
Bayesian Optimization of Combinatorial Structures

Ricardo Baptista 1 Matthias Poloczek 2

Abstract

The optimization of expensive-to-evaluate black-

box functions over combinatorial structures is an

ubiquitous task in machine learning, engineer-

ing and the natural sciences. The combinatorial

explosion of the search space and costly evalu-

ations pose challenges for current techniques in

discrete optimization and machine learning, and

critically require new algorithmic ideas. This

article proposes, to the best of our knowledge,

the first algorithm to overcome these challenges,

based on an adaptive, scalable model that iden-

tifies useful combinatorial structure even when

data is scarce. Our acquisition function pioneers

the use of semidefinite programming to achieve

efficiency and scalability. Experimental evalua-

tions demonstrate that this algorithm consistently

outperforms other methods from combinatorial

and Bayesian optimization.

1. Introduction

We consider the problem of optimizing an expensive-to-

evaluate black-box function over a set of combinatorial

structures. This problem is pervasive in machine learn-

ing, engineering, and the natural sciences. Applications

include object location in images (Zhang et al., 2015), drug

discovery (Negoescu et al., 2011), cross-validation of hyper-

parameters in mixed-integer solvers (Hutter et al., 2010),

food safety control (Hu et al., 2010), and model sparsifi-

cation in multi-component systems (Baptista et al., 2018).

We also face this problem in the shared economy: a bike

sharing company has to decide where to place bike stations

among locations offered by the communal administration in

order to optimize its utility, as measured in a field test.
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We present a novel algorithm for this problem, Bayesian

Optimization of Combinatorial Structures (BOCS), that is

capable of taming the combinatorial explosion of the search

domain while achieving sample-efficiency, thereby improv-

ing substantially over the state of the art. Specifically, our

contributions are:

1. A novel method to obtain an approximate optimizer

of the acquisition function that employs algorithmic

ideas from convex optimization to achieve scalability

and efficiency. This approach overcomes the inherent

limited scalability of many acquisition functions to

large combinatorial domains.

2. We propose a model that captures the interaction of

structural elements, and show how to infer these in-

teractions in practice when data is expensive and thus

scarce. We also demonstrate the usefulness of this

interpretable model on experimental data.

3. We evaluate the performance of the BOCS algorithm

together with methods from machine learning and dis-

crete optimization on a variety of benchmark problems,

including tasks from machine learning, aerospace en-

gineering, and food safety control.

Related Work: Bayesian optimization has emerged as a

powerful technique for the optimization of expensive func-

tions if the domain is a box-constrained subset of the real co-

ordinate space, i.e., a tensor-product of bounded connected

univariate domains (e.g., see Brochu et al. (2010); Shahri-

ari et al. (2016b)). Recently, these techniques have been

extended to certain high-dimensional problems whose box-

constrained sets have a low ‘effective dimensionality’ (Wang

et al., 2016; Binois et al., 2017) or an additive decomposi-

tion (Kandasamy et al., 2015; Li et al., 2016; Wang et al.,

2017). Hutter & Osborne (2013) and Swersky et al. (2014)

considered applications where parameters have conditional

dependencies, becoming irrelevant if other parameters take

certain values. Jenatton et al. (2017) presented a scalable

algorithm when these dependencies form a tree. Shahri-

ari et al. (2016a) proposed techniques for growing the box

adaptively to optimize over unbounded continuous domains.

Structured domains have received little attention. Negoescu

et al. (2011) proposed a linear parametric belief model that
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can handle categorical variables. Their streamlined knowl-

edge gradient acquisition function has cost Ω(d·2d) for each

iteration and thus is designed for applications with small

dimensionality d. Hutter et al. (2011) suggested a novel

surrogate model based on random forests to handle cate-

gorical data. Their SMAC algorithm uses random walks to

obtain a local optimum under the expected improvement ac-

quisition criterion (Mockus et al., 1978; Jones et al., 1998),

and therefore can handle even high dimensional problems.

In practice, structured domains are often embedded into a

box in R
d to run an off-the-shelf Bayesian optimization soft-

ware, e.g., see (Dewancker et al., 2016; Golovin et al., 2017).

However, this is typically infeasible in practice due to the

curse of dimensionality, also referred to as combinatorial

explosion, as the number of alternatives grows exponentially

with the parameters. Thus, it is not surprising that optimiza-

tion over structured domains was raised as an important

open problem at the NIPS 2017 Workshop on Bayesian

optimization (Hernández-Lobato et al., 2017).

Methods in discrete optimization that are able to handle

black-box functions include local search (Khanna et al.,

1998; Selman et al., 1993; Spears, 1993) and evolutionary

algorithms, e.g., particle search (Schäfer, 2013). However,

these procedures are not designed to be sample efficient

and hence often prohibitively expensive for the problems

we consider. Moreover, the popular local search algorithms

have the conceptual disadvantage that they do not necessar-

ily converge to a global optimum. Popular techniques such

as branch and bound and mathematical programming, e.g.,

linear, convex, and mixed-integer programming, typically

cannot be applied to black-box functions. We will com-

pare the BOCS algorithm to the methods of (Snoek et al.,

2012; Hutter et al., 2011; Khanna et al., 1998; Spears, 1993;

Bergstra & Bengio, 2012; Schäfer, 2013) in Sect. 4.

We formalize the problem under consideration in Sect. 2,

describe the statistical model in Sect. 3.1, specify our acqui-

sition function and the relaxation to semidefinite program-

ming in Sects. 3.2 and 3.3, present numerical experiments in

Sect. 4, and conclude in Sect. 5. Sections labeled by letters

are in the supplement.

The code for this paper is available at https://github.

com/baptistar/BOCS.

2. Problem Formulation

Given an expensive-to-evaluate black-box function f over

a discrete structured domain D of feasible points, our goal

is to find a global optimizer argmaxx∈D f(x). We suppose

that observing x provides independent, conditional on f(x),
and normally distributed observations with mean f(x) and

finite variance σ2. For the sake of simplicity, we focus

on D = {0, 1}d, where xi equals one if a certain element i

is present in the design and zero otherwise. For example, we

can associate a binary variable with each possible location

for a bike station, with a side-chain in a chemical compound,

with a possible coupling between two components in a multi-

component system, or more generally with an edge in a

graph-like structure. We note that BOCS generalizes to

integer-valued and categorical variables and to models of

higher order (see Sect. A).

3. The BOCS Algorithm

We now present the BOCS algorithm for combinatorial struc-

tures and describe its two components: a model tailored to

combinatorial domains in Sect. 3.1 and its acquisition func-

tion in Sect. 3.2. Sect. 3.3 summarizes the algorithm and

Sect. 3.4 presents the variant BOCS-SA. The time complex-

ity is analyzed in Sect. 3.5.

3.1. Statistical Model

When developing a generative model for an expensive func-

tion f(x) : D → R defined on a combinatorial domain,

it seems essential to model the interplay of elements. For

example, in the above bike sharing application, the utility

of placing a station at some location depends critically on

the presence of other stations. Similarly, the absorption of

a medical drug depends on the combination of functional

groups in the molecule. A general model for f is thus

given by
∑

S∈2D αS

∏

i∈S xi, where 2D is the power set

of the domain and αS is a real-valued coefficient. Clearly,

this model is impractical due to the exponential number of

monomials. Thus, we consider restricted models that con-

tain monomials up to order k. A higher order increases the

expressiveness of the model but also decreases the accuracy

of the predictions when data is limited (e.g., see Ch. 14.6 in

Gelman et al. (2013)). We found that second-order models

provide an excellent trade-off in practice (cp. Sect. 4 and B).

Thus, under our model, x has objective value

fα(x) = α0 +
∑

j

αjxj +
∑

i,j>i

αijxixj . (1)

While the so-called interaction terms are quadratic in x ∈
D, the regression model is linear in α = (αi, αij) ∈ R

p

with p = 1 + d+
(

d
2

)

.

Sparse Bayesian Linear Regression: To quantify the un-

certainty in the model, we propose a Bayesian treatment

for α. For observations (x(i), y(i)(x(i))) with i = 1, . . . , N ,

let X ∈ {0, 1}N×p be the matrix of predictors and y ∈
R

N the vector of corresponding observations of f . Us-

ing the data model, y(i)(x(i)) = f(x(i)) + ε(i) where

ε(i) ∼ N (0, σ2), we have y | X,α, σ2 ∼ N (Xα, σ2IN ).

One drawback of using a second-order model is that it

has Θ(d2) regression coefficients which may result in
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high-variance estimators for the coefficients if data is

scarce. To assert a good performance even for high-

dimensional problems with expensive evaluations, we em-

ploy a sparsity-inducing prior. We use the heavy-tailed

horseshoe prior (Carvalho et al., 2010):

αk | β2
k, τ

2, σ2 ∼ N (0, β2
kτ

2σ2) k = 1, . . . , p

τ, βk ∼ C+(0, 1) k = 1, . . . , p

P (σ2) = σ−2,

where C+(0, 1) is the standard half-Cauchy distribution. In

this model, the global, τ , and the local, βk, hyper-parameters

individually shrink the magnitude of each regression coeffi-

cient. Following Makalic & Schmidt (2016), we introduce

the auxiliary variables ν and ξ to re-parameterize the half-

Cauchy densities using inverse-gamma distributions. Then

the conditional posterior distributions for the parameters are

given by

α|· ∼ N (A−1XTy, σ2A−1), (2)

A = (XTX+Σ−1
∗ ),Σ∗ = τ2diag(β2

1 , . . . , β
2
p)

σ2|· ∼ IG

(

N + p

2
,
(y −Xα)T (y −Xα)

2
+
α

TΣ−1
∗ α

2

)

β2
k|· ∼ IG

(

1,
1

νk
+

α2
k

2τ2σ2

)

k = 1, . . . , p

τ2|· ∼ IG

(

p+ 1

2
,
1

ξ
+

1

2σ2

p
∑

k=1

α2
k

β2
k

)

νk|· ∼ IG

(

1, 1 +
1

β2
k

)

k = 1, . . . , p

ξ|· ∼ IG

(

1, 1 +
1

τ2

)

.

Given these closed-form conditionals, we employ a Gibbs

sampler to efficiently sample from the posterior over α.

The complexity of sampling α is dominated by the cost

of sampling from the multivariate Gaussian. This step has

cost O(p3) for a naı̈ve implementation and hence can be

prohibitive for a large number of predictors. Instead we use

the exact sampling algorithm of Bhattacharya et al. (2016)

whose complexity is O(N2p) and therefore nearly linear

in p whenever N ≪ p. We have evaluated the different

approaches and found that the proposed sparse regression

performs well for several problems (see Sect. F in the sup-

plement for details).

We note that if the statistical model for f is based on a

maximum likelihood estimate (MLE) for α (see Sect. E),

the algorithm would exhibit a purely exploitative behavior

and produce sub-optimal solutions. Thus, it seems essential

to account for the uncertainty in the model for the objective,

which is accomplished by sampling the model parameters

from the posterior over α and σ2.

3.2. Acquisition Function

The role of the acquisition function is to select the next sam-

ple point in every iteration. Ours is inspired by Thompson

sampling (Thompson, 1933; 1935) (also see the excellent

survey of Russo et al. (2017)) that samples a point x with

probability proportional to x being an optimizer of the un-

known function. We proceed as follows. Keeping in mind

that our belief on the objective f at any iteration is given by

the posterior on α, we sample αt ∼ P (α | X, y) and want

to find an argmaxx∈D fαt
(x). Since applications often im-

pose some form of regularization on x, we restate the prob-

lem as argmaxx∈D fα(x) − λP(x), where P(x) = ‖x‖1
or P(x) = ‖x‖22 and thus cheap to evaluate. Then, for a

given α and P(x) = ‖x‖1, the problem is to obtain an

argmax
x∈D

fα(x)− λP(x) (3)

=argmax
x∈D

∑

j

(αj − λ)xj +
∑

i,j>i

αijxixj , (4)

where x ∈ {0, 1}d. Similarly, if P(x) = ‖x‖22, the problem

becomes argmaxx∈D

∑

j αjxj +
∑

i,j>i(αij − λδij)xixj .

Thus, in both cases we are to solve a binary quadratic pro-

gram of the form

argmax
x∈D

xTAx+ bTx, (5)

where D = {0, 1}d. That is, we are to optimize a quadratic

form over the vertices of the d-dimensional hypercube Hd.

This problem is known to be notoriously hard, not admitting

exact solutions in polynomial time unless P = NP (Garey

& Johnson, 1979; Charikar & Wirth, 2004).

Outline: We will show how to obtain an approximation ef-

ficiently. First, we relax the quadratic program into a vector

program, replacing the binary variables by high-dimensional

vector-valued variables on the (d + 1)-dimensional unit

sphere Sd. Note that the optimum value attainable for this

convex relaxation is at least as large as the optimum of

Eq. (5). We then rewrite this vector program as a semidefi-

nite program (SDP) that can be approximated in polynomial

time to a desired precision (Steurer, 2010; Arora & Kale,

2016; Boyd & Vandenberghe, 2004). The solution to the

SDP is converted back into a collection of vectors. Finally,

we apply the randomized rounding method of Charikar &

Wirth (2004) to obtain a solution in D. We found that

this procedure often produces an x(t) that is (near)-optimal.

Moreover, it has a robustness guarantee in the sense that the

approximation error never deviates more than O(log d) from

the optimum. (This bound requires that α0 does not carry a

negative weight that is large in absolute value compared to

the optimal value of the SDP, see (Charikar & Wirth, 2004)

for details.) Note that the worst case guarantee is essentially

the best possible under standard complexity assumptions

(Arora et al., 2005).
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To convert the input domain to {−1, 1}d, we replace each

variable xi by yi = 2xi − 1 and accordingly adapt the

coefficients by defining Ã = A/4, c = b/4 +AT1/4, and

B =

[

Ã c
cT 0

]

.

Augmenting the state with an additional variable y0, we can

rewrite (5) as the quadratic program argmaxz zTBz with

z=[y, y0] ∈ {−1, 1}d+1. Thus, replacing yi by the real-

valued vector-variable νi ∈ Sd for 0≤i≤d we obtain the

relaxation argmax
∑

i,j Bi,j〈νi, νj〉. This vector program

is equivalent to the SDP

argmax
Z�0

Tr(BTZ) s.t. diag(Z) = Id+1, (6)

where Z is a symmetric (d+1)×(d+1) real matrix.

First we obtain a solution Z∗ to (6) that is then (approx-

imately) factorized as Z∗ = (V ∗)TV ∗, where V ∗ ∈
R

(d+1)×(d+1) contains column vectors that satisfy the con-

straints ‖V ∗
i ‖2 = 1 (i.e., V ∗

i ∈ Sd). Then, drawing a ran-

dom vector r ∈ R
d+1 with independent standard Gaussian

entries, we apply the randomized geometric rounding proce-

dure of Charikar & Wirth (2004) to obtain an approximate

solution y∗ ∈ {−1, 1}d to the original quadratic program.

Lastly, we apply the inverse transformation x∗
i = (y∗i +1)/2

to recover a solution on the d-dimensional hypercube.

3.3. Summary of the BOCS Algorithm

We now summarize the BOCS algorithm. Using an initial

dataset of N0 samples, it first computes the posterior on f
based on the sparsity-inducing prior.

In the optimization phase, BOCS proceeds in iterations

until the sample budget Nmax is exhausted. In iteration

t = 1, 2, . . ., it samples the vector αt from the posterior

over the regression coefficients that is defined by the pa-

rameters in Eq. (2). Now BOCS computes an approximate

solution x(t) for maxx∈{0,1}d fαt
−λP(x) as follows: first

it transforms the quadratic model into an SDP, thereby relax-

ing the variables into vector-valued variables on the (d+1)-
dimensional unit-sphere. This SDP is solved (with a pre-

described precision) and the next point x(t) is obtained by

rounding the vector-valued SDP solution. The iteration ends

after the posterior is updated with the new observation y(t)

at x(t). BOCS is summarized as Algorithm 1.

3.4. BOCS-SA: A Low-Complexity Variant of BOCS

We propose a variant of BOCS that replaces semidefinite

programming by stochastic local search. In our experimen-

tal evaluation, the solver takes only a few seconds to obtain

a solution to the semidefinite program and will scale easily

to a few hundred dimensions. While semidefinite programs

Algorithm 1 Bayesian Optimization of Combinatorial

Structures

1: Input: Objective function f(x)− λP(x); Sample bud-

get Nmax; Size of initial dataset N0.

2: Sample initial dataset D0.

3: Compute the posterior on α given the prior and D0.

4: for t = 1 to Nmax −N0 do

5: Sample coefficients αt ∼ P (α | X, y).
6: Find approximate solution x(t) for

maxx∈D fαt
(x)− λP(x).

7: Evaluate f(x(t)) and append the observation y(t)

to y.

8: Update the posterior P (α | X, y).
9: end for

10: return argmaxx∈D fαt
(x)− λP(x).

can be approximated to a given precision in polynomial time,

their complexity might become a bottleneck in future appli-

cations when the dimensionality grows large. Therefore, we

also investigated alternative techniques to solve the problem

in (5) and have found good performance with stochastic

local search, specifically with simulated annealing.

Simulated annealing (SA) performs a random walk on D,

starting from a point chosen uniformly at random. Let x(t)

be the point selected in iteration t. Then the next point x(t+1)

is selected in the neighborhood N(x(t)) that contains all

points with Hamming distance at most one from x(t).

SA picks x ∈ N(x(t)) uniformly at random and eval-

uates obj(x): If the observed objective value is better

than the observation for x(t), SA sets x(t+1) = x. Oth-

erwise, the point is adopted with probability exp((obj(x)−
obj(x(t)))/Tt+1), where Tt+1 is the current temperature.

SA starts with a high T that encourages exploration and

cools down over time to zoom in on a good solution.

In what follows, BOCS-SDP denotes the implementation

of BOCS that leverages semidefinite programming. The im-

plementation that uses simulated annealing (SA) is denoted

by BOCS-SA.

3.5. Time Complexity

Recall from Sect. 3.1 that the computational cost of

sampling from the posterior over α and σ2 is bounded

by O(N2p), where p = Θ(d2) for the second-order model

and N is the number of samples seen so far. The acqui-

sition function is asymptotically dominated by the cost of

the SDP solver, which is polynomial in d for a given preci-

sion ε. Therefore, the total running time of a single iteration

of BOCS-SDP is bounded by O(N2d2 + poly(d, 1
ε
)).

A single iteration of BOCS-SA on the other hand has

time complexity O(N2d2), since simulated annealing runs

in O(d2) steps for the temperature schedule of Spears
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(1993). We point out that the number of alternatives is

exponential in d, thus the running times of BOCS-SDP

and BOCS-SA are only logarithmic in the size of the do-

main that we optimize over.

4. Numerical Results

We conduct experiments on the following benchmarks:

(1) binary quadratic programming with d = 10 variables

(Sect. 4.1), (2) sparsification of Ising models with d = 24
edges (Sect. 4.2), (3) contamination control of a food supply

chain with d = 25 stages (Sect. 4.3), (4) complexity re-

duction of an aero-structural multi-component system with

d = 21 coupling variables (Sect. 4.4). We evaluate the vari-

ants of the BOCS algorithm described in Sect. 3 and compare

them to the following methods from machine learning and

combinatorial optimization.

Expected improvement (EI) with a Gaussian process based

model (Jones et al., 1998; Snoek et al., 2012) typically per-

forms well for noise-free functions. EI uses the popular

one-hot encoding that coincides with the tailored kernel of

Hutter (2009) for binary variables. Although the computa-

tional cost for selecting the next candidate point is relatively

low compared to other acquisition functions, EI is consid-

erably more expensive than the other methods (see also

Sect. C). SMAC (Hutter et al., 2011) addresses this problem

by performing a local search for a candidate with high ex-

pected improvement. It uses a random forest-based model

that is able to handle categorical and integer-valued vari-

ables.

Sequential Monte Carlo particle search (PS) (Schäfer, 2013)

is an evolutionary algorithm that maintains a population of

candidate solutions. PS is robust to multi-modality and

often outperforms local search and simulated annealing for

combinatorial domains (Del Moral et al., 2006; Schäfer,

2013).

Simulated annealing (SA) is known for its excellent per-

formance on hard combinatorial problems (Spears, 1993;

Pankratov & Borodin, 2010; Poloczek & Williamson, 2017).

Starting at a randomly chosen point, oblivious local search

(OLS) (Khanna et al., 1998) evaluates in every iteration all

points with Hamming distance one from its current point and

adopts the best. We are interested in the search performance

of OLS relative to its sample complexity. At each iteration,

OLS requires d function evaluations to search within the

neighborhood of the current solution. We also compare to

random search (RS) of Bergstra & Bengio (2012).

We report the function value returned after t evaluations,

averaged over at least 100 runs of each algorithm for the

first three problems. Intervals stated in tables and error bars

in plots give the mean ± 2 standard errors. Bold entries in

tables highlight the best mean performance for each choice

of λ. BOCS and EI are given identical initial datasets in ev-

ery replication. These datasets were drawn via Monte Carlo

sampling. Algorithms that do not take an initial dataset

are allowed an equal number of ‘free’ steps before count-

ing their function evaluations. The implementations of the

above algorithms and the variants of BOCS are available at

https://github.com/baptistar/BOCS.

4.1. Binary Quadratic Programming

The objective in the binary quadratic programming problem

(BQP) is to maximize a quadratic function with ℓ1 regu-

larization, f(x)− λP(x) = xTQx− λ‖x‖1, over {0, 1}d.

Q ∈ R
d×d is a random matrix with independent standard

Gaussian entries that is multiplied element-wise by a matrix

K ∈ R
d×d with entries Kij = exp(−(i − j)2/L2

c). The

entries of K decay smoothly away from the diagonal with

a rate determined by the correlation length L2
c . We note

that, as the correlation length increases, Q changes from a

nearly diagonal to a denser matrix, making the optimization

more challenging. We set d = 10, sampled 50 indepen-

dent realizations for Q, and ran every algorithm 10-times

on each instance with different initial datasets. Bayesian

optimization algorithms received identical initial datasets

of size N0 = 20. Recall the performance at step t of the

other algorithms (i.e., SA, OLS, and RS) corresponds to

the (t+N0)-th function evaluation. For λ = 0 and Lc = 10,

Fig. 1 reports the simple regret after step t , i.e., the absolute

difference between the global optimum and the solution

returned by the respective algorithm.

We see that both variants of BOCS perform significantly

better than the competitors. BOCS-SDP and the variant

BOCS-SA based on stochastic local search are close with

the best performance. EI and SA make progress slowly,

whereas the other methods are clearly distanced. When

considering the performance of OLS, we note that a deter-

ministic search over a 1-flip neighborhood seems to make

progress, but is eventually stuck in local optima. Similarly,

MLE plateaus quickly. We discuss this phenomenon below.

We also studied the performance for Lc=100 and λ=1, see

Fig. 2. Again, BOCS-SDP performs substantially better

than the other algorithms, followed by BOCS-SA. Table 1

compares the performances of EI and BOCS across other

settings of Lc and λ. MLE is derived from BOCS-SA by

setting the regression weights to a maximum likelihood es-

timate (see Sect. E). We witnessed a purely exploitative

behavior of this algorithm and an inferior performance that

seems to plateau. This underlines the importance of sam-

pling from the posterior of the regression weights, which

enables the algorithm to explore the model space, resulting

in significantly better performance.
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Figure 1. Random BQP instances with Lc = 10 and λ = 0: Both

variants of BOCS outperform the competitors substantially.

Figure 2. Random BQP instances with Lc=100 and λ=1: Both

versions of BOCS outperform the other methods.

Table 1. The simple regret after 100 iterations for 10-dimensional

BQP instances. The entries have been multiplied by 10. The best

performance for each setting is set in bold.

(Lc, λ) EI BOCS-SA BOCS-SDP

(1, 0) 0.49± 0.13 0.02 ± 0.02 0.03± 0.02
(1, 10−4) 0.50± 0.12 0.02 ± 0.01 0.03± 0.03
(1, 10−2) 0.54± 0.12 0.02 ± 0.02 0.05± 0.05

(10, 0) 2.54± 0.51 0.07 ± 0.05 0.07± 0.05
(10, 10−4) 2.49± 0.44 0.06 ± 0.04 0.08± 0.05
(10, 10−2) 2.27± 0.40 0.04 ± 0.04 0.10± 0.06

(100, 0) 3.38± 0.70 0.15± 0.07 0.11 ± 0.06
(100, 10−4) 4.07± 0.77 0.16± 0.08 0.15 ± 0.08
(100, 10−2) 4.25± 0.78 0.17± 0.09 0.13 ± 0.07

4.2. Sparsification of Ising Models

We consider zero-field Ising models that admit a distribu-

tion p(z) = 1
Zp exp(zTJpz) for z ∈ {−1, 1}n, where

Jp ∈ R
n×n is a symmetric interaction matrix and Zp is

the partition function. The support of the matrix Jp is repre-

Table 2. Sparsification of Ising models: BOCS-SDP obtains the

best function values for all three settings of λ, here measured after

150 iterations. We also note that the BOCS-SDP algorithm has the

lowest variability over 10 random Ising models.

λ SA EI OLS

0 0.21± 0.05 0.20± 0.04 0.54± 0.09
10−4 0.23± 0.05 0.20± 0.04 0.49± 0.08
10−2 0.39± 0.05 0.39± 0.04 0.67± 0.09

λ MLE-SA BOCS-SA BOCS-SDP

0 1.19± 0.11 0.19± 0.04 0.11 ± 0.04
10−4 1.21± 0.11 0.19± 0.04 0.10 ± 0.03
10−2 1.37± 0.11 0.37± 0.04 0.33 ± 0.04

sented by a graph Gp = ([n], Ep) that satisfies (i, j) ∈ Ep if

and only if Jp
ij 6= 0 holds.

Given p(z), the objective is to find a close approximat-

ing distribution qx(z) = 1
Zq exp(z

TJqz) while minimiz-

ing the number of edges in Eq. We introduce variables

x ∈ {0, 1}|E
p| that indicate if each edge is present in Eq and

set the edge weights as Jq
ij = xijJ

p
ij . The distance between

p(z) and qx(z) is measured by the Kullback-Leibler (KL)

divergence

DKL(p||qx) =
∑

(i,j)∈Ep

(Jp
ij − Jq

ij)Ep[zizj ] + log

(

Zq

Zp

)

.

Note that the cost of computing the ratio of the partition func-

tions grows exponentially in n, which makes the KL diver-

gence an expensive-to-evaluate function. Summing up, the

goal is to obtain an argminx∈{0,1}d DKL(p||qx) + λ‖x‖1.

The experimental setup consists of 4 × 4 zero-field Ising

models with grid graphs, i.e., n = 16 nodes and d = 24
edges. The edge parameters are chosen independently and

uniformly at random in the interval [.05, 5]. The sign of

each parameter is positive with probability 1/2 and negative

otherwise. The initial dataset contains N0 = 20 points. We

note that with a cost of about 1.8s for a single evaluation

of the KL divergence, enumerating all |D| = 224 inputs to

obtain an optimal solution is infeasible. Thus, we report

the best value obtained after iteration t rather than the sim-

ple regret. Fig. 3 depicts the mean performance with 95%

confidence intervals for λ = 10−4, when averaged over 10
randomly generated Ising models and 10 initial data sets

D0 for each model. The statistics for other values of λ are

stated in Table 2. Initially, BOCS-SDP, BOCS-SA, EI and

SA show a similar performance. As the number of samples

increases, BOCS-SDP obtains better solutions and in addi-

tion achieves a lower variability across different instances

of Ising models.
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Figure 3. Sparsification of Ising models (λ = 10−4): BOCS-SDP

performs best followed by BOCS-SA. EI and SA also show good

performance. Due to the size of the search space and the evaluation

cost of the objective, we report the average best function values

after t iterations rather than the simple regret.

4.3. Contamination Control

The contamination control problem (Hu et al., 2010) con-

siders a food supply with d stages that may be contami-

nated with pathogenic microorganisms. Specifically, we

let random variable Zi denote the fraction of contaminated

food at stage i for 1≤i≤d. (Z) evolves according to a

random process that we describe next. At each stage i, a

prevention effort can be made to decrease the contamination

by a random rate Γi, incurring a cost ci. If no preven-

tion effort is taken, the contamination spreads with rate

given by random variable Λi. This results in the recursive

equation Zi = Λi(1 − xi)(1 − Zi−1) + (1 − Γixi)Zi−1,

where xi ∈ {0, 1} is the decision variable associated with

the prevention effort at stage i. Thus, the goal is to decide

for each stage whether to implement a prevention effort in

order to minimize the cost while ensuring the fraction of con-

taminated food does not exceed an upper limit Ui with prob-

ability at least 1− ǫ. The random variables Λi,Γi and the

initial contamination fraction Z1 follow beta-distributions,

whereas Ui=0.1 and ǫ = 0.05.

We consider the Lagrangian relaxation of the problem that

is given by

argmin
x

d
∑

i=1

[

cixi +
ρ

T

T
∑

k=1

1{Zk>Ui}

]

+ λ‖x‖1, (7)

where each violation is penalized by ρ = 1. Recall that we

have d = 25 stages. We set T = 102, hence the objective

requires T simulations of the random process and is expen-

sive to evaluate. The ℓ1 regularization term encourages the

prevention efforts to occur at a small number of stages.

The mean objective value (with 95% confidence intervals)

of the best solution found after t iterations is shown in Fig. 4

for λ = 10−2. Table 3 compares the performances for other

values of λ after 250 iterations. BOCS-SDP achieves the

best performance in all scenarios.

Figure 4. Contamination control (λ = 10−2): Initially SA per-

forms best but then is trapped in a local optimum. As the number

of samples increases, BOCS-SDP obtains the best contamination

prevention schedules, followed by BOCS-SA and EI.

Table 3. Contamination control: BOCS-SA and BOCS-SDP ob-

tain the best function values for all three settings of λ, here mea-

sured after 250 iterations.

λ SA EI OLS

0 21.58± 0.01 21.39± 0.01 21.54± 0.01
10−4 21.60± 0.01 21.40± 0.01 21.51± 0.01
10−2 21.72± 0.01 21.54± 0.01 21.65± 0.01
1 23.33 ± 0.01 24.71± 0.02 25.12± 0.08

λ MLE-SA BOCS-SA BOCS-SDP

0 22.02± 0.01 21.35± 0.01 21.34 ± 0.01
10−4 22.03± 0.01 21.36± 0.01 21.35 ± 0.01
10−2 22.21± 0.02 21.49± 0.01 21.48 ± 0.01
1 23.33 ± 0.01 23.33 ± 0.01 23.33 ± 0.01

While SA and EI initially perform well (see Fig. 4), SA

becomes stuck in a local optimum. After about 80 iterations,

BOCS typically finds the best prevention control schedules,

and improves upon the solution found by EI.

4.4. Aero-structural Multi-Component Problem

We study the aero-structural problem of Jasa et al. (2018)

that is composed of two main components, aerodynamics

and structures (see Fig. 5). These blocks are coupled by 21
coupling variables that describe how aerodynamic properties

affect the structure and vice versa, how loads and deflections

affect the aerodynamics. For a set of inputs, e.g., airspeed,

angle of the airfoil etc., with prescribed (Gaussian) proba-

bility distributions, the model computes the uncertainty in

the output variables y, which include the lift coefficient CL,



Bayesian Optimization of Combinatorial Structures

Aerodynamics

Structures

Outputs

Mach,
Angle,

. . .

CL,
Fuel,

Fail

Loads
Deflections

Figure 5. The aero-structural model of Jasa et al. (2018): The

arrows indicate the flow of information between components. Note

that the loop requires a fixed point solve whose computational cost

increases quickly with the number of involved coupling variables.

the aircraft’s fuelburn Fuel, and a structural stress failure

criteria Fail. However, the amount of coupling in the model

contributes significantly to the computational cost of per-

forming this uncertainty quantification (UQ).

To accelerate the UQ process, we wish to identify a model

with a reduced number of coupling variables that accu-

rately captures the probability distribution of the output

variables, πy. Let x ∈ {0, 1}d represent the set of ‘active’

coupling variables: xi = 0 denotes that coupling i from

the output of one discipline is ignored and its input to an-

other discipline is fixed to a prescribed value. The effect

of this perturbation on the model outputs is measured by

the KL divergence between πy, i.e., the output distribu-

tion of the reference model, and the output distribution πx
y

for the model with coupling variables x. Thus, the prob-

lem is to find an argminx∈{0,1}d DKL(πy||π
x
y
) + λ‖x‖1,

where DKL(πy||π
x
y
) is expensive to evaluate and λ ≥ 0

trades off accuracy and sparsity of the model. Fig. 6 shows

the average performances for λ = 10−2. SA has the best

overall performance, followed closely by EI, BOCS-SDP,

and BOCS-SA that have a similar convergence profile.

Figure 6. The aero-structural multi-component problem

(λ=10−2): SA performs best followed by EI, BOCS-SDP, and

BOCS-SA.

Fig. 7 shows the output distribution of the reference model

πy (left), and the output distribution of a sparsified model

πx
y

found by BOCS for λ = 10−2 (right). We note that

the distribution is closely preserved, while the sparsified

solution only retains 5 out of the 21 active coupling variables

present in the reference model.

Figure 7. The aero-structural problem: the univariate and bivariate

marginals of the output distribution for the reference (left) and a

sparsified model (right) found by BOCS for λ = 10−2.

5. Conclusion

We have proposed the first algorithm to optimize expensive-

to-evaluate black-box functions over combinatorial struc-

tures. This algorithm successfully resolves the challenge

posed by the combinatorial explosion of the search domain.

It relies on two components: The first is a novel acquisition

algorithm that leverages techniques from convex optimiza-

tion for scalability and efficiency. Aside from effective

handling of sparse data, the value of our model lies in its

applicability to a wide range of combinatorial structures.

We have demonstrated that our algorithm outperforms state-

of-the-art methods from combinatorial optimization and

machine learning.

Future work includes efficient optimization of other acquisi-

tion criteria, for example based on expected improvement

or uncertainty reduction (e.g., see Chevalier et al. (2014);

Hernández-Lobato et al. (2014)), and the development of

tailored models for specific applications. For the latter, we

anticipate a significant potential in the explicit modeling

of combinatorial substructures that seem of relevance for a

given task. For example, when optimizing over combina-

torial structures such as graphical models, power grids and

road networks, it seems promising to enrich the model by

monomials that correspond to paths in the induced graph.

Another interesting direction is to employ a deep neural

networks to learn useful representations for the regression.

This technique would harmonize well with our acquisition

function and complement the sparse parametric model pro-

posed here for functions with moderate evaluation costs, as

it would require more training data but also scale better to

large numbers of samples.
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