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Abstract

Bayesian optimization techniques have been
successfully applied to robotics, planning,
sensor placement, recommendation, advertis-
ing, intelligent user interfaces and automatic
algorithm configuration. Despite these suc-
cesses, the approach is restricted to problems
of moderate dimension, and several work-
shops on Bayesian optimization have iden-
tified its scaling to high-dimensions as one
of the holy grails of the field. In this pa-
per, we introduce a novel random embedding
idea to attack this problem. The resulting
Random EMbedding Bayesian Optimization
(REMBO) algorithm is very simple, has im-
portant invariance properties, and applies to
domains with both categorical and continu-
ous variables. We present a thorough theo-
retical analysis of REMBO, including regret
bounds that only depend on the problem’s in-
trinsic dimensionality. Empirical results con-
firm that REMBO can effectively solve prob-
lems with billions of dimensions, provided the
intrinsic dimensionality is low. They also
show that REMBO achieves state-of-the-art
performance in optimizing the 47 discrete pa-
rameters of a popular mixed integer linear
programming solver.

1. Introduction

Let f : X → R be a function on a compact subset
X ⊆ R

D. We address the following global optimization
problem

x⋆ = argmax
x∈X

f(x).

We are particularly interested in objective functions f
that may satisfy one or more of the following criteria:
they do not have a closed-form expression, are expen-
sive to evaluate, do not have easily available deriva-
tives, or are non-convex. We treat f as a blackbox
function that only allows us to query its function value
at arbitrary x ∈ X . To address objectives of this chal-
lenging nature, we adopt the Bayesian optimization
framework. There is a rich literature on Bayesian op-
timization, and we refer readers unfamiliar with the
topic to more tutorial treatments (Brochu et al., 2009;
Jones et al., 1998; Jones, 2001; Lizotte et al., 2011;
Močkus, 1994; Osborne et al., 2009) and recent the-
oretical results (Srinivas et al., 2010; Bull, 2011; de
Freitas et al., 2012).

Bayesian optimization has two ingredients. The first
ingredient is a prior distribution that captures our be-
liefs about the behavior of the unknown objective func-
tion. The second ingredient is a risk function that de-
scribes the deviation from the global optimum. The
expected risk is used to decide where to sample next.
After observing a few samples of the objective, the
prior is updated to produce a more informative poste-
rior distribution over the space of objective functions
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(see Figure 1 in Brochu et al., 2009). One problem
with this maximum expected utility framework is that
the risk is typically very hard to compute. This has
led to the introduction of many sequential heuristics,
known as acquisition functions, including Thompson
sampling (Thompson, 1933), probability of improve-
ment (Jones, 2001), expected improvement (Močkus,
1994) and upper-confidence-bounds (Srinivas et al.,
2010). These acquisition functions trade-off explo-
ration and exploitation. They are typically optimized
by choosing points where the predictive mean is high
(exploitation) and where the variance is large (explo-
ration). Since the acquisition functions above have
an analytical expression that is easy to evaluate, they
are much easier to optimize than the original objective
function, using off-the-shelf numerical optimization al-
gorithms. It is also possible to use dynamic portfolios
of acquisition functions to improve the efficiency of the
method (Hoffman et al., 2011).

The term Bayesian optimization seems to have been
coined several decades ago by Jonas Močkus (1982).
A popular version of the method has been known as
efficient global optimization in the experimental design
literature since the 1990s (Jones et al., 1998). Often,
the approximation of the objective function is obtained
using Gaussian process (GP) priors. For this reason,
the technique is also referred to as GP bandits (Srini-
vas et al., 2010). However, many other approximations
of the objective have been proposed, including Parzen
estimators (Bergstra et al., 2011), Bayesian paramet-
ric models (Wang & de Freitas, 2011), treed GPs (Gra-
macy et al., 2004) and random forests (Brochu et al.,
2009; Hutter, 2009). These may be more suitable
than GPs when the number of iterations grows without
bound, or when the objective function is believed to
have discontinuities. We also note that often assump-
tions on the smoothness of the objective function are
encoded without use of the Bayesian paradigm, while
leading to similar algorithms and theoretical guaran-
tees (see, for example, Bubeck et al., 2011, and the
references therein).

In recent years, the machine learning community has
increasingly used Bayesian optimization (Rasmussen,
2003; Brochu et al., 2007; Martinez-Cantin et al., 2007;
Lizotte et al., 2007; Frazier et al., 2009; Azimi et al.,
2010; Hamze et al., 2011; Azimi et al., 2011; Bergstra
et al., 2011; Gramacy & Polson, 2011; Denil et al.,
2012; Mahendran et al., 2012; Azimi et al., 2012; Hen-
nig & Schuler, 2012; Marchant & Ramos, 2012). De-
spite many success stories, the approach is restricted
to problems of moderate dimension, typically up to
about 10; see for example the excellent and very recent
overview by Snoek et al. (2012). Of course, for a great

many problems this is all that is needed. However,
to advance the state of the art, we need to scale the
methodology to high-dimensional parameter spaces.
This is the goal of this paper.

It is difficult to scale Bayesian optimization to high di-
mensions. To ensure that a global optimum is found,
we require good coverage of X , but as the dimension-
ality increases, the number of evaluations needed to
cover X increases exponentially. As a result, there has
been little progress on this challenging problem, with
a few exceptions. Hutter et al. (2011) used random
forests models in Bayesian optimization to achieve
state-of-the-art performance in optimizing up to 76
mixed discrete/continuous parameters of algorithms
for solving hard combinatorial problems. However,
their method is based on frequentist uncertainty es-
timates that can fail even for the optimization of very
simple functions and lacks theoretical guarantees.

In the linear bandits case, Carpentier & Munos (2012)
recently proposed a compressed sensing strategy to at-
tack problems with a high degree of sparsity. Also re-
cently, Chen et al. (2012) made significant progress by
introducing a two stage strategy for optimization and
variable selection of high-dimensional GPs. In the first
stage, sequential likelihood ratio tests, with a couple of
tuning parameters, are used to select the relevant di-
mensions. This, however, requires the relevant dimen-
sions to be axis-aligned with an ARD kernel. Chen et
al provide empirical results only for synthetic exam-
ples (of up to 400 dimensions), but they provide key
theoretical guarantees.

Many researchers have noted that for certain classes
of problems most dimensions do not change the ob-
jective function significantly; examples include hyper-
parameter optimization for neural networks and deep
belief networks (Bergstra & Bengio, 2012) and auto-
matic configuration of state-of-the-art algorithms for
solving NP-hard problems (Hutter, 2009). That is to
say these problems have “low effective dimensional-
ity”. To take advantage of this property, Bergstra &
Bengio (2012) proposed to simply use random search
for optimization – the rationale being that points
sampled uniformly at random in each dimension can
densely cover each low-dimensional subspace. As such,
random search can exploit low effective dimensional-
ity without knowing which dimensions are important.
In this paper, we exploit the same property in a new
Bayesian optimization variant based on random em-
beddings.

Figure 1 illustrates the idea behind random embed-
dings in a nutshell. Assume we know that a given
D = 2 dimensional black-box function f(x1, x2) only



Bayesian Optimization in a Billion Dimensions

xx
1

2

x

1

2

x

Em
bed

din
g

Unimportant

Im
p

o
rt

a
n

t

x

x*

*

Figure 1. This function in D=2 dimesions only has d=1
effective dimension: the vertical axis indicated with the
word important on the right hand side figure. Hence, the
1-dimensional embedding includes the 2-dimensional func-
tion’s optimizer. It is more efficient to search for the opti-
mum along the 1-dimensional random embedding than in
the original 2-dimensional space.

has d = 1 important dimensions, but we do not
know which of the two dimensions is the important
one. We can then perform optimization in the em-
bedded 1-dimensional subspace defined by x1 = x2

since this is guaranteed to include the optimum. As
we demonstrate in this paper, using random embed-
dings this simple idea largely scales to arbitrary D
and d, allowing us to perform Bayesian optimiza-
tion in a low-dimensional space to optimize a high-
dimensional function with low intrinsic dimensional-
ity. Importantly, this trick is not restricted to cases
with axis-aligned intrinsic dimensions but applies to
any d-dimensional linear subspace.

Following an explanation of GP-based Bayesian opti-
mization (Section 2), we introduce the Random EM-
bedding Bayesian Optimization (REMBO) algorithm
and state its theoretical properties, including regret
bounds that only depend on the problem’s intrinsic
dimensionality (Section 3). Our experiments (Section
4) show that REMBO can solve problems of previously
untenable high extrinsic dimensions. They also show
that REMBO can achieve state-of-the-art performance
when automatically tuning the 47 discrete parameters
of a popular mixed integer linear programming solver.

2. Bayesian Optimization

As mentioned in the introduction, Bayesian optimiza-
tion has two ingredients that need to be specified: The
prior and the acquisition function. In this work, we
adopt GP priors. We review GPs very briefly and re-
fer the interested reader to the book by Rasmussen &
Williams (2006). A GP is a distribution over func-
tions specified by its mean function m(·) and covari-
ance k(·, ·). More specifically, given a set of points x1:t,
with xi ⊆ R

D, we have

f(x1:t) ∼ N (m(x1:t),K(x1:t,x1:t)),

where K(x1:t,x1:t)i,j = k(xi,xj) serves as the covari-
ance matrix. A common choice of k is the squared ex-
ponential function (see Definition 4), but many other
choices are possible depending on our degree of belief
about the smoothness of the objective function.

An advantage of using GPs lies in their analytical
tractability. In particular, given observations x1:n with
corresponding values f1:t, where fi = f(xi), and a new
point x∗, the joint distribution is given by:
[
f1:t
f∗

]
∼ N

(
m(x1:t),

[
K(x1:t,x1:t) k(x1:t,x

∗)
k(x∗,x1:t) k(x∗,x∗)

])
.

For simplicity, we assume that m(x1:t) = 0. Using the
Sherman-Morrison-Woodbury formula, one can easily
arrive at the posterior predictive distribution:

f∗|Dt,x
∗ ∼ N (µ(x∗|Dt), σ(x

∗|Dt)),

with data Dt = {x1:t, f1:t}, mean µ(x∗|Dt) =
k(x∗,x1:t)K(x1:t,x1:t)

−1f1:t and variance σ(x∗|Dt) =
k(x∗,x∗) − k(x∗,x1:t)K(x1:t,x1:t)

−1k(x1:t,x
∗). That

is, we can compute the posterior predictive mean µ(·)
and variance σ(·) exactly for any point x∗.

At each iteration of Bayesian optimization, one has
to re-compute the predictive mean and variance.
These two quantities are used to construct the sec-
ond ingredient of Bayesian optimization: The ac-
quisition function. In this work, we report results
for the expected improvement acquisition function
u(x|Dt) = E(max{0, ft+1(x) − f(x+)}|Dt) (Močkus,
1982; Vazquez & Bect, 2010; Bull, 2011). In this
definition, x+ = argmaxx∈{x1:t} f(x) is the element
with the best objective value in the first t steps of
the optimization process. The next query is: xt+1 =
argmaxx∈X u(x|Dt). Note that this utility favors the
selection of points with high variance (points in regions
not well explored) and points with high mean value
(points worth exploiting). We also experimented with
the UCB acquisition function (Srinivas et al., 2010;
de Freitas et al., 2012) and found it to yield simi-
lar results. The optimization of the closed-form ac-
quisition function can be carried out by off-the-shelf
numerical optimization procedures, such as DIRECT
(Jones et al., 1993) and CMA-ES (Hansen & Oster-
meier, 2001).

The Bayesian optimization procedure is shown in Al-
gorithm 1.

3. Random Embedding for Bayesian

Optimization

Before introducing our new algorithm and its theoret-
ical properties, we need to define what we mean by
effective dimensionality formally.
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Algorithm 1 Bayesian Optimization

1: for t = 1, 2, . . . do

2: Find xt+1 ∈ R
D by optimizing the acquisition

function u: xt+1 = argmaxx∈X u(x|Dt).
3: Augment the data Dt+1 = {Dt, (xt+1, f(xt+1))}
4: end for

Definition 1. A function f : RD → R is said to have
effective dimensionality de, with de < D, if there
exists a linear subspace T of dimension de such that
for all x⊤ ∈ T ⊂ R

D and x⊥ ∈ T ⊥ ⊂ R
D, we have

f(x) = f(x⊤ + x⊥) = f(x⊤), where T ⊥ denotes the
orthogonal complement of T . We call T the effective

subspace of f and T ⊥ the constant subspace.

This definition simply states that the function does not
change along the coordinates x⊥, and this is why we
refer to T ⊥ as the constant subspace. Given this def-
inition, the following theorem shows that problems of
low effective dimensionality can be solved via random
embedding.

Theorem 2. Assume we are given a function f :
R

D → R with effective dimensionality de and a ran-
dom matrix A ∈ R

D×d with independent entries sam-
pled according to N (0, 1) and d ≥ de. Then, with prob-
ability 1, for any x ∈ R

D, there exists a y ∈ R
d such

that f(x) = f(Ay).

Proof. Please refer to the appendix.

Theorem 2 says that given any x ∈ R
D and a random

matrix A ∈ R
D×d, with probability 1, there is a point

y ∈ R
d such that f(x) = f(Ay). This implies that

for any optimizer x⋆ ∈ R
D, there is a point y⋆ ∈ R

d

with f(x⋆) = f(Ay⋆). Therefore, instead of optimiz-
ing in the high dimensional space, we can optimize the
function g(y) = f(Ay) in the lower dimensional space.
This observation gives rise to our new Random EM-
bedding Bayesian Optimization (REMBO) algorithm
(see Algorithm 2). REMBO first draws a random em-
bedding (given by A) and then performs Bayesian op-
timization in this embedded space.

In practice, we do not typically perform optimization
across all of R

D, but rather across a compact sub-
set X ⊂ R

D (typically a box). When REMBO se-
lects a point y such that Ay is outside the box X ,
it projects Ay onto X before evaluating f . That is,
g(y) = f(pX (Ay)), where pX : R

D → R
D is the

standard projection operator for our box-constraint:
pX (y) = argminz∈X ‖z − y‖2; see Figure 2. We still
need to describe how REMBO chooses the bounded
region Y ⊂ R

d, inside which it performs Bayesian op-
timization. This is important because REMBO’s ef-
fectiveness depends on the size of Y. Locating the

Algorithm 2 REMBO: Bayesian Optimization with
Random Embedding

1: Generate a random matrix A ∈ R
D×d

2: Choose the bounded region set Y ⊂ R
d

3: for t = 1, 2, . . . do

4: Find yt+1 ∈ R
d by optimizing the acquisition

function u: yt+1 = argmaxy∈Y u(y|Dt).
5: Augment the data Dt+1 =

{Dt, (yt+1, f(Ayt+1)}
6: Update the kernel hyper-parameters.
7: end for

A

A

A

x=Ay
Convex projection of Ay to

xy
Embedding

D=2

d
=

1
y

x

Figure 2. Embedding from d = 1 into D = 2. The box
illustrates the 2D constrained space X , while the thicker
red line illustrates the 1D constrained space Y. Note that
if Ay is outside X , it is projected onto X . The set Y

must be chosen large enough so that the projection of its
image, AY, onto the effective subspace (vertical axis in this
diagram) covers the vertical side of the box.

optimum within Y is easier if Y is small, but if we
set Y too small it may not actually contain the global
optimizer. In the following theorem, we show that we
can choose Y in a way that only depends on the effec-
tive dimensionality de such that the optimizer of the
original problem is contained in the low dimensional
space with constant probability.

Theorem 3. Suppose we want to optimize a function
f : R

D → R with effective dimension de ≤ d sub-
ject to the box constraint X ⊂ R

D, where X is cen-
tered around 0. Let us denote one of the optimizers
by x⋆. Suppose further that the effective subspace T
of f is such that T is the span of de basis vectors.
Let x⋆

⊤ ∈ T ∩ X be an optimizer of f inside T . If A
is a D × d random matrix with independent standard
Gaussian entries, there exists an optimizer y⋆ ∈ R

d

such that f(Ay⋆) = f(x⋆
⊤) and ‖y⋆‖2 ≤

√
de

ǫ ‖x⋆
⊤‖2

with probability at least 1− ǫ.
Proof. Please refer to the appendix.

Theorem 3 says that if the set X in the original space
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is a box constraint, then there exists an optimizer
x⋆
⊤ ∈ X that is de-sparse such that with probability at

least 1−ǫ, ‖y⋆‖2 ≤
√
de

ǫ ‖x⋆
⊤‖2 where f(Ay⋆) = f(x⋆

⊤).
If the box constraint is X = [−1, 1]D (which is always
achievable through rescaling), we have with probabil-
ity at least 1− ǫ that

‖y⋆‖2 ≤
√
de
ǫ

‖x⋆
⊤‖2 ≤

√
de
ǫ

√
de.

Hence, to choose Y, we just have to make sure that the
ball of radius de/ǫ satisfies (0,

de

ǫ ) ⊆ Y. In most prac-
tical scenarios, we found that the optimizer does not
fall on the boundary which implies that ‖x⋆

⊤‖2 < de.
Thus setting Y too big may be unnecessarily wasteful;
in all our experiments we set Y to be [−

√
d,
√
d]d.

3.1. Increasing the Success Rate of REMBO

Theorem 3 only guarantees that Y contains the op-
timum with probability at least 1 − ǫ; with proba-
bility δ ≤ ǫ the optimizer lies outside of Y. There
are several ways to guard against this problem. One
is to simply run REMBO multiple times with differ-
ent independently drawn random embeddings. Since
the probability of failure with each embedding is δ,
the probability of the optimizer not being included in
the considered space of k independently drawn embed-
dings is δk. Thus, the failure probability vanishes ex-
ponentially quickly in the number of REMBO runs, k.
Note also that these independent runs can be trivially
parallelized to harness the power of modern multi-core
machines and large compute clusters.

Another way of increasing REMBO’s success rate is to
increase the dimensionality d it uses internally. When
d > de, with probability 1 we have

(
d
de

)
different em-

beddings of dimensionality de. That is, we only need
to select de columns of A ∈ R

D×d to represent the de
relevant dimensions of x. We can do this by choosing
de sub-components of the d-dimensional vector y while
setting the remaining components to zero. Informally,
since we have more embeddings, it is more likely that
one of these will include the optimizer. In our exper-
iments, we will assess the merits and shortcomings of
these two strategies.

3.2. Choice of Kernel

Since REMBO uses GP-based Bayesian optimization
to search in the region Y ⊂ R

d, we need to define
a kernel between two points y(1),y(2) ∈ Y. We begin
with the standard definition of the squared exponential
kernel:

Definition 4. Given a length scale ℓ > 0, we define

the corresponding squared exponential kernel as

kdℓ (y
(1),y(2)) = exp

(
−‖y(1) − y(2)‖2

2ℓ2

)
.

It is possible to work with two variants of this kernel.
First, we can use kdℓ (y

1,y2) as in Definition 4. We
refer to this kernel as the low-dimensional kernel. We
can also adopt an implicitly defined high-dimensional
kernel on X :

kDℓ (y(1),y2) = exp

(
−‖pX (Ay(1))− pX (Ay(2))‖2

2ℓ2

)
,

where pX : RD → R
D is the projection operator for

our box-constraint as above (see Figure 2).

Note that when using this high-dimensional kernel, we
are fitting the GP in D dimensions. However, the
search space is no longer the box X , but it is instead
given by the much smaller subspace {pX (Ay) : y ∈
Y}. Importantly, in practice it is easier to maximize
the acquisition function in this subspace.

Both kernel choices have strengths and weaknesses.
The low-dimensional kernel has the benefit of only hav-
ing to construct a GP in the space of intrinsic dimen-
sionality d, whereas the high-dimensional kernel has to
construct the GP in a space of extrinsic dimensional-
ity D. However, the low-dimensional kernel may waste
time exploring in the region of the embedding outside
of X (see Figure 2) because two points far apart in
this region may be projected via pX to nearby points
on the boundary of X . The high-dimensional kernel
is not affected by this problem because the search is
conducted directly on {pX (Ay) : y ∈ Y}.
The choice of kernel also depends on whether our vari-
ables are continuous, integer or categorical. The cat-
egorical case is important because we often encounter
optimization problems that contain discrete choices.
We define our kernel for categorical variables as:

kDλ (y(1),y(2)) = exp

(
−λ

2
h(s(Ay(1)), s(Ay(2)))2

)
,

where y(1),y(2) ∈ Y ⊂ R
d and h defines the distance

between 2 vectors. The function s maps continuous
vectors to discrete vectors. In more detail, s(x) first
projects x to [−1, 1]D to generate x̄. For each di-
mension x̄i of x̄, s then map x̄i to the correspond-
ing discrete parameters by scaling and rounding. In
our experiments, following Hutter (2009), we defined

h(x(1),x(2)) = |{i : x(1)
i 6= x

(2)
i }| so as not to impose

an artificial ordering between the values of categori-
cal parameters. In essence, we measure the distance
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between two points in the low-dimensional space as
the Hamming distance between their mappings in the
high-dimensional space.

3.3. Regret Bounds

When using the high-dimensional kernel kD on
{pX (Ay) : y ∈ Y} ⊂ X , we could easily apply pre-
vious theoretical results (Srinivas et al., 2010; Bull,
2011; de Freitas et al., 2012). However, this is not sat-
isfying since the rates of convergence would still de-
pend on D. If the low-dimensional embedding cap-
tures the optimizer, and since the search is conducted
in {pX (Ay) : y ∈ Y} instead of X , we should expect
faster rates of convergence that only depend on the
size of the embedding’s dimensionality. The rest of
this section shows that it is indeed possible to obtain
rates of convergence that only depend on the embed-
ding’s dimensionality.

We begin our mathematical treatment with the defini-
tions of simple regret and the skew squared exponential
(SSE) kernel.

Definition 5. Given a function f : X → R and a
sequence of points {xt}∞t=1 ⊆ X , the simple regret on
the set X at time T is defined to be rf (T ) = supX f −
T

max
t=1

f(xt).

Definition 6. Given a symmetric, positive-definite
matrix Λ, we define the corresponding skew squared
exponential kernel using the formula

kΛ(x
(1),x(2)) = e−(x(1)−x(2))⊤Λ−1(x(1)−x(2)).

Given Λ, ℓ (as in the squared exponential kernel
kdℓ ) and X ⊆ R

d, we denote the Reproducing Ker-
nel Hilbert Spaces (RKHSs) corresponding to kΛ and
kℓ by HΛ(X ) and Hℓ(X ), respectively (Steinwart &
Christmann, 2008, Definition 4.18). Moreover, given
an arbitrary kernel k, we will denote its RKHS by Hk.

Our main result below shows that the simple regret
vanishes with rate O(t−

1
d ) with high probability when

we use the squared exponential kernel. Note that we
only make the assumption that the cost function re-
stricted to T is governed by a skew symmetric ker-
nel, a much weaker assumption than the standard as-
sumption that the cost function is governed by an axis
aligned kernel in D dimensions (see, e.g., Bull, 2011).

Theorem 7. Let X ⊂ R
D be a compact subset with

non-empty interior that is convex and contains the ori-
gin and f : X → R, a function with effective dimen-
sion d. Suppose that the restriction of f to its effective
subspace T , denoted f |T , is an element of the RKHS
HΛ(R

d) with Λ symmetric and positive definite and

also satisfying 0 < r2 < λmin(Λ) ≤ λmax(Λ) < R2 for
constants r and R.

Let A be a D × d matrix, whose elements are drawn
from the normal distribution 1√

d
N (0, 1). Given any

ǫ > 0, we can choose a length-scale ℓ = ℓ(ǫ) such that
running Expected Improvement with kernel kℓ on the
restriction of f to the image of A inside X would have
simple regret in O(t−

1
d ) with probability 1− ǫ.

This theorem does not follow directly from the results
of Bull (2011), since the kernel is not aligned with
the axes, both in the high-dimensional space and the
lower dimensional embedding. Thus, even given the
true hyper-parameter the aforementioned paper will
not entail a convergence result.

Please refer to the appendix for the proof of this theo-
rem. The general idea of the proof is as follows. If we
have a squared exponential kernel kℓ, with a smaller
length scale than a given kernel k, then an element f
of the RKHS of k is also an element of the RKHS of
kℓ. So, when running expected improvement, one can
safely use kℓ instead of k as the kernel and still get a
regret bound. Most of the proof is dedicated to find-
ing a length scale ℓ that fits “underneath” our kernel,
so we can replace our kernel with kℓ, to which we can
apply the results of Bull (2011).

The above theorem requires the embedded dimension
and the effective dimension to coincide, but due to
Proposition 1 in (de Freitas et al., 2012), we strongly
believe that the analysis in (Bull, 2011) can be modi-
fied to allow for situations in which some of the ARD
parameters are zero, which is precisely what is pre-
venting us from extending this result to the case where
d > de.

3.4. Hyper-parameter Optimization

For Bayesian optimization (and therefore REMBO),
it is difficult to manually estimate the true length
scale hyper-parameter of a problem at hand. To avoid
any manual steps and to achieve robust performance
across diverse sets of objective functions, in this paper
we adopted an adaptive hyper-parameter optimization
scheme. The length scale of GPs is often set by max-
imizing marginal likelihood (Rasmussen & Williams,
2006; Jones et al., 1998). However, as demonstrated by
Bull (2011), this approach, when implemented naively,
may not guarantee convergence. Here, we propose to
optimize the length scale parameter ℓ by maximizing
the marginal likelihood subject to an upper bound U
which is decreased when the algorithm starts exploit-
ing too much. Full details are given in Algorithm 3.
We say that the algorithm is exploiting when the stan-
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Algorithm 3 Bayesian Optimization with Hyper-
parameter Optimization.

input Threshold tσ.
input Upper and lower bounds U > L > 0 for hyper-

parameter.
input Initial length scale hyper-parameter ℓ ∈ [L,U ].
1: Initialize C = 0
2: for t = 1, 2, . . . do

3: Find xt+1 by optimizing the acquisition function
u: xt+1 = argmaxx∈X u(x|Dt).

4: if
√
σ(xt+1) < tσ then

5: C = C + 1
6: else

7: C = 0
8: end if

9: Augment the data Dt+1 = {Dt, (xt+1, f(xt+1))}
10: if i mod 20 = 0 or C = 5 then

11: if C = 5 then

12: U = max{0.9ℓ, L}
13: C = 0
14: end if

15: Learning the hyper-parameter by optimizing
the log marginal likelihood by using DIRECT:
ℓ = argmaxl∈[L,U ] log p(f1:t+1|x1:t+1, l)

16: end if

17: end for

dard deviation at the maximizer of the acquisition
function

√
σ(xt+1) is less than some threshold tσ for

5 consecutive iterations. Intuitively, this means that
the algorithm did not emphasize exploration (search-
ing in new parts of the space, where the predictive un-
certainty is high) for 5 consecutive iterations. When
this criterion is met, the algorithm decreases its upper
bound U multiplicatively and re-optimizes the hyper-
parameter subject to the new bound. Even when
the criterion is not met the hyper-parameter is re-
optimized every 20 iterations.

The motivation of this algorithm is to rather err on
the side of having too small a length scale.1 Given a
squared exponential kernel kℓ, with a smaller length
scale than another kernel k, one can show that any
function f in the RKHS characterized by k is also an
element of the RKHS characterized by kℓ. So, when
running expected improvement, one can safely use kℓ
instead of k as the kernel of the GP and still preserve
convergence (Bull, 2011). We argue that (with a small
enough lower bound L) the algorithm would eventually
reduce the upper bound enough to allow convergence.
Also, the algorithm would not explore indefinitely as
L is required to be positive. In our experiments, we

1A similar idea is exploited in the proof of Theorem 7.

set the initial constraint [L,U ] to be [0.01, 50] and set
tσ = 0.002.

4. Experiments

We now study REMBO empirically. We first use
synthetic functions of small intrinsic dimensionality
de = 2 but extrinsic dimension D up to 1 billion to
demonstrate REMBO’s independence of D. Then, we
apply REMBO to automatically optimize the 47 pa-
rameters of a widely-used mixed integer linear pro-
gramming solver and demonstrate that it achieves
state-of-the-art performance. However, we also warn
against the blind application of REMBO. To illustrate
this, in the appendix we study REMBO’s performance
for tuning the 14 parameters of a random forest body
part classifier used by Kinect. In this application, all
the D = 14 parameters appear to be important, and
while REMBO (based on d = 3) finds reasonable solu-
tions (better than random search and comparable to
what domain experts achieve), standard Bayesian op-
timization can outperform REMBO (and the domain
experts) in such moderate-dimensional spaces.

4.1. Experimental Setup

For all our experiments, we used a single robust ver-
sion of REMBO that automatically sets its GP’s length
scale parameter as described in Section 3.4. For each
optimization of the acquisition function, this version
runs both DIRECT (Jones et al., 1993) and CMA-
ES (Hansen & Ostermeier, 2001) and uses the result
of the better of the two. The code for REMBO, as
well as all data used in our experiments will be made
publicly available in the near future.

Some of our experiments required substantial com-
putational resources, with the computational expense
of each experiment depending mostly on the cost of
evaluating the respective blackbox function. While
the synthetic experiments in Section 4.2 only required
minutes for each run of each method, optimizing the
mixed integer programming solver in Section 4.3 re-
quired 4-5 hours per run, and optimizing the random
forest classifier in Appendix D required 4-5 days per
run. In total, we used over half a year of CPU time
for the experiments in this paper.

In each experiment, we study the effect of our two
methods for increasing REMBO’s success rate (see
Section 3.1) by running different numbers of indepen-
dent REMBO runs with different settings of its inter-
nal dimensionality d.
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k d = 2 d = 4 d = 6
10 0.0022 ± 0.0035 0.1553 ± 0.1601 0.4865 ± 0.4769
5 0.0004 ± 0.0011 0.0908 ± 0.1252 0.2586 ± 0.3702
4 0.0001 ± 0.0003 0.0654 ± 0.0877 0.3379 ± 0.3170
2 0.1514 ± 0.9154 0.0309 ± 0.0687 0.1643 ± 0.1877
1 0.7406 ± 1.8996 0.0143 ± 0.0406 0.1137 ± 0.1202

Table 1. Optimality gap for de = 2-dimensional Branin
function embedded in D = 25 dimensions, for REMBO
variants using a total of 500 function evaluations. The
variants differed in the internal dimensionality d and in
the number of interleaved runs k (each such run was only
allowed 500/k function evaluations). We show mean and
standard deviations of the optimality gap achieved after
500 function evaluations.

4.2. Bayesian Optimization in a Billion

Dimensions

In this section, we add empirical evidence to our the-
oretical finding from Section 3 that REMBO’s perfor-
mance is independent of the extrinsic dimensionality
D when using the low-dimensional kernel kdℓ (y

1,y2)
from Definition 4. Specifically, using synthetic data,
we show that when using that kernel REMBO has
no problem scaling up to as many as 1 billion dimen-
sions. We also study REMBO’s invariance properties
and empirically evaluate our two strategies for increas-
ing its success probability.

The experiments in this section employ a standard
de = 2-dimensional benchmark function for Bayesian
optimization, embedded in a D-dimensional space.
That is, we add D− 2 additional dimensions which do
not affect the function at all. More precisely, the func-
tion whose optimum we seek is f(x1:D) = b(xi, xj),
where b is the Branin function (see Lizotte, 2008,
for its exact formula), and where dimensions i and
j are selected once using a random permutation of
1, . . . , D. To measure the performance of each op-
timization method, we used the optimality gap: the
difference of the best function value it found and the
optimal function value.

We first study the effectiveness of the two techniques
for increasing REMBO’s success probability that we
proposed in Section 3.1. To empirically study the ef-
fectiveness of using internal dimensionalities d > de,
and of interleaving multiple independent runs, k, we
ran REMBO with all combinations of three different
values of d and k. The results in Table 1 demonstrate
that both techniques helped improve REMBO’s per-
formance, with interleaved runs being the more effec-
tive strategy. We note that in 13/50 REMBO runs, the
global optimum was indeed not contained in the box Y
that REMBO searched with d = 2; this is the reason
for the poor mean performance of REMBO with d = 2

and k = 1. However, the remaining 37 runs performed
very well, and REMBO thus performed well when us-
ing multiple interleaved runs: with a failure rate of
13/50=0.26 per independent run, the failure rate us-
ing k = 4 interleaved runs is only 0.264 ≈ 0.005. One
could easily achieve an arbitrarily small failure rate by
using many independent parallel runs. Here we evalu-
ated all REMBO versions using a fixed budget of 500
function evaluations that is spread across multiple in-
terleaved runs — for example, when using k = 4 inter-
leaved REMBO runs, each of them was only allowed
125 function evaluations. The results show that per-
forming multiple independent runs nevertheless sub-
stantially improved REMBO’s performance. Using a
larger d was also effective in increasing the probabil-
ity of the optimizer falling into REMBO’s box Y but
at the same time slowed down REMBO’s convergence
(such that interleaving several short runs lost its effec-
tiveness). We conclude that using several interleaved
runs of REMBO with small d ≥ de performs best.

Next, we compared REMBO to standard Bayesian op-
timization (BO) and to random search, for an extrin-
sic dimensionality of D = 25. Standard BO is well
known to perform well in low dimensions, but to de-
grade above a tipping point of about 15-20 dimensions.
Our results for D = 25 (see Figure 3, left) confirm
that BO performed rather poorly just above this criti-
cal dimensionality (merely tying with random search).
REMBO, on the other hand, still performed very well
in 25 dimensions.

Since REMBO is independent of the extrinsic dimen-
sionality D as long as the intrinsic dimensionality de
is small, it performed just as well in D = 1000 000 000
dimensions (see Figure 3, middle). To the best of our
knowledge, the only other existing method that can be
run in such high dimensionality is random search.

Finally, one important advantage of REMBO is that
— in contrast to the approach of Chen et al. (2012) —
it does not require the effective dimension to be coordi-
nate aligned. To demonstrate this fact empirically, we
rotated the embedded Branin function by an orthogo-
nal rotation matrix R ∈ R

D×D. That is, we replaced
f(x) by f(Rx). Figure 3 (right) shows that REMBO’s
performance is not affected by this rotation.

4.3. Automatic Configuration of a Mixed

Integer Linear Programming Solver

State-of-the-art algorithms for solving hard computa-
tional problems tend to parameterize several design
choices in order to allow a customization of the al-
gorithm to new problem domains. Automated meth-
ods for algorithm configuration have recently demon-
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Figure 3. Comparison of random search (RANDOM), standard Bayesian optimization (BO), and REMBO. Left: D = 25
extrinsic dimensions; Middle: D = 1000 000 000 extrinsic dimensions; Right: D = 25, with a rotated objective function.
For each method, we plot means and 1/4 standard deviation confidence intervals of the optimality gap across 50 trials.

strated that substantial performance gains of state-
of-the-art algorithms can be achieved in a fully au-
tomated fashion (Močkus et al., 1999; Hutter et al.,
2010; Bergstra et al., 2011; Wang & de Freitas, 2011).
These successes have led to a paradigm shift in algo-
rithm development towards the active design of highly
parameterized frameworks that can be automatically
customized to particular problem domains using opti-
mization (Hoos, 2012; Bergstra et al., 2012).

It has long been suspected that the resulting algorithm
configuration problems have low dimensionality (Hut-
ter, 2009). Here, we demonstrate that REMBO can
exploit this low dimensionality even in the discrete
spaces typically encountered in algorithm configura-
tion. We use a configuration problem obtained from
Hutter et al. (2010), aiming to configure the 40 bi-
nary and 7 categorical parameters of lpsolve2, a pop-
ular mixed integer programming (MIP) solver that
has been downloaded over 40 000 times in the last
year. The objective is to minimize the optimality gap
lpsolve can obtain in a time limit of five seconds for
a MIP encoding of a wildlife corridor problem from
computational sustainability (Gomes et al., 2008). Al-
gorithm configuration usually aims to improve perfor-
mance for a representative set of problem instances,
and effective methods need to solve two orthogonal
problems: searching the parameter space effectively
and deciding how many instances to use in each eval-
uation (to trade off computational overhead and over-
fitting). Our contribution is for the first of these prob-
lems; to focus on how effectively the different methods
search the parameter space, we only consider configu-
ration on a single problem instance.

Due to the discrete nature of this optimization
problem, we could only apply REMBO using
the high-dimensional kernel for categorical variables

2http://lpsolve.sourceforge.net/

kDλ (y(1),y(2)) described in Section 3.2. While we have
not proven any theoretical guarantees for discrete op-
timization problems, REMBO appears to effectively
exploit the low effective dimensionality of at least this
particular optimization problem.

As baselines for judging our performance in config-
uring lpsolve, we used the configuration procedures
ParamILS (Hutter et al., 2009) and SMAC (Hutter
et al., 2011). ParamILS and SMAC have been specifi-
cally designed for the configuration of algorithms with
many discrete parameters and yield state-of-the-art
performance for this task.

As Figure 4.3 (top) shows, ParamILS and SMAC in-
deed outperformed random search and BO. However,
remarkably, our vanilla REMBO method performed
even slightly better. While the figure only shows
REMBO with d = 5 to avoid clutter, we by no means
optimized this parameter; the only other value we tried
was d = 3, which resulted in indistinguishable perfor-
mance.

As in the synthetic experiment, REMBO’s perfor-
mance could be further improved by using multiple
interleaved runs. However, as shown by Hutter et al.
(2012), multiple independent runs can also improve
the performance of SMAC and especially ParamILS.
Thus, to be fair, we re-evaluated all approaches using
interleaved runs. Figure 4.3 (bottom) shows that when
using k = 4 interleaved runs of 500 evaluations each,
REMBO and ParamILS performed best, with a slight
advantage for REMBO early on in the search.

5. Conclusion

We have demonstrated that it is possible to use ran-
dom embeddings in Bayesian optimization to optimize
functions of extremely high extrinsic dimensionality
D provided that they have low intrinsic dimension-
ality de. Our resulting REMBO algorithm is coor-
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Figure 4. Performance of various methods for configuration
of lpsolve; we show the optimality gap lpsolve achieved
with the configurations found by the various methods
(lower is better). Top: a single run of each method; Bot-
tom: performance with k = 4 interleaved runs.

dinate independent and has provable regret bounds
that are independent of the extrinsic dimensionality
D. Moreover, it only requires a simple modification of
the original Bayesian optimization algorithm; namely
multiplication by a random matrix. We confirmed
REMBO’s independence of D empirically by optimiz-
ing low-dimensional functions embedded in previously
untenable extrinsic dimensionalities of up to 1 billion.
Finally, we demonstrated that REMBO achieves state-
of-the-art performance for optimizing the 47 discrete
parameters of a popular mixed integer programming
solver, thereby providing further evidence for the ob-
servation (already put forward by Bergstra, Hutter
and colleagues) that, for many problems of great prac-
tical interest, the number of important dimensions in-
deed appears to be much lower than their extrinsic
dimensionality.
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A. Proof of Theorem 2

Proof. Since f has effective dimensionality de, there exists an effective subspace T ⊂ R
D, such that rank(T ) = de.

Furthermore, any x ∈ R
D decomposes as x = x⊤+x⊥, where x⊤ ∈ T and x⊥ ∈ T ⊥. Hence, f(x) = f(x⊤+x⊥) =

f(x⊤). Therefore, without loss of generality, it will suffice to show that for all x⊤ ∈ T , there exists a y ∈ R
d

such that f(x⊤) = f(Ay).

Let Φ ∈ R
D×de be a matrix, whose columns form an orthonormal basis for T . Hence, for each x⊤ ∈ T , there

exists a c ∈ R
de such that x⊤ = Φc. Let us for now assume that ΦTA has rank de. If Φ

TA has rank de, there
exists a y such that (ΦTA)y = c. The orthogonal projection of Ay onto T is given by

ΦΦTAy = Φc = x⊤.

ThusAy = x⊤+x′ for some x′ ∈ T ⊥ since x⊤ is the projectionAy onto T . Consequently, f(Ay) = f(x⊤+x′) =
f(x⊤).

It remains to show that, with probability one, the matrix ΦTA has rank de. Let Ae ∈ R
D×de be a submatrix

of A consisting of any de columns of A, which are i.i.d. samples distributed according to N (0, I). Then, ΦTai
are i.i.d. samples from N (0,ΦTΦ) = N (0de

, Ide×de
), and so we have ΦTAe, when considered as an element

of Rd2
e , is a sample from N (0d2

e
, Id2

e
×d2

e
). On the other hand, the set of singular matrices in R

d2
e has Lebesgue

measure zero, since it is the zero set of a polynomial (i.e. the determinant function) and polynomial functions are
Lebesgue measurable. Moreover, the Normal distribution is absolutely continuous with respect to the Lebesgue
measure, so our matrix ΦTAe is almost surely non-singular, which means that it has rank de and so the same
is true of ΦTA, whose columns contain the columns of ΦTAe.

B. Proof of Theorem 3

Proof. Since X is a box constraint, by projecting x⋆ to T we get x⋆
⊤ ∈ T ∩ X . Also, since x⋆ = x⋆

⊤ + x⊥ for
some x⊥ ∈ T ⊥, we have f(x⋆) = f(x⋆

⊤). Hence, x⋆
⊤ is an optimizer. By using the same argument as appeared in

Proposition 1, it is easy to see that with probability 1 ∀x ∈ T ∃y ∈ R
d such that Ay = x+ x⊥ where x⊥ ∈ T ⊥.

Let Φ be the matrix whose columns form a standard basis for T . Without loss of generality, we can assume that

Φ =

[
Ide

0

]

Then, as shown in Proposition 2, there exists a y⋆ ∈ R
d such that ΦΦTAy⋆ = x⋆

⊤. Note that for each column
of A, we have

ΦΦTai ∼ N
(
0,

[
Ide

0

0 0

])
.

Therefore ΦΦTAy⋆ = x⋆
⊤ is equivalent to By⋆ = x̄⋆

⊤ where B ∈ R
de×de is a random matrix with independent

standard Gaussian entries and x̄⋆
⊤ is the vector that contains the first de entries of x⋆

⊤ (the rest are 0’s). By
Theorem 3.4 of (Sankar et al., 2003), we have

P

[
‖B−1‖2 ≥

√
de
ǫ

]
≤ ǫ.

Thus, with probability at least 1− ǫ, ‖y⋆‖ ≤ ‖B−1‖2‖x̄⋆
⊤‖2 = ‖B−1‖2‖x⋆

⊤‖2 ≤
√
de

ǫ ‖x⋆
⊤‖2.

C. Proof of Theorem 7

Before embarking on the proof of Theorem 7, we introduce some definitions and state a few preliminary results,
which we quote from (Steinwart & Christmann, 2008) and (Bull, 2011) to facilitate the reading of this exposition.

Definition 8. Given a map π : S → T between any two sets S and T , and any map f : T × · · · × T︸ ︷︷ ︸
n-times

→ R, with

n ≥ 1, we define the pull-back of f under π as follows:

π∗f(s1, . . . , sn) := f(πs1, . . . , πsn).
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That is one evaluates the pull-back π∗f on points in S by first “pushing them forward” onto T and then using f
to get a number.

Also, if the map π is given by a matrix A, we will use the notation A∗f for the pull-back of f under the linear
map induced by A. Moreover, given a matrix A and a set S in its target space, we will denote by A−1(S) the
set of all points that are mapped into S by A.

Lemma 9 (Lemma 4.6 in (Steinwart & Christmann, 2008)). Let k1 be a kernel on X1 and k2 be a kernel on X2.
Then k1 · k2 is a kernel on X1 ×X2.

Remark 10. In the proof of the above lemma in (Steinwart & Christmann, 2008), it is argued that if Hi is the
RKHS of ki for i = 1, 2, then H1⊗̂H2 is the RKHS of k1 · k2, where ⊗̂ is the tensor product of Hilbert spaces
and the elements of H1⊗̂H2 have the form h(x1, x2) =

∑
i fi(x1)gi(x2), where the functions fi : X1 → R are

elements of H1 and the functions gi : X2 → R are elements of H2.

Corollary 11 (Corollary 4.43 in (Steinwart & Christmann, 2008)). Given X ⊆ R
d with non-empty interior,

and r > 0, then we have an isomorphism of Hilbert spaces Hr(X ) ∼= Hr(R
d), through an extension operator IX

(whose definition is omitted, since it is not needed here).

Proposition 12 (The second part of Proposition 4.46 in (Steinwart & Christmann, 2008)). Given 0 < ℓ < U ,
for all non-empty X ⊆ R

d, the RKHS HU (X ) can be mapped under the identity map into Hℓ(X ) and we have
the following bound:

‖id : HU → Hℓ‖ ≤
(
U

ℓ

) d

2

,

where the norm in the equation is the operator norm, i.e. supf∈HU

‖f‖Hℓ

‖f‖HU

.

Remark 13. Note that here, the map id signifies the following: the element f ∈ HU corresponds to a real-valued
function on X , which we will also denote by f , so one can pose the question whether or not this function is an
element of Hℓ as well, and the existence of the map id : HU → Hℓ implies that f is indeed an element of Hℓ.
Equivalently, HU ⊂ Hℓ and

‖f‖Hℓ
≤

(
U

ℓ

) d

2

‖f‖HU
.

In the proof of our theorem below, we will extend this result for squared exponential kernels to skewed squared
exponential kernels.

Proposition 14 (Theorem 2 in (Bull, 2011), paraphrased for our particular setting). Given a squared exponential
kernel kℓ on a compact subset Y ⊂ R

d and a function f ∈ Hℓ(Y), then applying Expected Improvement to f

results in simple regret that diminishes according to O
(
t−

1
d

)
, with the constants worsening as the norm ‖f‖Hℓ(Y)

increases.

Proof of Theorem 7. Let Π : X ։ T denote the (unknown) orthogonal projection onto the effective subspace
of f ; we will also denote the corresponding matrix by Π. (Please refer to the right hand side of Figure 1 for
an illustration of a 2-dimensional space, a 1-dimensional embedding (slanted line) and a 1-dimensional effective
space (vertical axis).)

Recall from the theorem statement that f |T is assumed to be an element of the RKHS HΛ, and that we have
f = Π∗f |T , i.e. f is obtained from “stretching f |T open” along the orthogonal subspace of T . From this, we
can conclude that f is an element of HkD , with kD := Π∗kΛ, where kΛ is the kernel on the effective subspace T .

Now, given the embedding R
d →֒ R

D defined by the matrix A, the pull-back function A∗f is an element of the
RKHS HA∗kD : Henceforth, we will use the notation

kd := A∗kD = A∗Π∗kΛ = (ΠA)∗kΛ.

In the remainder of this proof, we replace kd with a squared exponential kernel kℓ that is “thinner” than kd and
so A∗f is also an element of the RKHS of kℓ. By showing that this is true, REMBO (which uses kℓ) has enough
approximation power. Moreover, the statement of Proposition 14 applies.
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Since kD is constant along T ⊥, we get that kd is in turn constant along A−1
(
T ⊥), and since A is randomly

chosen, the linear subspace A−1
(
T ⊥) will almost surely be zero dimensional. Let us introduce the notation Π

for the d×D matrix that projects vectors in R
D onto the effective subspace T .

We almost surely have that the d×d matrix ΠA is non-singular, since the space of singular matrices has measure
0, given the fact that it is the zero-set of a polynomial, namely the determinant. Therefore, the kernel kd, which
has the form

kd(y(1),y(2)) = e(y
(1)−y(2))⊤A⊤Π⊤Λ−1ΠA(y(1)−y(2))

is also SSE, since A⊤Π⊤Λ−1ΠA is symmetric and positive definite, simply because of the symmetry and positive
definiteness of Λ−1: given y 6= 0, we have

y⊤A⊤Π⊤Λ−1ΠAy = ỹ⊤Λ−1ỹ > 0,

where ỹ := ΠAy 6= 0 sinceΠA is invertible. In what follows, we will use the notationΛd :=
(
A⊤Π⊤Λ−1ΠA

)−1
.

Since Π is an orthogonal projection matrix, it has an SVD decomposition Π = USV consisting of an orthogonal
d× d matrix U, an orthogonal D ×D matrix V and a d×D matrix S that has the following form:

S =




1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · 0




. Now, given a fixed orthogonal matrix O and a random Gaussian vector v ∼ N (0, ID×D), due to the rotational
symmetry of the normal distribution, the vector Ov is also a sample from N (0, ID×D). Therefore, given O as
above, and a random Gaussian matrix Γ, then OΓ is also a random Gaussian matrix with the same distribution
of entries. Moreover, given S as above, SΓ is a d×D random Gaussian matrix, since multiplying any matrix by
S on the left simply extracts the first d rows of the matrix.

Given this, if we fix an orthogonal decomposition Λ−1 = P⊤D−1P, where P is orthogonal and D is a diagonal
matrix with the eigenvalues of Λ along the diagonal, we can conclude that

G := PΠA = PUSVA

is a random Gaussian matrix, and so the matrix Λd can be decomposed into random Gaussian and diagonal
matrices as follows:

Λ−1
d = G⊤D−1G.

Let smin and smax denote the smallest and the largest singular values of a matrix. With this notation in hand,
we point out the following two facts about concentration of singular values:

I. Since for any pair of matrices A and B, we have smax(AB) ≤ smax(A)smax(B), we get

1

λmin(Λd)
= λmax(Λ

−1
d ) ≤ smax(G)2smax(D

−1) ≤ smax(G)2

r2

and since G is a random matrix with Gaussian entries, we have (cf. Equation 2.3 in (Rudelson & Vershynin,
2010))

P
(
smax(G) < 2

√
d+ t

)
≤ 1− 2e−t2/2,

and so with probability 1− ǫ
2 , we have

smax(G) < 2
√
d+

√
2 ln

4

ǫ
.
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Therefore, with probability 1− ǫ
2 , we have

λmin(Λd) >


 r

2
√
d+

√
2 ln 4

ǫ




2

. (1)

Henceforth, we will use the notation

ℓ = ℓ(ǫ) :=
r

2
√
d+

√
2 ln 4

ǫ

II. On the other hand, we have

1

λmax(Λd)
= λmin(Λ

−1
d ) ≥ smin(G)2smin(D

−1) ≥ smin(G)2

R2

together with the following probabilistic bound on smin(G) (cf. Equation 3.2 in (Rudelson & Vershynin,
2010)):

P

(
smin(G) >

δ√
d

)
> 1− δ.

So, with probability 1− ǫ
2 , we have

smin(G) >
ǫ

2
√
d
,

and so

λmax(Λd) <
4dR2

ǫ2
(2)

holds with probability 1− ǫ
2 .

In what follows, we will use the notation:

U = U(ǫ) :=
2R

√
d

ǫ

Now, with these estimates in hand, we can go ahead and show that the following bound holds with probability
1− ǫ:

‖A∗f‖Hℓ(A−1(X )) ≤
(
U(ǫ)

ℓ(ǫ)

) d

2

‖f |T ‖HΛ(T ) (3)

This claim follows from the following sequence of facts:

A. Since the transformation ΠA is invertible, we have that the map (ΠA)∗ : HΛ(R
d) → HΛd

(Rd) (recall that
kΛd

= k(ΠA)∗Λ) that sends g ∈ HΛ to (ΠA)∗g is an isomorphism of Hilbert spaces and so

‖f |T ‖HΛ(Rd) = ‖A∗f‖HΛd
(Rd) (4)

since we have A∗f = A∗ (Π∗f |T ) = (ΠA)∗f |T .

B. If we denote the eigenvalues of Λd by λ1 < · · · < λd, then, first of all, by Corollary 11, we have

HΛd

(
A−1(X )

) ∼= HΛd
(Rd)

and also by Remark 10, we have the isomorphisms

HΛd
(Rd) ∼= H√

λ1
(R) ⊗̂ · · · ⊗̂ H√

λd
(R)

Hℓ(R
d) ∼= Hℓ(R) ⊗̂ · · · ⊗̂ Hℓ(R),

where ⊗̂ denotes the tensor product of Hilbert spaces.
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Figure 5. Left: ground truth depth, ground truth body parts and predicted body parts; Right: features specified by offsets
u and v.

C. Using Equations (1) and (2) together with Proposition 12, we can conclude that

‖A∗f‖Hℓ(Rd) =

∥∥∥∥
∑

i

g1i ⊗ · · · ⊗ gdi

∥∥∥∥
Hℓ(R)⊗̂···⊗̂Hℓ(R)

≤
(√

λ1

ℓ

) 1
2

· · ·
(√

λd

ℓ

) 1
2
∥∥∥∥
∑

i

g1i ⊗ · · · ⊗ gdi

∥∥∥∥
Hλ1

(R)⊗̂···⊗̂Hλd
(R)

≤
(
U

ℓ

) d

2
∥∥∥∥
∑

i

g1i ⊗ · · · ⊗ gdi

∥∥∥∥
Hλ1

(R)⊗̂···⊗̂Hλd
(R)

=

(
U

ℓ

) d

2

‖A∗f‖HΛd
(Rd), (5)

where the two inequalities are true with probability 1− ǫ
2 each, and so they both hold with probability 1− ǫ.

Composing the Inequality (5) with Equality (4) gives us the bound claimed in Inequality (3).

Now that we know that the Hℓ(R
d) norm of A∗f is finite, we can apply the Expected Improvement algorithm

to it on the set A−1(X ) with kernel kℓ, instead of the unknown kernel kΛd
, and then Proposition 14 tells us that

the simple regret would be in O
(
t−

1
d

)
.

D. Automatic Configuration of Random Forest Kinect Body Part Classifier

We now present an additional experiment evaluating REMBO’s performance for optimizing the 14 parameters of
a random forest body part classifier. This classifier closely follows the proprietary system used in the Microsoft
Kinect (Shotton et al., 2011) and will be publicly released in the near future.

We begin by describing some details of the dataset and classifier in order to build intuition for the objective
function and the parameters being optimized. The data we used consists of pairs of depth images and ground
truth body part labels. Specifically, we used 1 500 pairs of 320x240 resolution depth and body part images, each
of which was synthesized from a random pose of the CMU mocap dataset. Depth, ground truth body parts and
predicted body parts (as predicted by the classifier described below) are visualized for one pose in Figure 5 (left).
There are 19 body parts plus one background class. For each of these 20 possible labels, the training data
contained 25 000 pixels, randomly selected from 500 training images. Both validation and test data contained
all pixels in the 500 validation and test images, respectively.

The random forest classifier is applied to one pixel P at a time. At each node of each of its decision trees, it
computes the depth difference between two pixels described by offsets from P and compares this to a threshold.
At training time, many possible pairs of offsets are generated at random, and the pair yielding highest information
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gain for the training data points is selected. Figure 5 (right) visualizes a potential feature for the pixel in the
green box: it computes the depth difference between the pixels in the red box and the white box, specified by
respective offsets u and v. At training time, u and v are drawn from two independent 2-dimensional Gaussian
distributions, each of which is parameterized by its two mean parameters µ1 and µ2 and three covariance terms
Σ11, Σ12, and Σ22 (Σ21 = Σ12 because of symmetry). These constitute 10 of the parameters that need to be
optimized, with range [-50,50] for the mean components and [1, 200] for the covariance terms. Low covariance
terms yield local features, while high terms yield global features. Next to these ten parameters, the random
forest classifier has four other standard parameters, outlined in Table 2. It is well known in computer vision that
many of the parameters described here are important. Much research has been devoted to identifying their best
values, but results are dataset specific, without definitive general answers.

Table 2. Parameter ranges for random forest classifier. For the purpose of optimization, the maximum tree depth and the
number of potential offsets were transformed to log space.

Parameter Range

Max. tree depth [1 60]
Min. No. samples for non leaf nodes [1 100]
No. potential offsets to evaluate [1 5000]
Bootstrap for per tree sampling [T F]

The objective in optimizing these RF classifier parameters is to find a parameter setting that learns the best
classifier in a given time budget of five minutes. To enable competitive performance in this short amount of time,
at each node of the tree only a random subset of data points is considered. Also note that the above parameters
do not include the number of trees T in the random forest; since performance improves monotonically in T , we
created as many trees as possible in the time budget. Trees are constructed depth first and returned in their
current state when the time budget is exceeded. Using a fixed budget results in a subtle optimization problem
because of the complex interactions between the various parameters (maximum depth, number of potential
offsets, number of trees and accuracy).

It is unclear a priori whether a low-dimensional subspace of these 14 interacting parameters exists that captures
the classification accuracy of the resulting random forests. We performed large-scale computational experiments
with REMBO, random search, and standard Bayesian optimization (BO) to study this question. In this experi-
ment, we used the high-dimensional kernel for REMBO to avoid the potential over-exploration problems of the
low-dimensional kernel described in Section 3.2. We believed that D = 14 dimensions would be small enough to
avoid inefficiencies in fitting the GP in D dimensions. This belief was confirmed by the observation that standard
BO (which operates in D = 14 dimensions) performed well for this problem.

Figure 6 (left) shows the results that can be obtained by a single run of random search, BO, and REMBO.
Remarkably, REMBO clearly outperformed random search, even based on as few as d = 3 dimensions.3 However,
since the extrinsic dimensionality was “only” a moderate D = 14, standard Bayesian optimization performed
well, and since it was not limited to a low-dimensional subspace it outperformed REMBO. Nevertheless, several
REMBO runs actually performed very well, comparably with the best runs of BO. Consequently, when running
k = 4 interleaved runs of each method, REMBO performed almost as well as BO, matching its performance up
to about 450 function evaluations (see Figure 6, right).

We conclude that the parameter space of this RF classifier does not appear to have a clear low effective dimen-
sionality; since the extrinsic dimensionality is only moderate, this leads REMBO to perform somewhat worse
than standard Bayesian optimization, but it is still possible to achieve reasonable performance based on as little
as d = 3 dimensions.

This experiment also shows that automatic configuration techniques can reveal scientific facts about the problem;
for example how to choose the depth of trees in RFs. For this reason, we feel it is important to advance to the
machine learning community the following message about methodology. For any specific dataset, if researchers

3Due to the very large computational expense of this experiment (in total over half a year of CPU time), we only
performed conclusive experiments with d = 3; preliminary runs of REMBO with d = 4 performed somewhat worse than
those with d = 3 for a budget of 200 function evaluations, but were still improving at that point.
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Figure 6. Performance of various methods for optimizing RF parameters for body part classification. For all methods,
we show RF accuracy (mean ± 1/4 standard deviation across 10 runs) for all 2.2 million non background pixels in the
500-pose validation set, using the RF parameters identified by the method. The results on the test set were within 1%
of the results on the validation set. Left: performance with a single run of each method; Right: performance with k = 4
interleaved runs.

were to release the obtained objective function evaluations, other researchers could use these values to expedite
their experiments and gain greater knowledge about the problem domain. For example, our experiments with
RFs took many days with powerful clusters of computers. By releasing not only the code but the samples of
the objective function, other researchers could build on this data and ultimately learn a model for the objective
function in this domain and, therefore, understand how the random forests parameters and design choices interact
and affect performance. Every experiment should count.


