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ABSTRACT

We consider the problem of selecting an optimal set of sen-
sors, as determined, for example, by the predictive accuracy
of the resulting sensor network. Given an underlying metric
between pairs of set elements, we introduce a natural metric
between sets of sensors for this task. Using this metric, we
can construct covariance functions over sets, and thereby
perform Gaussian process inference over a function whose
domain is a power set. If the function has additional in-
puts, our covariances can be readily extended to incorporate
them—allowing us to consider, for example, functions over
both sets and time. These functions can then be optimized
using Gaussian process global optimization (GPGO). We
use the root mean squared error (RMSE) of the predictions
made using a set of sensors at a particular time as an ex-
ample of such a function to be optimized; the optimal point
specifies the best choice of sensor locations. We demonstrate
the resulting method by dynamically selecting the best sub-
set of a given set of weather sensors for the prediction of the
air temperature across the United Kingdom.
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1. INTRODUCTION
Consider the problem of selecting the optimal locations

for making measurements of some dynamic spatial process.
This problem, studied under the name of spatial sampling
design [8, 14] is encountered in a wide range of applications,
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including soil science, petroleum geology, and oceanography.
In particular, we consider the problem of placing a small
number of sensors with the goal of making accurate global
predictions about a spatial field with temporal variation,
such as air temperature.

We do this by treating the prediction quality of a set of
sensors as a “black-box”—a measure of the efficacy of a par-
ticular sensor layout that is supplied to us after having tried
it. This measure, henceforth referred to as the objective
function, could be any arbitrarily complicated function, and
might potentially be provided to us by an external agency,
such as a user of the sensor network. We then use these
measurements of the objective function in order to perform
inference about its likely value for other sensor sets. By bal-
ancing the resulting exploration–exploitation trade off, we
can carefully select the sensor placements to be evaluated,
mindful that we will usually only be able to afford a limited
number of trials.

Other approaches [6] typically assume greater prior knowl-
edge of how different sensor sets will perform, and are unable
to fully exploit the information yielded by any experimental
trials of sensor layouts. In contrast, our formulation allows
us great flexibility, allowing the use of as much or as little
knowledge that may exist, and permitting its application to
problems of many different types. In its full generality, our
method aims to optimize any function over point sets.

Our inference is enabled by the use of Gaussian processes,
described in Section 2. In particular, we wish to use Gaus-
sian processes to perform inference about how our objective
function will vary over sets. We then describe Gaussian pro-
cess global optimization in Section 3, which will allow us to
optimize our objective function. In order to allow the pro-
posed inference and optimization within a Gaussian process
framework, however, we must specify a covariance function
over sets. TO enable the construction of such a covariance,
in Section 4 we define a metric over sets of sensors. Section
5 describes in more detail how we can perform the optimiza-
tion of an objective function over sensor sets, and Section
6 contains the specifics of the experiments that validate our
approach.

2. GAUSSIAN PROCESSES
Gaussian processes (GPs) offer a powerful method to per-

form Bayesian inference about functions [12]. A GP is de-
fined as a distribution over the functions X → R such that
the distribution over the possible function values on any fi-
nite subset of X is multivariate Gaussian. For a function
y(x), the prior distribution over its values y on a subset



x ⊂ X is completely specified by a mean vector µ(x) and
covariance matrix K(x, x),

p(y | I ) , N(y; µ(x),K(x, x))

,
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Here I , the context, includes prior knowledge of both the
mean and covariance functions, which generate µ and K re-
spectively. We will incorporate knowledge of relevant func-
tional inputs, such as x, into I for notational convenience.
The prior mean function is chosen as appropriate for the
problem at hand (often a constant), and the positive-definite
covariance function is chosen to reflect any prior knowledge
about the structure of the function of interest. For exam-
ple, we can select covariance functions to reflect an expected
degree of smoothness, periodicity, or isotropy. We can even
specify covariance functions that explicitly acknowledge the
possibility of changepoints or sensor faults [3].

We consider the family of covariance functions of the form

K(x1, x2; λ, σ) , λ2κ
`

d(x1, x2; σ)
´

, (1)

where κ is an appropriately chosen function and d is a metric
parametrized by σ. For one-dimensional inputs x, we will
often use

dsimple(x1, x2; σ) ,
|x1 − x2|

σ
. (2)

In such a context, the parameters λ and σ represent re-
spectively the characteristic output and input scales of the
process. Example covariance functions of the form (1) are
the squared exponential covariance, given by

KSE(x1, x2; λ, σ) , λ2 exp
“

− 1
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”

, (3)

the rational quadratic covariance, parametrized by α,

KRQ(x1, x2; λ, σ, α) ,
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„
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, (4)

and the the Matérn class of covariance functions, which are
parametrized by a “roughness” ν, and for the example of
ν = 3/2 can be written

KMtn(x1, x2; λ, σ, ν = 3/2) ,

λ2
“

1 +
√

3 d(x1, x2; σ)
”

exp
“

−
√

3 d(x1, x2; σ)
”

. (5)

λ, σ, α and ν are examples of the set of hyperparameters,
collectively denoted as θ, that are required to specify our
covariance and mean functions. Other covariance functions
can be constructed for a wide variety of problems [12]. For
this reason, GPs are ideally suited for time-series–prediction
problems with complex behavior.

Note that we typically do not receive observations of y di-
rectly, but rather of potentially corrupted versions z of y. In
this paper, we only consider the Gaussian observation like-
lihood p(z | y, θ, I ), although other observation likelihoods
can be used [12]. In particular, we often assume independent
Gaussian noise contributions of a fixed variance η2. This
noise variance effectively becomes another hyperparameter

of our model and will therefore be incorporated into θ. To
proceed, we define

V (t1, t2; θ) , K(t1, t2; θ) + η2 δ(t1 − t2) , (6)

where δ(·) is the Kronecker delta function. Of course, in
the noiseless case, z = y and V (t1, t2; θ) = K(t1, t2; θ). We
define the set of observations available to us as (xd, zd).
Conditioning on these observations, I , and θ, we are able to
analytically derive our predictive equations for the vector of
function values y⋆ at inputs x⋆

p(y⋆|zd, θ, I)

= N
`

y⋆; m(y⋆ |zd, θ, I) ,C(y⋆ |zd, θ, I)
´

, (7)

where we have

m(y⋆ |zd, θ, I) ,

µ(x⋆; θ) + K(x⋆, xd; θ)V(xd, xd; θ)
−1(zd − µ(xd; θ))

C(y⋆ |zd, θ, I) ,

K(x⋆, x⋆; θ)−K(x⋆, xd; θ)V(xd, xd; θ)
−1

K(xd, x⋆; θ) .
(8)

Of course, we can rarely be certain about θ a priori. These
hyperparameters must therefore be assigned an appropriate
prior distribution and then marginalized. Although the re-
quired integrals are non-analytic, we can efficiently approx-
imate them using Bayesian Monte Carlo [11] techniques.
This entails evaluating our predictions for a range of hy-
perparameter samples {θi : i ∈ S}. Each sample has an
associated predictive mean m(y⋆ |zd, θi, I) and covariance
C(y⋆ |zd, θi, I), which are then combined in a weighted
mixture

p( y⋆ | zd, I )

=

R

p(y⋆ | zd, θ, I ) p(zd | θ, I ) p( θ | I ) dθ
R

p(zd | θ, I ) p( θ | I ) dθ

≃
X

i∈S

ρi N
`

y⋆; m(y⋆ |zd, θi, I) ,C(y⋆ |zd, θi, I)
´

, (9)

with weights ρ as detailed in [10]. We also use the sequen-
tial formulation of a GP given by [10], a natural fit for our
sequential decision problem. After each new function eval-
uation, we can efficiently update our predictions in light of
the new information received.

3. GAUSSIAN PROCESSES FOR GLOBAL

OPTIMIZATION
We now frame global optimization as a sequential deci-

sion problem [9]. Imagine that we have an unknown and
expensive-to-evaluate objective function y(x) that we seek to
minimize. The cost associated with computing y(x) compels
us to select the location of each new evaluation very care-
fully. For example, in the case of a sensor network, the task
of moving sensors to new locations might be very expensive
in terms of time, effort, or monetary cost. Our problem’s ul-
timate task is to return a final point xM in the domain, and
we define the loss associated with this choice to be equal to
yM , y(xM). At each iteration of the algorithm, we evalu-
ate y(x) at the point that minimizes our expected loss; that
is, we aim to minimize our ultimate returned value yM .

In particular, we wish to minimize a noisy objective func-
tion that changes over time. The problem we consider is one



in which we have a pre-defined time tM at which we must
return our minimum (xM , yM ). Until that time, we have a
certain number of exploratory evaluations to make. We may
be able to select the times of our evaluations, or we may be
forced to evaluate at constrained timesteps. Either way, we
cannot choose an evaluation that is before any evaluation we
have already taken—we cannot travel back in time. Time is
now simply treated as an additional input to our objective
function, meaning that our inputs will now be of the form
[x, t].

Our next step is to take a GP over the values of y. Infer-
ence about functions is at the heart of optimization, made
explicit by techniques of optimization that employ response
surfaces or surrogates [4]. Our goal is to build a statistical
picture of the function’s overall form given our observations
of it.

To allow for the dynamic nature of our objective function,
we build a covariance function over the combined input space
[x, t]. We also acknowledge any observation noise within our
GP framework. In particular, we assume that we possess
Gaussian-noise-corrupted evaluations and proceed by mak-
ing the appropriate modifications to our covariance, as in
(6).

The noise and dynamics in our objective function also im-
pact upon our choice of the final point to return as the min-
imum. Rather than returning a noise-corrupted observed
value zM at the final chosen xM , we allow our algorithm
to return its best guess for the real value yM at that point.
We constrain the returned xM to the set of actual evaluated
points. At such points, we are likely to have only a small
amount of uncertainty about the objective function. We fur-
ther limit the candidate points to return to those where we
are still reasonably confident about the objective: as we are
optimizing a dynamic function, its current value at input x
is likely to be different from an evaluation at x made in the
past. We enforce this final constraint by stipulating that the
returned value must be at an x at which we have made an
evaluation not more than ǫ units of time in the past.

Imagine that we have only one allowed function evalua-
tion remaining before we must report our inferred function
minimum, at the final time tM . If

([xd, td], zd) ,
˘

([xj , tj ], zj) : j ∈ d
¯

are the evaluations of the function we have gathered so far,
we define

η(θ) , min
j∈d: tj>tM−ǫ

m(yj |θ, zd, I) .

Given this, we can define the loss λ(y) of evaluating the
function this last time at x and its returning y as

λ(y; θ) ,

(

y; y < η(θ)

η(θ); y ≥ η(θ)
. (10)

That is, after having observed y, our loss is simply the new
minimum of the set of observed points, min

`

y, η(θ)
´

, which
we would report as yM .

Given our GP over y, we can determine an analytic ex-
pression for the expected loss of selecting x given that we

have observed yd and have only one evaluation remaining:

Λ(x | zd, I)

,

RR

λ(y; θ) p(y|zd, θ, I) p(zd|θ, I) p(θ|I) dθ dy
R

p(zd|θ, I) p(θ|I) dθ

=
X

i

ρiVi (x | zd, I) , (11)

where we we have marginalized over hyperparameters using
(9), and defined

Vi (x | zd, I)

, ηi

Z

∞

ηi

N(y;mi, Ci) dy +

Z ηi

−∞

y N(y; mi, Ci) dy

= ηi + (mi − ηi) Φ(ηi; mi, Ci)− Ci N(ηi; mi, Ci) .

Note that we have denoted the usual Gaussian cumulative
distribution function as Φ, and abbreviated η(θi) as ηi, m(y |θi, zd, I)
as mi, and C(y |θi, zd, I) as Ci. The location where (11) is
lowest gives the optimal location for our next function eval-
uation, balancing both exploration and exploitation. Any
uncertainty about the model is dealt with through our prin-
cipled marginalization of hyperparameters, influencing our
selection of evaluations in a principled manner. Note that
the “expected improvement” function of [5] is close to but
differs from this Bayesian expected loss criterion.

Of course, we have merely shifted the minimization prob-
lem from one over the objective function y(x) to one over the
expected loss function (11). Fortunately, the expected loss
function is computationally inexpensive to evaluate, much
more so than the objective function.

The action of our algorithm is illustrated in Figure 1.

4. METRICS OVER SETS
We now consider the challenge of constructing covariance

functions of the form (1) to perform inference about the
unknown values of an objective function defined over point
sets. We assume that the objective function is smooth, in the
sense that it will have similar values for “related” sets. For
example, if we are considering the predictive performance
of a sensor network, we should expect a priori that moving
each sensor by a small amount will typically not greatly
affect its performance.

To formalize the meaning of “related” in this context, we
define a distance between two sets of points in terms of
an underlying distance between singletons. This distance
can then be incorporated into an off-the-shelf covariance (1)
for Gaussian processes in the optimization procedure. Sup-
pose we have a domain X of interest with an associated
parametrized metric d′(x1, x2; θ) defined on X ×X. We as-
sume that the chosen metric would be useful for performing
inference about the objective function if we restricted the do-
main to singleton sets, and extend this distance to arbitrary
subsets of X. The distance d′ can be readily obtained for
sets of spatial coordinates; for example, the usual Euclidean
distance (or great-circle distance on the earth) usually suf-
fices.

The optimization we suggest for sensor selection in this
paper does not require any particular form for the under-
lying prediction algorithm. If, however, a Gaussian process
over the field measured by a sensor network (separate from
the Gaussian process over sets used for optimization) is used
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Figure 1: An illustration of our algorithm balancing the exploitation of the current local minimum and the exploration of
unvisited areas. The chosen covariance was a squared exponential, giving us two hyperparameters: an input scale σ, and an
output scale λ. As we proceed, evidence from our observations compels the sample weight to be transferred from the prior
mean, at σ = 1 and λ = 0.1, towards larger and more representative scales. This gives rise to a smoother GP fit with larger
error bars, which then influences the selection of future evaluations.



in this capacity, we have several more options for the dis-
tance d′. In such a case, the underlying prediction Gaussian
process will have a parametrized covariance K′(x1, x2; σ) de-
fined on X × X. If known, such a covariance encapsulates
much information about the unknown field, information that
could be employed in our determination of the distance be-
tween sets. This might simply involve the sharing of a char-
acteristic length scale between K′ and d′. If the covariance
is more sophisticated, reflecting, for example, periodicity or
changepoints in our field, we might instead build a pairwise
distance as

d′(x1, x2; θ) ,
p

K′(x1, x1; θ) + K′(x2, x2; θ)− 2K′(x1, x2; θ) .

The covariance K′ might also be used to directly define a
distance over sets in a manner that is independent of any
intermediate definition of a pairwise distance d′.

Returning to the general problem, we seek to define a
parametrized metric d(A, B; θ) for A,B ⊆ X. We write

A , {ai; i = 1, . . . , n} and B , {bj ; j = 1, . . . , m}.
This metric between sets can be selected as appropriate

for the task at hand. Below, we propose a particular metric
between sets that can be used when the objective function
considered is related to the predictive accuracy of a sensor
network. Before we introduce the metric, we first introduce
some examples, depicted in Figure 2, to motivate our choice.

Figure 2a illustrates the first intuition to which we appeal—
if d′(ai, bj ; θ) is large for all ai ∈ A and bj ∈ B, we should
not expect the evaluation of the objective function at A to
be strongly correlated with its evaluation at B. In such a
case, d(A,B; θ) should be large.

Next, Figure 2b illustrates the case in which d′(ai, bj ; θ)
is large for a single bj ∈ B and every ai ∈ A. In this case,
we also want d(A,B; θ) to be somewhat large. That single
bj may be in a location such that f(B) will be significantly
different from f(A).

Figure 2c has, for every ai ∈ A, d′(ai, bj ; θ) small for some
bj ∈ B. In such a case, d(A, B; θ) should be small, because A
and B, despite relabeling, have very similar locations overall
(according to d′). For determining the distances between A
and B in this case, the distance should depend solely on the
proximity of each point in A to the closest point in B. It
is additionally clear that any permutation of sensor labels
should never be important.

It seems reasonable that adding a point very close to an
existing point should not dramatically change the perfor-
mance of a set. Figure 2d illustrates the sets from Figure 2c
with a3 added close to a2 and b3 added close to b2. In such
a case, the distance between A and B should remain close
to that from Figure 2c.

Finally we attempt to draw out our intuitions for how the
distance should behave over sets of unequal size. Figure 2e
has d′(a1, bj ; θ) large for all bj ∈ B, and d′(bi, bj ; θ) small for
all bi, bj ∈ B. In this case,

d({a1}, {b1}; θ) ≃ d({a1}, {b1, b2}; θ) .

Given that b1 and b2 are very close, the addition of b2 should
not dramatically change the distance between A and B.

We now propose a metric that satisfies these desiderata.
The metric to which we appeal is the earth mover’s dis-

tance (EMD), which is well-known and widely used in im-
age processing [13, 7]. The earth mover’s distance is defined

for two “signatures” of the form
˘

(xi, wi)
¯

, where the {xi}
are points in space (in our case, points on the sphere S2),
and the wi ∈ R

+ are positive real weights. When the total
weight of each signature sums to unity (that is, each signa-
ture represents a discrete probability distribution), the EMD
is equivalent to the first Wasserstein or Mallows distance [7].
We will assume henceforth that each signature normalizes in
this manner.

Given two signatures A ,
˘

(ai, wi)
¯n

i=1
and B ,

˘

(bj , vj)
¯m

j=1
,

the EMD is defined intuitively as the minimum amount of
work required to move the points in A to be aligned with
the points in B. Here the amount of work for moving a
point is proportional to its weight and the distance traveled.
Considering each signature as a collection of mounds of dirt,
the EMD is the minimum amount of earth (times distance)
one would have to move to transform one signature into the
other, hence its name.

More formally, the EMD is the optimum of the following
linear program [13]:

dEMD(A, B) , min
X

i

X

j

fij d′(ai, bj) (12)

subject to the following constraints

fij ≥ 0 (1 ≤ i ≤ n, 1 ≤ j ≤ m)
X

j

fij = wi (1 ≤ i ≤ n)

X

i

fij = vj (1 ≤ j ≤ m)

X

i

X

j

fij = 1,

where d′(ai, bj) is the underlying pairwise distance discussed
previously. The solution to this optimization problem can
be found in polynomial time (O(n3) when |A| = |B| = n) us-
ing the well-known Hungarian algorithm for transportation
problems.

In the case of sensor networks, corresponding two sets of
sensors to the“signatures”discussed above is mostly straight-
forward, except the assignment of weights to each point.
Näıvely we might try a simple uniform weighting for each
point in each set. The resulting distance achieves nearly all
the heuristic goals set forth in the previous section. In par-
ticular, the uniformly weighted earth mover’s distance has
the desired behavior for Figures 2a, 2b, 2c, and 2e. Figure
2d presents a problem, however: using a uniform weight-
ing, the optimal flow pairs the two closest opposite-colored
points at the top, b1 and a2, and similarly the two closest
opposite-colored points at the bottom, a1 and b2. The re-
maining two points, a3 and b3, are then compelled to share
an edge of length δ, and the overall distance will be approx-
imately δ/3, assuming the vertical distance dominates the
horizontal. This behavior is not to be desired; simply by
increasing the vertical distance, we can arbitrary increase
the distance between these two sets, but their performance
should be expected to be similar for any distance δ.

In this case, of course, not all sensors are created equal.
Assuming sufficient range, and isotropy, the sensors a2 and
a3 will have significant overlap, as will b2 and b3. In the
limit where a2 and a3 lie completely on top of each other,
they might as well be a single sensor, as one has been made
completely redundant. With this insight, we modify the
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Figure 2: For δ sufficiently large, the distance d(A,B; θ) between sets A and B is (a) large, (b) somewhat large, (c) small, (d)
small and (e) large.

weights for the two signatures, such that the nearby sensors
a2 and a3 share nearly half the total weight of the A set (as
they, combined, act essentially as a single sensor), and b2 and
b3 half the total weight of the B set. With this modification,
the EMD will now pair both a2 and a3 with b1, both sets now
each having nearly the same weight. The overall distance
will now be small (and in the limit not depend on δ), as
expected.

Depending on the nature of the sensors and the prediction
scheme used, any number of weighting schemes taking this
notion of redundancy into account could be used; see, for ex-
ample, [2] for a discussion of redundancy in sensor networks
with identical isotropic sensors. The chosen scheme might
also incorporate further information about the range of each
sensor; for example, if sensors a2 and a3 were actually di-
rectional sensors pointing away from each other, it would be
inappropriate to reduce their weighting as discussed above
as they now have very little overlap, despite their proximity.

We offer an appropriate weighting scheme when the under-
lying prediction algorithm is implemented using a Gaussian
process, with covariance K′. We imagine using observations
zA of that field taken at at locations given by our set el-
ements, xA, in order to make predictions about the field
elsewhere, x⋆. The mean prediction is then given by that in
(8), a weighted sum of those observations,

µ(x⋆) + K
′(x⋆, xA)V′(xA, xA)−1(zA − µ(xA)) .

With this in mind, we take the weights associated with those
observations as weights on their locations, the set elements
themselves. Rather than choosing a single set of observa-
tions, we will average over all possible x⋆, covering every
point in the domain. By an appeal to symmetry, integrat-
ing over the entire (infinite) domain forces the average value
K′(x⋆, xa) to be identical for every element a ∈ A. There-
fore we take the weights on the elements of A to be

wA =
1T

A K′(xA, xA)−1

1T

A K′(xA, xA)−1 1A

, (13)

where 1A is a column vector of appropriate size whose every
element is equal to one. Note that we have normalized our
weights to unity.

These weights, the average weights obtained when mak-
ing predictions given xA, naturally reflect the behaviour we
require. Elements far away from all others will receive a
large quantity of weight, whereas tight clusters of elements
will essentially have the weight of a single element at that
position shared amongst them. We use exclusively the EMD
distance that results from the use of this weighting.

Figure 3 demonstrates the difference between the unweighted
and weighted EMD distances. In the weighted version, clus-
ters of nearby sensors receive appropriate weights, and the
overall distance for the weighted version is more natural than
the unweighted version, which is forced to resort to incorpo-
rate long, highly weighted, awkward edges.

5. ALGORITHM
We now briefly describe how GPGO could be used for

optimizing functions defined on a power set. Suppose we
have a discrete set X and a real-valued function f : P(X)→
R defined on the power set of X. Suppose further that we
have selected an appropriate distance d : P(X) × P(X) →
R

+ between subsets of X. We use d to build a covariance
of the form (1). Given this covariance, and an appropriate
mean function over P(X), the application of GPGO to our
problem is straightforward. At each step of the optimization
process, we evaluate f on a particular subset of X. We
update our GP over P(X) with this observation. Next we
evaluate (11) on candidate subsets in P(X); the minimum
among these becomes the subset used for the next evaluation
of f . We continue in this manner for as long as desired.

In many cases, the objective function f might exhibit dy-
namism; that is, it may be a function of both time and the
chosen subset. In this case, we adjust our inputs, as de-
scribed in Section 3, to be of the form [S(i), t(i)], where t(i)
is the time of the ith observation. As such, our method is
able to cope with the potentially dynamic nature of our ob-
jective function, changing the selection of subset over time as
appropriate. Pseudo-code for N iterations of our algorithm
is provided in Algorithm 1.

Of course, the size of P(X) grows exponentially in the
size of X, and evaluating (11) at every point quickly becomes



(a)

(b)

Figure 3: An example of the EMD between two sets, differentiated by their shading. The distance is the sum of the lengths
of the depicted node connections, multiplied by the edge weighting, indicated here by the line-width of the edge. These edge
weights are determined with reference to the node weights, similarly indicated by the linewidth of the node. For (a), the total
(unit) weight for each set is evenly split between all nodes. For (b), the weight for each node is assigned according to its
importance, using (13). Note that nodes that might be expected to be of greater importance to a sensor network, those that
are far separated from other sensors in the network, are assigned greater weight.



infeasible. However, the nature of this expected loss function
suggests various search heuristics that can be adopted to
guide the search. In particular, the expected loss function is
likely to be minimized at either a point that is close to an
observation we have already made (exploitation), or far away
from every observation (exploration). We can speed up our
search by limiting our search to sets with these properties.
Of course, evaluating the distance itself between all pairs of
subsets can also become quickly infeasible, but we may apply
further heuristics, for example encouraging exploitation by
including subsets that differ from our current observations
by one point and encouraging exploration by including a
random selection of the remaining subsets. The effect to
Algorithm 1 is that the search over the set S′ is constrained
to these heuristically chosen points.

Algorithm 1 Our method for selecting sensor subsets.

Require: Initial set S(1).
for i = 1 . . . N do

f(i)← f(x(i))
S(i + 1)←

argminS′ Λ
`

[S′, t(i + 1)] | f(1), . . . , f(i), I
´

end for

Return: S(N + 1)

5.1 Running time
Suppose that we have chosen σ hyperparameter samples.

Incorporating the nth objective function evaluation into our
optimization GP requires making rank-one updates to σ
Cholesky factorizations of size (n − 1)2, and each training
step thus runs in O(hn2) time. Evaluating the expected
loss at k points takes time O(khn2). In practice, a some-
what inefficient implementation of the algorithm described
above took approximately 120 seconds to train the GPGO
model and select the next subset when trained on 100 obser-
vations, using approximately 1 000 hyperparameter samples
and limiting the evaluation of the expected loss to 40 000
subsets. The machine was an Apple Mac Pro workstation
with two 2.26 GHz quad-core Intel Xeon “Gainestown” pro-
cessors (model E5520) and 16 GB of RAM, running the
Linux kernel (version 2.6.31).

6. EXPERIMENTS
We tested our algorithm on the UK Meteorological Of-

fice MIDAS land surface stations data [1]. In particular,
we chose a dispersed set of 50 sensors (whose locations are
plotted in Figure 4) which recorded meteorological measure-
ments for every day between 1959 and 2009, inclusive. The
field we chose to perform prediction over is the maximum
daily temperature.

Equipped with an appropriate distance between point sets
for the task at hand, we describe our algorithm for optimiz-
ing the objective function over subsets of sensor locations.
In this case, the domain X whose power set we wish to con-
sider is the chosen set of 50 sensors. The function f to be
optimized is a measure of the effectiveness of a selection of
sensors. The particular measure of performance used in our
experiments was the root mean squared error (RMSE) of
the predictions made by using observations from the chosen
sensors to predict the maximum temperature at every sensor
location in the UK.

Specifically, by varying the sensor set, we aim to mini-
mize the objective function RMSE(x;∆), where the inputs
x = [S, t0] are an initial time t0 and a set of sensors S.
RMSE returns the root mean squared error of the predic-
tions made about a relevant field at all available locations
at the (discretized) set of test times from t0 to t0 + ∆.

For the MIDAS data, we began a new trial at the be-
ginning of each period of ∆ = 28 days. We select a set of
5 sensors, and then perform zero-step lookahead prediction
for the temperatures at all 50 sensors at each of the subse-
quent 28 days. As a means of testing the effectiveness of our
algorithm, we force our algorithm to choose its best subset
every five years, and evaluate the performance of predictions
made over the entire subsequent year.

Our predictions were made using a GP [10] sequentially
trained on the readings at all test times. By this, we mean
that the GP possesses observations from S at all available
times in the range t0 to t⋆, inclusive, when making predic-
tions about that test time t⋆. That is, observations from the
current time t⋆ are available in making predictions about
other locations at that time. Prediction about future times
(that is, the use of a non-zero lookahead) is, of course, pos-
sible if an application calls for such an objective function.
If necessary, the prediction algorithm could also be granted
a “burn-in” period so that the RMSE is not dominated by
poor predictions made when very little data is available.

For the GP used to perform temperature predictions, we
used a simple covariance that was a product of a term over
time and a term over space. Both covariances were taken
to be rational quadratics (4), the former using the simple
distance dsimple from (2), and the latter using the great-circle
distance between points on the surface of the earth. The
hyperparameters of this GP were sequentially marginalized
using the BMC procedure outlined in (9). The emphasis of
this paper was not to make the most accurate predictions
possible (for which we would recommend more sophisticated
non-stationary covariances), but rather to perform sensor
selection given any arbitrary black-box objective function.

The covariance function used for GPGO was taken as a
product of a term over time and a term over sets. Both were
taken as squared exponentials (3), the the former using the
simple distance dsimple from (2). For the latter, we used
our weighted EMD, dEMD from (12) and (13). The hyper-
parameters of these covariances were sequentially marginal-
ized using BMC, using (9). We applied search heuristics as
suggested in Section 5, minimizing the expected loss at ap-
proximately 40 000 points for each selection. This includes
all subsets that differ in only a single point from the current
subset, along with many other, randomly chosen, subsets
included for exploration.

We concentrate here on the selection of sets of a pre-
selected, fixed size (5 sensors). We search over sets of that
size when selecting the set at which our next evaluation of
the objective function will be made.

To provide a comparison for our algorithm, we first tested
against a simple random-selection algorithm. For this, sub-
sets were randomly chosen for each trial period of 28 days.
For each test year, we selected the subset that yielded the
best RMSE performance in the preceding five years.

We also implemented the method outlined in [6], hence-
forth referred to as the mutual information (MI) algorithm.
Using it, sensors were greedily selected (up to the allowed
number of 5 sensors) to maximize the mutual information



Figure 4: For our experiments over the MIDAS data, the locations of all 50 sensors.

(a) MI, 1964 (b) MI, 1979 (c) MI, 1994 (d) MI, 2009

(e) GPGO, 1964 (f) GPGO, 1979 (g) GPGO, 1994 (h) GPGO, 2009

Figure 5: For our experiments over the MIDAS data, the locations of sensors selected at the years indicated by (a)–(d), MI
and (e)–(h), GPGO.



Table 1: The root mean squared error (in degrees Celsius)
of the GP prediction algorithm using subsets selected by
our subset optimization routine and the MI algorithm for
tracking the weather in the UK for selected years.

Method

Year Random MI GPGO

1964 2.9416 3.0182 2.4408

1969 3.0295 3.1553 2.7702

1974 2.6945 2.8208 2.4310

1979 2.8359 2.8238 2.8143

1984 2.9156 3.0690 2.6249

1989 2.9538 3.0845 2.6438

1994 3.0370 2.9886 2.8252

1999 3.0223 3.5081 2.8561

2004 2.9548 3.0695 2.6886

2009 3.0111 2.8051 2.8981

mean 2.9396 2.8256 2.6993

between the subsequently evaluated locations in space-time
(that is, observations at the positions of the selected sensors,
once a day for 28 days) and the locations of all of the other
50 sensors for each of the forthcoming 28 days. This mutual
information was determined using the same GP used to pro-
vide predictions. Specifically, the MI method’s selection was
made according to the posterior covariance of this GP (in
particular, its highest weighted hyperparameter sample).

The results of our algorithm are shown in Table 6. Overall,
our algorithm was able to provide better subsets for the
purposes of maximizing sensor network performance over
time, providing sets with the best predictive accuracy for all
bar one of the ten selected test years. As can be seen, our
approach also yielded an overall RMSE that was significantly
better than either tested alternative.

The subsets selected by both MI and our algorithm for
a selected number of test years are displayed in Figure 5.
All selected sets seem intuitively to provide good overall
coverage of the UK. In that there is any deviation from this
general spread of sensors, note that our algorithm selects a
greater number on the west coast of the UK. It is possible
that sensors in this region were determined to be useful for
predicting temperatures via their good performance on the
prediction task (weather predominantly moves from west-
to-east in the UK). This nuance was automatically captured
by our algorithm.

Our algorithm was able to explore the subset space reason-
ably well and locate reasonable optima, despite few observa-
tions (about 13 per year for 50 years from a total number of
`

50
5

´

= 2118 760 possibilities). Additionally, our algorithm
was able to adapt to information obtained by observing the
performance of various subsets through time. Finally, by
using a covariance defined on both space and time, our al-
gorithm can cope with changes to the performance of various
subsets over time (for example, if a sensor becomes faulty),
allowing for us to react to concept drift in the prediction
problem.

7. CONCLUSIONS
We introduce a novel algorithm for optimizing objective

functions defined on point sets, and apply this algorithm to
maximizing the predictive performance of sensor networks
in dynamic environments. Starting with a chosen metric
between single points, we define a useful metric between
sets of points to be used in a Gaussian process covariance
function. Using this distance over sets and the technique
of Gaussian process global optimization, we optimize pre-
dictive performance as a function of chosen sensor set. By
using a covariance function that is defined over time as well
as subset space, our algorithm can dynamically adapt to
changes in the prediction problem. An experiment using ac-
tual temperature data in the United Kingdom over 50 years
demonstrated the efficacy of our algorithm for the chosen
task.

Multiple extensions present themselves. Firstly, our algo-
rithm could be used to manage a set of mobile sensors. Here
it would be trivial to include a cost proportional to the total
distance moved by all sensors into the GPGO loss function
(11). We could also define a cost associated with taking an
additional sensor, and allow our algorithm to search over
sets of all sizes. In effect, our algorithm would select the op-
timal set size, trading off the cost of larger sets against the
potentially better objective function values they may return.
Such extensions to the cost function can easily be incorpo-
rated into our scheme due to our straightforward Bayesian
approach.
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