub-section

follow the same methodology presented in section V.B, i.e.,

Bayesian-based SI is used to optimize the memory vector (m)

and this resulting architecture is applied to synthesize the model

S in the Bayesian-based ILA, where the ILA loop parameters

are tuned. At the end, a noise-loading test was realized.

1) Bayesian-Based ILA vs. Default Parameters: Using de-

fault ILA hyperparameters (λ, δ and G) is a common strategy

for synthetization of DPD filter because it is fast, i.e., does not

require any optimizations, and many times these off-the-shelf

solutions already yield very good results. As previously de-

scribed, one frequent engineering rule is to select λ close to,

but not equal to 1, δ approximately 100-1000 times the variance

of the input sequence and G ≤ 1. To illustrate this procedure, by

choosing λ = 0.9999999, δ = 900 and G= 0.9, it is possible to

reduce the required OSNR of Volterra DPD with respect to their

corresponding linear DPD filters (extracting only m1 from m),

by approximately 0.4 dB (at BER = 10-2) for 64 GBd and +∞
for 80 GBd, as indicated in Fig. 10a. When the Bayesian-based
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Fig. 10. BER curves obtained for DP-64QAM at 64 GBd and 80 GBd
(a) when Bayesian-based ILA is benchmarked with the use of default param-
eters (λ = 0.9999999, δ = 900 and G = 0.9), (b) when Bayesian-based SI
is benchmarked with the heuristic SI approach proposed in [10] and (c) when
Volterra and MP filters are used as DPD filters.

ILA is applied to optimize λ, δ and G, instead of using default

values, it is possible to see a slight improvement in the reduction

of the required OSNR of approximately 0.4 dB for 64 GBd (at

BER= 10-2). This improvement becomes more significant when

the analysis is carried out for 80 GBd, where a 4-dB reduction is

achieved, as depicted in Fig. 10a. This demonstrates the impact

Fig. 11. Filter complexity reduction of 75% can be achieved by using MP
pre-distorting filters. (a) 64 and (b) 80 GBd constellations at BER = 6.6x10-4

and 5.9x10-3 (OSNR = 44.9 dB) respectively, when MP are used.

that the HT has in the synthetization of the DPD filter designs

when compared to fixed ready-to-use hyperparameters.

2) Bayesian-Based SI vs. Grid-Based Heuristic Approach:

In sub-section A, we showed with a simulative scenario that the

Bayesian-based SI reaches an identification error floor requiring

with less processing time than the grid-based heuristic approach

introduced in [10]. Here, we experimentally show the optical

performance of both techniques by restricting the number of

iterations (Maxit = 50 iterations).

As can be seen in Fig. 10b, using Bayesian-based DPD for

64 GBd reduces the required OSNR by approximately 0.9 dB

with respect to the linear DPD (at BER = 10-2) and 0.6 dB

in comparison to the benchmarked SI method. For the 80 GBd

case, the benefit of using our proposed scheme becomes even

more relevant, given that both benchmarks cannot operate below

BER = 10−2, whereas the Bayesian-based approach achieves a

BER below this threshold.

3) DPD Filter via Volterra vs. MP: Finally, we test the

performance of the proposed scheme with the use of MP pre-

distorting (PD) filters. MPs represent a very compact subset of

the Volterra series and mathematically correspond to rewriting

Eq. 6, such that hp [c1, . . . , cp] = 0, ∀ c1 �= c2 �= . . . �= cp,

which in simple words is equivalent to only considering the main

diagonal of the p-th order Volterra operator hp. By employing

MP, the complexity of the pre-distortion filter drastically drops

enabling simpler architectures. However, the question to answer

is whether using this filter architecture could lead to a loss of

performance. In order to answer this question, we performed the

Bayesian-based ILA using MP as a filter prototype for the inverse

model S and compared it with the use of Volterra filters. As can

be seen in Fig. 10c, the incorporation of MP into the Bayesian-

based ILA leads to a negligible loss of performance with respect

to Volterra PD filters for the 64 GBd regime. Moreover, the filter

complexity (Mc) reduces by approximately 75%, as depicted in

Fig. 11. For the 80 GBd case, the performance is almost identical,

with MP with a slightly higher required OSNR, perceived for the

high-OSNR regime (> 34 dB). This can be explained by the fact

that for such high symbol rate (80 GBd) the nonlinear distortions,

represented by the kernel coefficients outside the main diagonal
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of the Volterra filter (hp [c1, . . . , cp] = 0, ∀ c1 �= c2 �= . . . �= cp)

become more relevant and adding these cross-terms, at the price

of increasing filter complexity, can lead to a small improvement

(0.75 dB at BER = 10-2, Fig. 10c). In terms of filter complexity,

a reduction of 75% is likewise achieved by the MP architecture

(Fig. 11).

VI. CONCLUSION

In this work, we have investigated and experimentally demon-

strated the benefits of employing Bayesian optimization, in

Volterra-based system identification and digital pre-distortion

of optical transmitters using the indirect learning architecture.

The proposed approach offers means to provide efficient and

automatic calibration of optical transmitters, which is a key

requirement for the development of cognitive networks.

In Section II, we initially provided a comprehensive review

on Bayesian optimization, which enabled the understanding,

in Section IV, of how this optimization tool was incorporated

to automatically tune important hyperparameters in the system

identification (number of orders and memory tap distribution of

the Volterra filter) and digital pre-distortion (indirect learning

architecture loop parameters).

To evaluate the benefits of using the Bayesian optimization

in the system identification, we numerically compared the pro-

posed technique in Section V with a heuristic approach, where

a 46% reduction in convergence time to reach a minimum

identification error is achieved. Still in Section V, we introduced

a method that can be used to validate the hyperparemeters that

minimize bit error ratio, whilst avoiding model overfitting. This

method was evaluated under three setup configuration scenarios,

i.e., different driver amplifier gains, different symbol rates and

different modulation formats. In this analysis, it was verified that

by increasing the driver amplifier gain or signal symbol rate,

stronger transmitter distortions are induced, thus, demanding

more complex filter designs.

Finally, we assess the performance of the technique for three

digital pre-distortion filter scenarios. First, demonstrating that

the proposed approach improves the performance in compari-

son to using off-the-shelf indirect learning architecture hyper-

paremeters by reducing optical-to-noise ratio in 0.4 dB for a

64 GBd DP-64QAM signal. Second, it was inspected that the

proposed technique also outperforms linear pre-distortion in

0.9 dB and the heuristic SI approach for nonlinear pre-distortion

in 0.6 dB for 64 GBd DP-64QAM. Third, in conjunction with

the use of memory polynomials a filter complexity reduction of

approximately 75% with respect to Volterra filters is obtained

while maintaining comparable performance.

A possible opportunity for future investigation in this topic is

the development of a single optimization scheme to jointly tune

the DPD filter architecture along with the ILA loop parameters

to provide the best full forward performance.
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