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Discovering relationships between materials’ microstructures and mechanical properties is a key goal of ma-
terials science. Here, we outline a strategy exploiting Bayesian optimization to efficiently search the multi-
dimensional space of microstructures, defined here by the size distribution of precipitates (fixed impurities or
inclusions acting as obstacles for dislocation motion) within a simple two-dimensional discrete dislocation dy-
namics model. The aim is to design a microstructure optimizing a given mechanical property, e.g., maximizing
the expected value of shear stress for a given strain. The problem of finding the optimal discretized shape for
a distribution involves a norm constraint, and we find that sampling the space of possible solutions should be
done in a specific way in order to avoid convergence problems. To this end, we propose a general mathematical
approach that can be used to generate trial solutions uniformly at random while enforcing an Euclidean norm
constraint. Both equality and inequality constraints are considered. A simple technique can then be used to
convert between Euclidean and other Lebesgue p-norm (the 1-norm in particular) constrained representations.
Considering different dislocation-precipitate interaction potentials, we demonstrate the convergence of the al-
gorithm to the optimal solution and discuss its possible extensions to the more complex and realistic case of
three-dimensional dislocation systems where also the optimization of precipitate shapes could be considered.

I. INTRODUCTION

The need to develop novel materials with desired properties
for applications is the driving force behind much of mate-
rials science. One way of framing the problem is in terms
of structure-property relationships [1], where one aims at es-
tablishing relations between, say, the microstructural features
of a solid material and its mechanical properties [2]. In gen-
eral, the problem is very challenging due to the combination
of high dimensionality of microstructural descriptors (due to
the very large number of different microstructural features [3])
and non-linearities and statistical fluctuations in the material
response to external stimuli [4, 5]. For these reasons, con-
ventional materials design strategies relying essentially on a
combination of educated guesses and trial and error are sub-
optimal and constitute a bottleneck for discovery of novel ma-
terials.

Recent years have witnessed the emergence of “smart”
methods in the toolbox of materials scientists, such as ma-
chine learning (ML) and optimization algorithms, which are
used to discover previously unknown dependencies of ma-
terial properties on a wide range of microstructural parame-
ters [6, 7]. Indeed, such developments are currently spawn-
ing a new research field sometimes referred to as materials
informatics [8]. However, a large fraction of applications of
“ML for materials” are currently limited to considering atom-
istic and molecular properties of materials in fields such as
quantum chemistry [9]. Yet, the macroscopic mechanical
properties of realistic crystalline materials are largely con-
trolled by the microstructural features on scales well above
the atomic/molecular scale, calling for novel applications of
ML to discover novel microstructure-property relations using
microstructural features on a coarse-grained scale as input.
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Here, we present an approach based on Bayesian optimiza-
tion to find optimal values for the properties, such as the size
distribution, of precipitate particles within crystals resulting
in desired mechanical properties, such as maximal stress at
a given strain. Bayesian optimization [10–12] is known to
be an excellent choice for optimization problems such as the
present one in which evaluating a data point (here, performing
a discrete dislocation dynamics (DDD) simulation) is com-
putationally expensive and the outcome is stochastic (noisy).
The method can be applied to various problems, and there has
already been success in the context of optimization of, e.g.,
atomistic structures [13] and metamaterials [14]. Bayesian
optimization has also been used to calibrate the parameters of
a gradient plasticity model [15] that predicts the plastic size
effects of micropillars.

In this work, we apply Bayesian optimization to 2D disloca-
tion systems. The stress-strain response of such pure disloca-
tion systems has been studied both using stress-controlled [16,
17] and strain-controlled [18, 19] loading, along with recent
attempts to predict the response to external stresses by using
machine learning techniques [20, 21]. Like in these works, we
impose periodic boundary conditions for simplicity, although
it should be mentioned that recently, various methods have
been developed for simulating finite systems [22–24]. Our
system also contains fixed round precipitates (or solute clus-
ters) acting as obstacles for the moving dislocations. Precip-
itation is known to cause various pinning effects, which have
been studied with 2D DDD simulations in the case of identi-
cal precipitates or pinning centres [25]. Here, we go further
and allow the precipitates to be of varying sizes with the aim
of employing Bayesian optimization to find the optimal shape
for a discretized size distribution, subject to the constraint of
a fixed volume fraction (area fraction in 2D) of precipitates,
resulting in a designed mechanical response of the material.
The design objective in our case is to maximize the average
shear stress required to produce a certain value of strain.
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An alternative 2D dislocation modelling choice would be
to represent dislocations as lines on a single glide plane [26],
leading to a more complicated dislocation-precipitation inter-
action, but this would also make the set of dislocations form
an effectively one-dimensional pileup system [27, 28], which
is unable to capture some of the phenomena happening in sys-
tems with multiple glide planes, typically related to the com-
petition between dislocation jamming [18] and pinning due to
obstacles [25]. Certain cross-section models called the 2.5D
models [29] have also been developed with the aim of incor-
porating some of these effects into 2D simulations by utilizing
statistics related to such phenomena collected from 3D simu-
lations.

Realistic but computationally more demanding 3D DDD
models have also been considered, both without [30] and with
precipitates [31, 32]. We intend to extend our optimization
study to such systems after the approach has been tested and
polished for the 2D case, which is the focus of this work. In
the 3D case, bypassing mechanisms between dislocations and
solute clusters have been observed to change considerably de-
pending on the cluster size [33, 34], which motivates our at-
tempts to find ways of taking advantage of such mechanisms
when designing materials.

Our work starts by explaining the specifics of the 2D DDD
model to be studied in Section II. Section III introduces the
Bayesian optimization method. In Section IV, we investigate
the specific problem of generating feasible points, which turns
out to be a critical point for ensuring optimization conver-
gence. The proof-of-concept test results are presented in Sec-
tion V, followed by discussion and conclusions in Section VI.

II. THE 2D DDD MODEL

The discrete dislocation model in two dimensions starts with
N = 64 dislocation points, representing cross-sections of edge
dislocation lines, placed on a square simulation box. The dis-
locations have their Burgers vector along the x-axis of the xy-
plane, and the direction of the Burgers vector is ±x̂ with even
portions of both signs. Each dislocation generates a shear
stress field [25, 35]

σyx(r, sb) =
µsb

2π(1−ν)

x(x2− y2)

(x2 + y2)2 , (1)

where r =
[

x
y

]
is position with respect to the dislocation with

Burger’s vector sign s and magnitude b, in a material with
shear modulus µ and Poisson’s ratio ν . The dislocations are
allowed to move only in the x-direction.

The system also contains spherical precipitates which oc-
cupy 3% of the total area. An example of a relaxed config-
uration is presented in Figure 1. The precipitates are fixed
in place and interact with dislocations through a spherically
symmetric Gaussian potential U ,

U(r, R) = ARexp

(
−1

2

(
r
R

)2
)
, (2)
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FIG. 1. An example of a relaxed dislocation configuration with
N = 64 dislocations and periodic unit cell side length L = 40. The
randomly positioned precipitates are shown as circles, and the T-
symbols correspond to dislocations, with different orientation and
color for opposite Burgers vectors.

where r is the distance from the center of the precipitate, R is
the radius (the size) of the precipitate, and A = 0.5 is a con-
stant scale parameter. The interaction force is the negative
partial derivative of U with respect to the x-coordinate.

We also consider an alternative potential Ualt having a
stronger scaling for the force magnitude with respect to R:

Ualt(r, R) = BR2 exp

(
−1

2

(
r
R

)2
)
, (3)

where B = 5.0 is another constant. Changing to this potential
changes the expected location of the optimum as the scaling
of the interaction force with respect to the precipitate size is
stronger.

All dislocations in this model are chosen to have the same
Burger’s vector magnitude b. Then, the equation of mo-
tion [25] for a dislocation positioned at ri is

d
dt

xi = sib2
χ

∑
j 6=i

σyx(ri− r j, s jb)+σext

−χ
∂

∂x
Utotal(ri),

(4)
with dislocation mobility χ , external shear stress σext , and
Utotal(r) = ∑k U(||r− rk||2, Rk), where k iterates over every
precipitate. A simplified unit system is chosen by setting the
variables b, χ and µ

2π(1−ν) equal to 1. The square-shaped sys-
tem’s side length is L = 40. Furthermore, we impose periodic
boundary conditions and take all the periodic images of dis-
locations into account in a finite form by modifying [35] the
long-range shear stress field formula of Eq. (1). Then, inte-
grating the equation of motion while slowly (quasistatically)
increasing the external stress from zero (after relaxing the sys-
tem without external stress) makes the dislocations move, and
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the strain [25]

ε(t) =
1
L2

N

∑
i=1

sib
[
xi(t)− xi(0)

]
(5)

is measured. Two oppositely signed dislocations are annihi-
lated if their distance becomes less than b (= 1 in the cho-
sen unit system). The simulation ends when the average
strain ε reaches the value 0.2 (a typical value in some recent
works [19–21]).

The response of a dislocation system to external shear
stress is described by a stress-strain curve. Figure 2 shows
how the average stress-strain curve depends on the precip-
itate size and on the choice of the interaction potential for
the case where all precipitates have the same size. In con-
trast to the average response, an individual response typi-
cally alternates between jammed states (with slight elastic de-
formation) and strain bursts (plastic deformation caused by
dislocation avalanches), producing staircase-like stress-strain
curves [16, 20]. Avalanches become more prominent in the
response curve the smaller the system is, and there can be
significant differences between the responses of systems built
from the same recipe but having different random configu-
rations. From the perspective of optimization, this can be
viewed as noise. Therefore, information should be collected
from multiple configurations when determining the links be-
tween recipes and responses.

In practice, the level of noise in the system response can
be decreased by taking the sample mean over M random con-
figurations. An alternative way to reduce noise would be to
increase the size of the dislocation system. We know that
the computational cost of a DDD simulation scales as ∼ N2,
where N is the number of dislocations, whereas running M
multiple simulations (parallel runs possible) simply multiplies
the computational cost by M, which means linear scaling ∼ N
with respect to the total number of dislocations over the M
systems. Both methods typically decrease noise as ∼ 1/

√
N

(may not be exact when increasing the system size [16], but
still close to). This suggests that the most efficient way to
reduce noise is to run many systems in parallel and to have
the averaged results be the observations for the optimization.
However, the system size should be large enough so that all
relevant physical phenomena can be observed and appear as
they would in a bulk system without too much additional un-
wanted effects due to small system size. If the objective would
instead be to control the fluctuations around the average re-
sponse, then the method of performing many simulations for
each observation becomes compulsory; multiple responses are
required to obtain such statistical information.

A. The precipitate size distribution

Sizes for the precipitates are generated from a continuous,
piecewise uniform size distribution that describes how the
area of the simulation box that is reserved for precipitates is
portioned among different precipitate sizes. There are nine ad-
jacent pieces, each having a locally constant probability den-
sity. Each piece covers a size interval of width 0.1, and the

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Strain 

0

0.1

0.2

0.3

A
ve

ra
ge

 S
tr

es
s 

R = 1
R = 0.7
R = 0.5

R = 0.3
R = 0.2
R = 0.15

R = 0.1
R = 0.07
R = 0.05

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Strain 

0

0.1

0.2

0.3

0.4

A
ve

ra
ge

 S
tr

es
s 

R = 1
R = 0.7
R = 0.5

R = 0.3
R = 0.2
R = 0.15

R = 0.1
R = 0.07
R = 0.05

(a)

(b)

FIG. 2. Mean stress–strain curves σ(ε) (averaged curves over 100
random configurations) for nine different precipitation sizes R (num-
ber of dislocations N = 64, volume fraction of precipitates = 0.03, δ

distribution for precipitate sizes), using the interaction potential (a)
U from Eq. (2) or (b) Ualt from Eq. (3). The size that maximizes
stress depends on the chosen potential. Our aim in this work is to
maximize the average stress needed for strain ε = 0.2 with respect to
a precipitate size distribution that can take any shape (given a finite
resolution) instead of assuming one (such as a δ or a Gaussian shape)
for the distribution.
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FIG. 3. An example of a precipitate size distribution with respect
to (a) the number of precipitates, (b) the area that the precipitates
of each size cover. The staircase curve corresponds to a realized
histogram made from an example set of size values drawn from the
source distribution. This set corresponds to the sizes of the precip-
itates illustrated in Figure 1. In this study, we attempt to optimize
a nine-dimensional vector made of the relative piece heights (area
portions) of the area-proportional, piecewise uniform source distri-
bution. The objective is to maximize the average stress needed to
cause a certain amount of strain.

centers of the pieces are evenly spaced between 0.1 and 0.9.
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The height values of the uniform pieces can be used to form
a nine-dimensional vector. Our optimization problem is then
to find the optimal vector with respect to a chosen objective
derived from the stress-strain curve, leading to a designed re-
sponse of the dislocation system.

As an example, Figure 3 shows the distribution from which
the size values were drawn for the precipitates of Fig. 1. As
mentioned, our focus is on the area-proportional version of
the distribution (Fig. 3b) rather than the count-proportional
(Fig. 3a) because, for estimating the impact on the system be-
havior, the total mass of the precipitates is a better measure
than their number. A constraint fixes the total precipitate area,
so it is natural to have the size distribution describe how this
area is divided among different precipitate sizes.

Precipitates are placed uniformly at random over the simu-
lation box. Methods such as a minimal distance between pre-
cipitates could be used to mimic the effects of a manufacturing
method on the precipitate arrangement. For simplicity, we do
not impose any such additional requirements and do not pre-
vent precipitates from overlapping. We do want to assume any
particular manufacturing method because perhaps, in practice,
the precise control of (the shape of) the precipitate size distri-
bution requires some special manufacturing method instead of
a common one. Also, the precipitate locations in the 2D sim-
ulation box could be viewed as projections of 3D locations
where corresponding 3D spherical precipitates would not ac-
tually overlap (although the precipitates are assumed to be
purely 2D for the precipitate-dislocation interaction model).

Let us attempt to make a quick estimate of what the pre-
cipitate sizes we use would correspond to in reality. The ini-
tial density of dislocations in our model is 0.04 per area unit
(within the simplified unit system); this may slightly decrease
during the simulation due to annihilations. Dislocation den-
sities in metals vary in magnitude [36], usually from 1012 to
1016 m/m3. The size range of precipitates in this work starts
from 0.05 and ends to 0.95. Using the dislocation densities as
reference (choosing 1014 m/m3 as the typical density), these
sizes would in reality correspond to 1 nm and 19 nm, which
are quite typical sizes of real precipitates [33].

B. Generating precipitate sizes

The algorithm for generating precipitate sizes will be ex-
plained for the general d-dimensional case as the intention
is to use it again for the 3D case in a future work. The al-
gorithm is count-controlled; the number of generated precip-
itates is equal to the expected number (rounded to an inte-
ger) determined from the source distribution. The area which
the precipitates occupy (3% of the total area on average) may
therefore slightly fluctuate between random configurations.

In detail, the precipitate size generator works as follows.
The starting point is the piecewise uniform probability density
with respect to area (or volume in three dimensional systems),
represented by a vector consisting of piece heights. First, each
vector element should be multiplied by the corresponding
piece width (necessary only if the width varies) and then nor-
malized so that the sum of the vector elements is 1. Now, each

vector element corresponds to the area-proportional probabil-
ity (mass) contained within each piece.

With respect to count, the probability density within a piece
is not uniform (see Fig. 3) but has density∼ R−d , where d = 2
is the spatial dimensionality of the dislocation model. To ob-
tain a size R from such distribution, we perform a conversion
from area-proportional to count-proportional. The first step
is to multiply (weight) each piece’s (with edges R1 and R2;

R1 < R2) probability mass by
∫ R2

R1
r−ddr

R2−R1
(which is the mean of

the integrated function on the interval, because the integral
gives the area, equal to the product of the mean and the in-
terval of integration). If a piece’s width is zero (R1 = R2),
then the probability mass should be multiplied by R−d

1 in-
stead. Taking the sum over the results after the multipli-
cation step gives the expected value 〈R−d〉 which is useful
for calculating the expected number of precipitates (d = 2:
〈Np〉 = 〈

Ap
πR2 〉 =

Ap
π
〈R−2〉, where Ap is the area reserved for

precipitates). The count-proportional probabilities (probabil-
ity masses) are then obtained by normalizing the previously
obtained (weighted) results by their sum.

Now, one piece (a size interval) is selected randomly based
on the count-proportional probabilities. Next, a size value is
drawn within the selected interval from the distribution pro-
portional to R−d (which gives uniform distribution with re-
spect to covered area). The edges of the selected interval are
first converted (mapped) into a representation where the distri-
bution would be uniform. This can be done by operating with
f (x) = x−d+1 on the edges. Then, a number is drawn from the
uniform distribution within the converted interval. Finally, the
number is converted back by operating with f−1(x) = x

1
−d+1

to obtain the size R.

III. METHOD: BAYESIAN OPTIMIZATION

The Bayesian optimization method [10–12] utilizes the idea
of Gaussian process regression where the objective function,
from which the minimum (or maximum) is to be found, is
represented as a probability distribution field over the search
space. Each observation is assumed to be drawn from some
Gaussian distribution; only the distribution parameters (mean
and standard deviation, with respect to the objective value)
are assumed to vary across the search space. The relation of
how the parameters change when moving in the search space
is modelled with a covariance function (a kernel). It tells how
correlated, given a separation, the observations for different
points of the search space are assumed to be. Utilizing this,
the algorithm estimates the probability distributions of future
observations based on past observations. The covariance func-
tion allows to inter- and extrapolate beyond observed points,
providing estimates of future observations and their uncertain-
ties at unexplored points of the search space. The estimated
objective function obtained this way gives Gaussian distribu-
tion parameters (effectively the center and width) for every
point of the search space. The width parameter in this case
models the uncertainty due to noise (the only source of un-
certainty for the exact underlying objective function) and also
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due to not having an observation at the exact location of the
search space.

Based on previous observations, following inputs (for
which the next observations will be obtained) can be chosen
either by observing close to the current estimated optimum in
hope of fast convergence or by focusing on the areas where
the model still has large uncertainty, possibly discovering new
potential locations for the global optimum. These two strate-
gies are called exploitation and exploration, and an algorithm
typically balances a mix between the two, starting by mostly
exploring and then switching gradually towards exploitation.
In practice, this process is controlled by an acquisition func-
tion which can be chosen from multiple options.

In this work, the MATLAB [37] implementation of the al-
gorithm (the bayesopt function) is used, and the acquisition
function is chosen to be expected improvement, a common
choice found across many implementations. The covariance
(kernel) function can be chosen freely too, but we use the de-
fault one in MATLAB called ARD Matern 5/2. This kernel
uses automatic relevance determination which optimizes the
length scale (a kernel variable) for each variable of the search
space alongside the actual optimization process. Other op-
tions are also set to default values, except the IsObjectiveDe-
terministic option which is set to false. Also, a custom func-
tion is passed to the ConditionalVariableFcn option to enforce
a norm equality constraint; further details are given in Sec-
tion IV.

The main advantage of Bayesian optimization over other
optimization algorithms is that it can converge quickly rel-
ative to the number of observations. It is therefore useful
for cases where observations are difficult to obtain, such as
when each observation requires heavy computation or is ex-
pensive in some other way. Another advantage is that the al-
gorithm works well for cases where the observations contain
noise; there is usually a noise evaluation mechanism included,
which takes the noise into account when estimating the objec-
tive function. Also, this method does not depend on whether
the gradient of the objective function can be determined or
not, and does not assume any particular shape for the feasi-
ble search space nor the objective function. One disadvan-
tage is that the algorithm works well only for relatively low-
dimensional input spaces, with an upper bound commonly set
to 20 dimensions [12]. Although Bayesian optimization has
a reputation of converging very quickly, having enough noise
can inevitably raise the number of iterations needed for con-
vergence.

IV. GENERATING FEASIBLE TRIAL SOLUTIONS

The aim is to optimize a continuous precipitate size distribu-
tion represented by a non-negative, nine-dimensional vector
(see Section II). The total area covered by the precipitates is
fixed. This requirement can be formulated as a norm con-
straint, namely as a Lebesgue p-norm (Lp) equality constraint
with p = 1; the sum of the vector elements must be equal to
a constant. Without loss of generality, the constant is here
chosen to be 1. Next, we discuss different approaches for

enforcing such constraints. To this end, the problem is first
studied using mathematical notions before connecting the dis-
cussion back to the optimization problem. The approach starts
by viewing trial solution vectors (let the number of elements
be n) as points in an n-dimensional search space. (For our case
with the nine-dimensional vectors, n = 9.)

Bayesian optimization uses random sampling to explore the
search space. In practice, this means that the algorithm gen-
erates sets of trial points uniformly at random over a hyper-
cube for the purpose of selecting the most promising point ac-
cording to the acquisition function, but every generated point
may not be feasible as such due to constraints. The basic
approaches for enforcing a constraint are either to reject the
infeasible points or to map (modify) the points somehow to
make them feasible. We will call these approaches the rejec-
tion method and the mapping method.

An important aspect is that feasible points should cover
the feasible space evenly enough (uniformly in the optimal
case). The reason is that if some regions of the space are
over-represented and others under-represented, the optimiza-
tion algorithm may be stuck to the over-represented areas and
possibly unable to approach the global optimum in case it is
located elsewhere.

For most problems, there is usually some rejection method
that gives uniformly distributed feasible points. Rejection rate
determines how many random trial points are needed on av-
erage to obtain one feasible point. A major drawback of this
method is the curse of dimensionality; the probability of a ran-
dom point being feasible tends to decay exponentially with
respect to the number of dimensions n in the case of norm
constraints. Consequently, in high-dimensional problems, the
required amount of random numbers that must be generated
for the algorithm to work can become too high, forming a
computational bottleneck. Therefore, this method is usually
not suitable for other than low-dimensional problems.

In the case of a norm equality constraint, one simple map-
ping method is to divide every trial point (vector) by their
norm (and then multiply by the required norm if it is some-
thing else than 1). This could be interpreted as radial pro-
jection onto the feasible hypersurface. Every mapped point
would be feasible, but the mapping gives a non-uniform dis-
tribution of feasible points. Although this is not ideal, the
method might still be useful if the symptoms are not se-
vere. Later in Section V, we demonstrate that this method
causes the previously discussed scenario where the optimiza-
tion algorithm cannot access certain regions of the search
space (namely the boundaries and their proximity, consisting
of sparse solutions) and therefore is unable to converge prop-
erly.

A. From a hypercube to a hypersphere

In the following, we derive a mapping from the uniform distri-
bution over the unit hypercube to another uniform distribution
over the unit hypersphere. The mapping works generally for
any number of dimensions n. Although at first glance it may
seem useful only for problems having a Euclidean (L2) norm
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equality constraint, we explain how to take advantage of the
approach in the case of other Lp norm constraints too.

Let u =
[
u1 u2 . . . un

]
represent an n-dimensional vector

and || · ||p be the notation for the Lp norm, which for u cor-
responds to ||u||p = (∑n

i=1 |ui|p)1/p. The feasible space in our
case is the space formed by all such u for which ||u||1 = 1. For
example, in three dimensions, the shape of the space is a reg-
ular octahedron. The non-negativity requirement restricts the
search space to one of its (hyper)faces, but even so, the shape
is quite nontrivial in high dimensional spaces [38]. In con-
trast, the L2 norm equality constraint ||u||2 = 1 corresponds to
the unit hypersphere (the surface of the unit hyperball) which
is mathematically easier to deal with.

It is possible to first find a mapping for the L2 problem
and then use it for the L1 problem. The trick is to change
the problem definition so that the objective is not to find the
probability distribution itself but a probability amplitude func-
tion, something that resembles the wave functions in the con-
text of quantum physics (although non-negative real-valued
functions suffice here). The L1-constrained probability dis-
tribution can be obtained from the L2-constrained probability
amplitude function simply by squaring the magnitude of each
amplitude value. If this operation is viewed to belong to the
objective function, the original L1-constrained problem effec-
tively changes into an L2-constrained problem. A similar ap-
proach could be applied generally to other Lp constraints by
raising the magnitudes to the power of 2/p instead of 2. (For-
mally, the hypercube itself corresponds to an L∞ constraint
when symmetrically centered at the origin.)

It is well known [39] that the multidimensional standard
normal distribution is isotropic. A sample from this distribu-
tion can be derived by drawing n independent samples from
the standard normal distribution and by forming a vector of
them. The L2 norm equality constraint can be satisfied by di-
viding such vectors by their L2 norm. Isotropy is preserved, so
the distribution of these resulting vectors over the hypersphere
is uniform.

The final missing link is to find a way to convert random
numbers drawn from the standard uniform distribution into
numbers that follow the standard normal distribution. This
can be done by operating with the quantile function (the in-
verse function of the cumulative distribution function) of the
standard normal distribution.

Let x be an n-dimensional vector representing a location
inside the unit hypercube (vector elements can take values be-
tween 0 and 1). Now, the previously discussed steps can be
combined taken to obtain a corresponding point u on the unit
hypersphere. The result is a mapping from the hypercube onto
the hypersphere which preserves uniformity:

u(x) =
Φ−1(x)
||Φ−1(x)||2

, (6)

where Φ−1 is the quantile function of the standard normal dis-
tribution (applied element-wise).

Additionally, non-negativity for the elements of u can be
enforced by scaling the hypercube to the interval [0.5,1) in
each dimension or by taking the absolute values of the result-

ing points. Due to the properties of the quantile function, ele-
ment values of x should not be exactly 0 or 1 (or if necessary,
such cases should be considered separately). The mapping is
from a higher dimensional space to an effectively lower di-
mensional hypersurface, and information worth of one vector
component is lost, so there is no inverse function.

There are many existing alternative methods for generating
points uniformly at random over a hypersphere [39–42]. Our
approach takes advantage of the properties of the normal dis-
tribution; one alternative suggestion [41] generalizes the idea
of the polar coordinate system. We have now shown that the
basic idea of these generators can be extended to develop map-
pings, hopefully enabling new problem solving capabilities.

B. From a hypercube to a hyperball and vice versa

It is also possible to map the hypercube (the n-cube) uniformly
and continuously into the hyperball (the n-ball). Let v be an
n-dimensional vector. The unit n-ball corresponds to the in-
equality constraint ||v||2 < 1. In this case, the dimensionality
of the space is not changed, so a corresponding one-to-one in-
verse mapping also exists. Although our current problem only
requires dealing with an equality constraint, many other prob-
lems involve an inequality constraint, so it is good to consider
both of these related cases here.

The mapping for the case of an inequality constraint can be
derived by using these facts:

• A distribution with some probability density function f
can be mapped into the standard uniform distribution by
operating with the cumulative distribution function F
corresponding to f . Correspondingly, the quantile func-
tion F−1 maps the standard uniform distribution into the
distribution f .

• Vector p formed of n independent standard normal dis-
tributed variables follows an isotropic [39] multivariate
distribution, and the sum of squares (||p||22) follows the
χ2-distribution.

• The radial coordinate qr = ||q||2 of a point q drawn
from a spherical uniform distribution in n dimensions
follows a distribution f (qr) ∼ qn−1

r , and therefore, for
the uniform distribution over the unit n-ball, F(qr) = qn

r
with qr ∈ [0,1).

Now, putting everything together gives for each vector x of the
unit n-cube the corresponding vector v within the unit n-ball:

v(x) =
Φ−1(x)
||Φ−1(x)||2

[Fχ2(||Φ−1(x)||22; n)]1/n, (7)

where Φ−1 is the quantile function of the standard normal
distribution (applied element-wise), Fχ2 the cumulative dis-
tribution function of the χ2-distribution and n the number of
dimensions (the number of vector elements). Alternatively,
without changing the outcome, one could replace the χ2-
distribution with the χ-distribution along with giving the norm
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FIG. 4. Two-dimensional mapping examples between a square (2-
cube) and a disk (2-ball). Eq. (7) maps the left-side to the right-side,
and Eq. (8) does the reverse. The first row (a and b) shows uniformly
distributed random points; the regular pattern of c maps into d, and e
corresponds to the regular pattern of f. The uniformity and continuity
of the mapping means that the ratio of hypervolumes (areas in 2D)
of any two subsets remains the same after the mapping.

instead of the norm’s square as input for the cumulative distri-
bution function.

As the function of Eq. (7) is injective (one-to-one), the op-
eration can be reversed:

x(v) = Φ

(
v
||v||2

[F−1
χ2 (||v||n2; n)]1/2

)
, (8)

where the cumulative distribution function Φ of the standard
normal distribution is applied element-wise, and F−1

χ2 is the

quantile function of the χ2-distribution. Examples of applying
the mappings for n = 2 are demonstrated in Figure 4.

Although many alternatives exist [41, 42], there does not
seem to be a widely known method to generate points uni-
formly at random over a hyperball with Eq. (7) that would cor-
respond to our proposed way. One common suggestion [42]
starts similarly to the hypersphere case, but the final radial co-
ordinate is obtained from an additional random number that
is raised to the power of 1/n, so the approach requires n+ 1
random numbers to be generated. In comparison, our method
utilizes the distribution conversion technique (the first item in
the previous bulleted list), which seems to be quite uncom-
mon in existing literature. As a result, Eq. (7) takes only n
numbers, and it can be interpreted not just as a generator but

as an injective mapping from a hypercube to a hypersphere,
paired with the inverse mapping of Eq. (8).

C. Solving constrained optimization problems with the
mappings

How to enforce the norm equality constraint on high-
dimensional trial solutions so that there are no convergence
problems or computational bottlenecks? Finding a solution
to this problem was the original motivation for deriving these
mappings. There are many different types of constraints, each
requiring a specific method for handling them. Instead of pro-
viding a method for every possible constraint, implementa-
tions of optimization algorithms usually rely on the end user
to come up with the method, which is then used in tandem
with the rest of the algorithm.

A recent implementation of the Bayesian optimization al-
gorithm in MATLAB [37], which was used for this study,
generates trial solutions by forming vectors from independent
random numbers, each following a uniform distribution. Such
vectors (here corresponding to x) do not satisfy the norm con-
straint as such, but there are ways to enforce it. We do this by
writing (programming) a function that is given to the bayesopt
command through the ConditionalVariableFcn option. This
function allows to modify (or to perform a feasibility check
on) the trial vectors after they are created but before they are
used as actual candidate solutions in the optimization process.

As explained previously, a simple way would be to divide
each vector x by their norm, but this would cause convergence
problems (which will be demonstrated in Section V). Instead,
our conditional variable function implements Eq. (6), enforc-
ing the L2 norm equality constraint by mapping vectors x into
vectors u (with n = 9). The elements of x have values within
[0.5,1) to assure that the elements of u are non-negative. (If
we were to deal with a norm inequality constraint instead, the
conditional variable function would implement Eq. (7) in the
place of Eq. (6), and the result of the mapping would be v
in this case.) Also, the beginning of the objective function
is modified so that it raises the vector elements of u to the
power of 2 (giving u◦2 in Hadamard notation). This rais-
ing operation is done in order to obtain the actual precipi-
tate size distribution that follows the required L1 norm equal-
ity constraint before proceeding to the DDD simulations (the
main task of the objective function). (If we would be dealing
with other than just non-negative values, the raising operation
should only raise the magnitudes (absolute values) to the de-
sired power and not change the signs of the vector elements).

The mapping and the raising operation could, however, be
implemented into different stages of the algorithm, but these
choices are not equivalent. The optimization algorithm sees
(and gives the estimated solution in) the representation that
is given by the conditional variable function and passed on to
the objective function. (The L1-constrained representation u◦2
will always be used when we visualize a solution.)

• If both the mapping and the raising operation are per-
formed in the conditional variable function, (Euclidean)
distances between trial solutions (for the purposes of the
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Bayesian optimization algorithm) are measured in the
L1-constrained representation u◦2 (or v◦2).

• If the mapping is performed in the conditional variable
function and the raising operation within the objective
function (as we choose to do here), distances are mea-
sured in the L2-constrained representation u on the hy-
persphere (or v in the hyperball).

• If both the mapping and the raising operation are per-
formed within the objective function, distances are
measured in the unprocessed representation x in the hy-
percube.

Different representations belong to different search spaces.
Consequently, changing the effective representation affects
the distances between the trial solutions, which is a relevant
aspect for the kernel’s functioning (see Section III).

The third choice should be avoided in the case of an equal-
ity constraint as the hypercube is dimensionally larger than
necessary. However, it could be utilized in problems having
an inequality constraint to effectively get rid of the constraint.
As mentioned, we use the second way to obtain the results pre-
sented in Section V (the only exception being Figure 5 where
an alternative mapping method is tested). This choice is based
on the idea that the vectors u are uniformly distributed over the
hypersphere. If instead the vectors u◦2 would be distributed
uniformly (both u and u◦2 cannot be at the same time), the
first choice could be the better one (intuitively). Perhaps the
shape of the search space also affects convergence in the sense
that round, isotropic (L2 related) search spaces are possibly
the most suitable spaces because they do not have corners or
anything that would give a bias towards some vector direction
over others.

V. RESULTS

As a simple test case, we attempt to find the precipitate size
distribution giving the maximum expected stress at strain
ε = 0.2, starting with the case of the precipitate potential of
Eq. (2). The expected stress of a finite system works as an es-
timate of the response of a bulk system. If assuming that the
optimum distribution is a δ distribution, its location is known
to be at the boundary of the search space (Fig. 2a). This in-
formation helps when testing how different approaches and
parameter choices affect the convergence of the optimization.
To obtain general convergence results, we do not place the
initial points (trial solutions) at or near the boundaries of the
search space (which would be the suggested way), but instead
start from a set of randomly placed points.

The optimization objective is traditionally minimized; any
maximization problem can be turned into a minimization
problem by inverting the objective’s sign. Following this com-
mon practice, the objective is here defined to be the negative of
the stress (at strain ε = 0.2). This way, curves illustrating con-
vergence (of the estimated objective) are decreasing, which is
consistent with the majority of other optimization problems
across publications.
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FIG. 5. Bayesian optimization solution (a) and objective evolution
(b) for the potential of Eq. (2). Each observation is an average over
M = 100 random configurations, and the search space is sampled
simply by dividing random vectors from the unit hypercube by their
L1 norm. The optimization process was repeated 10 times with dif-
ferent random number seeds to obtain the statistical measures.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Precipitate Size R

0

0.2

0.4

0.6

0.8

1

A
re

a 
P

or
tio

n

Average estimated solution
(mean of 10 estimates)
Bar-wise minimum
Bar-wise maximum

0 10 20 30 40 50 60 70 80 90 100
Iteration

-0.22

-0.2

-0.18

-0.16

-0.14

O
bj

ec
tiv

e 
V

al
ue

 (
-

 a
t 

 =
 0

.2
;

m
ea

n 
of

 1
2 

ra
nd

om
 c

on
fig

ur
at

io
ns

)

Mean ± Standard Deviation
Mean of 10 estimates
Minimum of 10 estimates
Maximum of 10 estimates

(a)

(b)

FIG. 6. Bayesian optimization solution (a) and objective evolution
(b) for the potential of Eq. (2). Each observation is an average over
M = 12 random configurations, and the search space is sampled by
mapping random vectors from the unit hypercube onto the unit hy-
persphere with Eq. (6), followed by squaring the vector elements
within the objective function. The optimization process was repeated
10 times with different random number seeds to obtain the statistical
measures.

Positions of precipitates and dislocations are random, and
realized sets of size values drawn from a precipitate size dis-
tribution can also vary slightly. These cause considerable de-
viations (noise) in the observed stress values between different
random configurations. As mentioned previously in this work,
Bayesian optimization works even with noisy objectives, but
noise still slows down the convergence of the optimization. If
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level for each M. Here, the potential of Eq. (2) and the mapping
of Eq. (6) were applied. Optimization processes were repeated 100
times with different random number seeds, and the standard errors
were calculated for the distributions that formed as a result.

there is too much noise, features of the underlying objective
function, including the global optimum, may be hidden under
the noise, preventing convergence. As a simple remedy, simu-
lations are performed for multiple (M) random configurations,
and the optimization algorithm sees the sample mean of those
stresses as the observation for each candidate solution (that
corresponds to a certain precipitate size distribution).

Initially, when using a simple method to enforce the con-
straint that fixes the total precipitate area, the solution did not
converge towards a single piece distribution. It could be de-
termined from the objective value (by comparing with Fig. 2)
that the resulting distribution was not as good as the single
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FIG. 9. Bayesian optimization solution (a) and objective evolution
(b) for the alternative potential of Eq. (3). Each observation is an
average over M = 12 random configurations, and the search space
is sampled with Eq. (6). The optimization process was repeated 10
times with different random number seeds to obtain the statistical
measures.
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FIG. 10. Bayesian optimization solution (a) and objective evolution
(b) for the alternative potential of Eq. (3). Each observation is an
average over M = 24 random configurations, and the search space
is sampled with Eq. (6). The optimization process was repeated 10
times with different random number seeds to obtain the statistical
measures.

piece solution would be. The cause was unknown, so var-
ious optimization options, such as the acquisition function,
were adjusted to see if they could make a difference. As
the result did not change, we tried to increase M to reduce
noise considerably. Figure 5 shows the optimization result for
M = 100; there was no notable difference to the results for
smaller choices of M. Finally, we tried to rethink alternative
ways to enforce the constraint and came up with the method
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described in Section IV). With the proposed method, the so-
lution converges to a single piece with a significantly better
objective value than before, even for a relatively small M as
seen in Figure 6.

Figures 5 and 6 show how important it is to choose a proper
way for sampling the search space. When using a simple di-
vision by the L1-norm to obtain feasible trial solutions from
unconstrained vectors, the optimization algorithm is unable to
reach the corners and boundaries of the search space due to
uneven sampling density. As mentioned, reducing noise by
using a larger M does not resolve this issue. These problems
can be avoided only by switching to a proper constraint en-
forcing method like those presented in Section IV.

Figures 7 and 8 illustrate how the convergence depends on
M. It seems that if M is not high enough, noise slows down or
even prevents convergence, and there remains a gap between
estimated and true objective minimum values. In such cases,
the gap’s size is about the same order as the noise level. For
this specific optimization problem, M ≥ 8 seems to be suffi-
cient for efficient convergence that can break through the limit
set by the noise level.

According to Figure 8, convergence becomes faster when
using a larger M, although the computational cost of a single
iteration increases in return. These balance out each other, so
reaching a given proximity around the optimum has about the
same total computational cost independent of M.

We also tested optimizing otherwise the same problem
but now with the alternative precipitate potential defined in
Eq. (3), and the results are shown in Figures 9 and 10, the first
for M = 12 and the latter for M = 24. It could be that the
optimal solution is again a single piece as the solution seems
to converge towards a narrower distribution with respect to
larger M. Unlike in the previous case with Eq. (2) as the po-
tential choice, this time higher M still continues to improve
the solution, probably since the optimum is less prominent
(see Fig. 2b), meaning the objective value is almost the same
no matter if the size distribution has some width or not.

Increasing M means increasing the computational cost of
the optimization, but the cost should preferably be minimized.
A good choice for M would be as small as possible that
still gives a solution that has converged enough; it could be
problem-specific. Having to guess a perfect value for M could
be avoided if it is possible to determine the limit solution from
a series of low-M solutions, like it seems to be with Fig-
ures 9 and 10. Starting from a small M and then gradually
increasing it (depending on the necessity) could be an efficient
strategy for solving these kinds of problems.

VI. DISCUSSION

Optimal size distributions for our systems seemed to be nar-
row, possibly δ distributions, which could be considered as
trivial solutions. Such solutions could be expected when
searching for a linear combination of solution parameters
which each have an independent effect on the objective value.
In such cases, optimal (probability) weighting concentrates at
the parameter having the best individual performance. This

could be assumed true for the 2D system with point disloca-
tions that have only one precipitate passing mechanism. It is
not yet certain if this applies also to the 3D case with curved
line dislocations and more mechanisms of getting past precip-
itates. Resolving this is intended to be one of the subjects of
our following research.

We also considered minimizing the fluctuations of the
stress-strain curves (either by minimizing the standard devia-
tion of stress, or by reducing the size of avalanches), but found
out that, in contrast to the average stress value, the standard
deviation remains nearly constant with respect to precipitate
size when testing with δ size distributions and using the po-
tential of Eq. (2), so there would not have been much to opti-
mize. The situation may change when moving to 3D models,
so fluctuation minimization could then become a objective.

The effects of the precipitates were modelled by a Gaus-
sian potential, assuming either linear (Eq. (2)) or quadratic
(Eq. (3)) scaling for the interaction strength as a function of
the radius. Another modelling option would be to use im-
penetrable precipitates [32], effectively assuming high inter-
action strength regardless of the precipitate size. There has
been some comparison between molecular dynamics (MD)
and DDD simulations with Gaussian interaction [43] but no
extensive studies about which functional form for the interac-
tion would best match with the MD results. Finding this out
could be a possible direction for future research. Although
many hardening effects are similar regardless of the functional
form, optimization results may depend on it, especially on the
scaling of the interaction strength with respect to precipitate
size.

A. Possible reformulations of the optimization problem

To increase the amount of control even more, precipitates
could be allowed to have different shapes. Anisotropic shapes
like ellipsoids would also make orientation a relevant prop-
erty. Additional parameters could be defined for determin-
ing distributions over different shapes and orientations. If a
new problem definition for our system involves a new set of
constraints, we are likely to have the necessary tools ready
thanks to the mappings derived in Section IV. Both equality
and inequality constraints for the norm can be satisfied with-
out convergence problems by choosing a suitable mapping for
generating feasible input points.

Optimization traditionally gives only the optimum choice
of parameters and the corresponding objective value as the
main result. One interesting question would be to ask how
quickly the objective value deviates from the optimal value if
the optimal parameter values were to be adjusted. This could
be defined in many ways. One way would be to apply a con-
straint that sets a region around (and at) the optimum infeasi-
ble and solve the new problem, then repeating with gradually
increasing the size of the infeasible region. Another way is
for the case where each choice of input parameters is associ-
ated with a cost: a new constraint would be applied like in the
previous case, but the constraint now sets an upper limit for
the cost instead of a lower limit for distance from the origi-
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nal optimum. New optima would be searched for cost choices
corresponding to fractions of the cost of the unconstrained op-
timum. Both proposed methods would result in decreasing
curves showing the optimal objective value as a function of
increasing displacement or decreasing cost.

Relying on Bayesian optimization limits the dimensional-
ity of the search space [12]. As a remedy for the limitations
this causes, one could perform a series of optimizations. If the
optimal distribution appears to be narrow compared to the res-
olution of the discretized distribution, the domain of the dis-
tribution could be adjusted, now focusing on a smaller range
and consequently having better resolution. Also, alternatives
to the proposed size distribution format could be used, such as
a similar one but with adjustable piece edges.

In true materials, precipitate size distributions are often
controlled by processing the material in a way that leads to
Ostwald ripening [26, 33] (condensation of small precipitates
into larger ones), which involves control parameters. One idea
is that these parameters could form the search space instead of
the actual resulting size distribution, although the number of
parameters could be very low (only time and temperature),
and there may not be as much freedom to control the out-
come. In that case, precipitate sizes tend to form a log-normal
distribution as a result of condensation [33]. The process also
results in a non-uniform spatial distribution of the precipitates,
which could have some effect on the material response com-
pared to a random configuration. Still, directly optimizing the
size distribution perhaps generalizes better for different appli-
cations, because it does not assume any specific processing
method.

B. Other uses for the mappings

The mappings proposed in Section IV give a way to con-
vert between spaces (or domains) having different geometri-
cal shapes while preserving many important properties, and
they work generally for any number of dimensions. Here, the
mappings were proposed as workarounds for enforcing con-
straints, but they could be useful for many other potential uses
as well.

Instead of gradually adjusting explored points based on ob-
servations, generating sets of random trial points to sample
the search space and selecting the best candidate based on the
value of the acquisition function is common in Bayesian op-
timization algorithms. This is a good method (given that the
density is distributed well over the feasible space) especially
when exploring the space. But, when exploiting, this method
depends on the assumption that with a high enough probabil-
ity, among the set of generated trial points, there is a point
close enough to the optimum so that the next iteration would
improve the solution. With the proposed mappings, it should
be possible to control the input directly based on the feedback.
Normally, it might be difficult to move in a feasible space that
has an exotic geometrical shape, having to constantly worry
about feasibility. In contrast, hypercubes have a simple shape,
and feasibility of a vector can be determined element-wise
without having to check the values of other elements. By us-

ing a mapping to redefine the problem, one could easily adjust
the hypercube representation of an estimated solution towards
the most promising direction based on the acquisition func-
tion. This idea could potentially turn out to be a good way
to boost optimization efficiency for some problems. However,
the advantage may be limited if noise is the main bottleneck
limiting optimization convergence.

Thinking about other applications, the mappings could
serve as tools for conversion between different representations
of data. One could map a coordinate system of one represen-
tation to another, giving as a result a curved coordinate system
with new properties. It is also possible to draw random sam-
ples from (or create mappings for) other uniform distributions
with related geometrical shapes like cylinders.

C. Conclusion

Bayesian optimization was utilized to find the optimal pre-
cipitate size distribution that maximizes the expected stress
needed to move dislocations by a given strain value in 2D
DDD models. The study revealed technical challenges associ-
ated with constraints and noise. A constraint could be applied
in many ways, but the proposed mapping method was found
to fit well with the optimization algorithm, considerably im-
proving convergence and removing computational bottlenecks
when comparing with other methods. Averaging over many
random configurations can reduce the noise without increas-
ing computation time when the simulations are done in paral-
lel.

Optimization results were evaluated and justified by com-
paring with statistics from systems with monosized precipi-
tates. Also, by repeating optimization processes for different
random number seeds, we were able to reveal the statistical
nature of the optimization convergence. Such thorough results
can be calculated quite effortlessly when dealing with sim-
plified, low-dimensional DDD models. Results suggest that
optimal precipitate size distributions tend to resemble δ dis-
tributions even when no particular shape is assumed for the
distribution. More importantly, these findings provide prepa-
rations for moving to larger scale, more realistic 3D models
where, due to a larger variation of bypassing mechanisms, re-
sults may not be as trivial. Optimization of such systems is
expected to bring similar technical challenges related to con-
straints and noise. Not only sizes, but (the distributions over)
precipitate shapes and orientations could also be optimized.
The design objective could also be chosen differently. One
interesting direction would be to minimize strain bursts, the
main cause of fluctuations between the stress responses of dif-
ferent configurations.
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